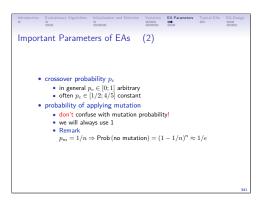
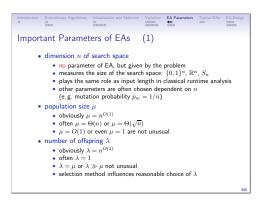


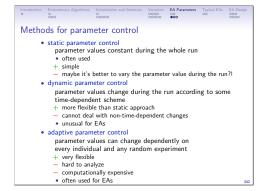
# **Computational Intelligence**

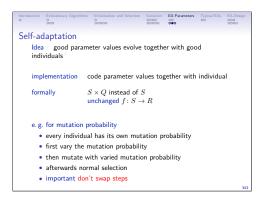
Winter Term 2010/11

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund









#### **Evolutionary Algorithms: Historical Notes**

Lecture 11

Idea emerged independently several times: about late 1950s / early 1960s. Three branches / "schools" still active today.

#### • Evolutionary Programming (EP):

Pioneers: Lawrence Fogel, Alvin Owen, Michael Walsh (New York, USA).

Original goal: Generate intelligent behavior through simulated evolution. Approach: Evolution of finite state machines predicting symbols. Later ( $\sim$ 1990s) specialized to optimization in  $\mathbb{R}^n$  by David B. Fogel.

#### • Genetic Algorithms (GA):

Pioneer: John Holland (Ann Arbor, MI, USA).

Original goal: Analysis of adaptive behavior.

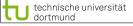
Approach: Viewing evolution as adaptation. Simulated evolution of bit strings. Applied to optimization tasks by PhD students (Kenneth de Jong, 1975; et al.).

#### • Evolution Strategies (ES):

Pioneers: Ingo Rechenberg, Hans-Paul Schwefel, Peter Bienert (Berlin, Germany).

Original goal: Optimization of complex systems.

Approach: Viewing variation/selection as improvement strategy. First in  $\mathbb{Z}^n$ , then  $\mathbb{R}^n$ .



G. Rudolph: Computational Intelligence • Winter Term 2009/10

**Evolutionary Algorithms: Historical Notes** 

Lecture 11

"Offspring" from GA branch:

#### Genetic Programming (GP):

Pioneers: Nichael Lynn Cramer 1985, then: John Koza (Stanford, USA).

Hierarchy of parameter control methods

adaptive parameter control

dynamic parameter control

static

narameter control

Original goal: Evolve programs (parse trees) that must accomplish certain task. Approach: GA mechanism transferred to parse trees.

Later: Programs as successive statements → Linear GP (e.g. Wolfgang Banzhaf)

#### Already beginning early 1990s:

technische universität

dortmund

Borders between EP, GA, ES, GP begin to blurr ...

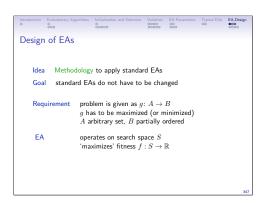
- ⇒ common term **Evolutionary Algorithm** embracing all kind of approaches
- ⇒ broadly accepted name for the field: **Evolutionary Computation**

scientific journals: *Evolutionary Computation* (MIT Press) since 1993, *IEEE Transactions on Evolutionary Computation* since 1997,

several more specialized journals started since then.

G. Rudolph: Computational Intelligence • Winter Term 2009/10

imputational intelligence - winter Term 2008



## **Design of Evolutionary Algorithms**

Lecture 11

G. Rudolph: Computational Intelligence • Winter Term 2009/10

## **Genotype-Phenotype-Mapping** $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$

 $\bullet$  Standard encoding for  $b \in \mathbb{B}^n$ 

$$x = L + \frac{R - L}{2^{n} - 1} \sum_{i=0}^{n-1} b_{n-i} 2^{i}$$

→ Problem: hamming cliffs

| 000                                                         | 001 | 010 | 011 | 100 | 101 | 110 | 111 |  |  |  |
|-------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| 0                                                           | 1   | 2   | 3   | 4   | 5   | 6   | 7   |  |  |  |
|                                                             |     |     |     |     |     |     |     |  |  |  |
| 1 Bit 2 Bit 1 Bit <mark>3 Bit</mark> 1 Bit 2 Bit 1 Bit<br>↑ |     |     |     |     |     |     |     |  |  |  |
| Hamming cliff                                               |     |     |     |     |     |     |     |  |  |  |

# L = 0. R = 7n = 3

**but:** 1-Bit-change:  $000 \rightarrow 100 \Rightarrow \odot$ 

⇒ small changes in genotype lead to small changes in phenotype!

# Definition of mappings Fitness $f := h_2 \circ g \circ h_1$ $h_1$ is genotype-phenotype-mapping.

# **Design of Evolutionary Algorithms**

Lecture 11

## **Genotype-Phenotype-Mapping** $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$

• Gray encoding for  $b \in \mathbb{B}^n$ 

Let 
$$a \in \mathbb{B}^n$$
 standard encoded. Then  $b_i = \left\{ \begin{array}{ll} a_i, & \text{if } i = 1 \\ a_{i-1} \oplus a_i, & \text{if } i > 1 \end{array} \right. \oplus = XOR$ 

| 000 | 001 | 011 | 010 | 110 | 111 | 101 | 100 | ← genotype  |
|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | ← phenotype |

OK, no hamming cliffs any longer ...

⇒ small changes in phenotype "lead to" small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

#### **Design of Evolutionary Algorithms**

Lecture 11

**Genotype-Phenotype-Mapping**  $\mathbb{B}^n \to \mathbb{P}^n$  (example only)

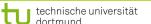
ullet e.g. standard encoding for  $b \in \mathbb{B}^n$ 

#### individual:

| 010 | 101 | 111 | 000 | 110 | 001 | 101 | 100 | ← genotype |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | ← index    |

consider index and associated genotype entry as unit / record / struct; sort units with respect to genotype value, old indices yield permutation:

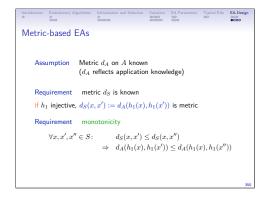
| 000 | 001 | 010 | 100 | 101 | 101 | 110 | 111 | ← genotype  |
|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| 3   | 5   | 0   | 7   | 1   | 6   | 4   | 2   | ← old index |



G. Rudolph: Computational Intelligence • Winter Term 2009/10

:

= permutation



```
Requirements on h_1 and h_2 obvious requirements \bullet h<sub>1</sub> and h_2 obvious requirements \bullet h<sub>2</sub> suits g, i.e. good points in \mathbb R \bullet h<sub>3</sub> maps on many (all) important points of A \bullet Optima of f correspond to optima of g Caution requirements can be hard to achieve in practice for non-obvious requirements a metric is important  \begin{array}{c} \bullet h_1 \text{ and } h_2 \text{ can be computed efficiently} \\ \bullet h_2 \text{ suits } g, i.e. good points in B are mapped to good points in \mathbb R \bullet h<sub>1</sub> maps on many (all) important points of A \bullet Optima of f correspond to optima of g Caution requirements can be hard to achieve in practice for non-obvious requirements a metric is important  \begin{array}{c} \textbf{Definition} \\ \textbf{Definition} \\ \textbf{Mapping } d\colon M\times M\to \mathbb R_0^+ \text{ is a metric on the set } M:\Leftrightarrow \\ \bullet \forall x,y\in M: x\neq y\Leftrightarrow d(x,y)>0 \text{ (positivity)} \\ \bullet \forall x,y\in M: d(x,y)=d(y,x) \text{ (symmetry)} \\ \bullet \forall x,y,z\in M: d(x,y)+d(y,z)\geq d(x,z) \text{ (triangle inequality)}
```

```
Variation as randomized mapping now Design-rules for variation operators hence Formalize variation operators as randomized mapping  r\colon X\to Y \text{ randomized mapping} \\ \Leftrightarrow r(x)\in Y \text{ depends on } x\in X \text{ and random experiment} \\ \text{formally} \quad \text{probability space} \; (\Omega,p) \\ r\colon X\times\Omega\to Y \\ \text{Prob} \; (r(x)=y)=\sum_{\omega\in\Omega\colon r(x,\omega)=y}p(\omega) \\ \text{Example 1-bit mutation} \\ \Omega\colon =\{1,2,\ldots,n\},\; \forall i\in\Omega\colon p(i)=1/n \\ \text{1-bit mutation is randomized mapping} \; m\colon \{0,1\}^n\to\{0,1\}^n \\ \text{where} \; m(x,i):=x\oplus 0^{i-1}10^{n-i} \\ \end{cases}
```

httroduction Endutronary Algorithms Initialization and Selection Variations EA Parameters Typical EA Composition C

#### Design-rules for crossover offspring similar to parents

$$\forall x, x', x'' \in S$$
:  $\operatorname{Prob} (c(x, x') = x'') > 0$   
 $\Rightarrow \max \{d_S(x, x''), d_S(x', x'')\} \le d_S(x, x')$ 

no bias

$$\forall x, x' \in S \colon \forall \alpha \in \mathbb{R}_0^+ \colon$$
 
$$\operatorname{Prob} \left( d_S(x, c(x, x')) = \alpha \right) = \operatorname{Prob} \left( d_S(x', c(x, x')) = \alpha \right)$$

Any EA that fulfills these four design-rules is called a metric-based EA (MBEA).

...