
Introduction to Computational Intelligence
Winter 2010/11

Lecturer: Prof. Dr. Günter Rudolph

Stand-In: Nicola Beume

Computational Intelligence Group, LS11
Dept. of Computer Science

TU Dortmund

05.01.2011

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 1 / 27

Today’s Topics

1 Optimization Basics

2 Randomized Search Heuristics

3 Introduction to Evolutionary Algorithms
EA Operators

4 Theory of Evolutionary Algorithms
Motivation
Method of Fitness-Based Partitions
Application of FBP

5 Summary and Outlook

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 2 / 27

Optimization Basics

Optimization Basics

given:
objective function f : X → R
feasible region X (= nonempty set)

objective: find solution with minimal or maximal value!

optimization problem:
find x∗ ∈ X such that f(x∗) = min{f(x)|x ∈ X}
x∗ global solution (optimizer)
f(x∗) global optimum (optimum)

note: max{f(x)|x ∈ ¸X} = −min{−f(x)|x ∈ X}
Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 3 / 27

Optimization Basics

Optimization Basics

local optimum
xl ∈ X is a local solution if
∀x ∈ N(xl) : f(xl) ≤ f(x)

N(xl) neighborhood of xl (bounded subset of X)
f(xl) local optimum, local minimum

note:
each global optimum is also a local one

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 4 / 27

Optimization Basics

“Easy” Classes of Optimization Problems

linear problems
linear objective function, linear constraints
solvable by e.g. simplex algorithms

non-linear problems
objective function or constraints non-linear
solvable by classical methods, if
differentiable and

convex (convex function, convex domain)
without constraints
(more special cases...)

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 5 / 27

Optimization Basics

“Hard” Classes of Optimization Problems

What makes a problem hard
• local optima (is it a global optimum or not?)
• constraints (ill-shaped feasible region)
• non-smoothness (weak causality⇒ strong causality needed!)
• discontinuities (⇒ nondifferentiability, no gradients)
• lack of knowledge about problem (⇒ black / gray box optimization)

Not solvable with conventional methods
⇒ use computational intelligence: randomized search heuristics

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 6 / 27

Randomized Search Heuristics

Classical algorithms vs. Randomized Search
Heuristics

When to apply which method:

classical algorithms rand. search heuristics

• problem known: explicitly
specified

• problem well understood
• problem-specific solver

available
• sufficient resources for

designing algorithm affordable
(time, experts)

• solution with proven quality
required

• problem unknown: given as
black/gray box

• problem poorly understood
• no problem-specific solver

available
• insufficient human resources

for designing algorithm, but
oodles of computation time

• solution with satisfactory quality
sufficient

 don’t apply RSH try RSH
Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 7 / 27

Randomized Search Heuristics

General Principles of Randomized Search Heuristics

View of Computer Science
optimization problems are search problems

• randomized
decisions within algorithm performed probabilistically

• search
optimal solution in space of feasible solutions

• heuristic
strategy without proven quality

• black-box optimization
algorithm doesn’t know the problem to optimize
gets evaluation of quality for search points (externally)
specific behavior depends on history of search points, evaluation

We consider evolutionary algorithms in the following...

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 8 / 27

Introduction to Evolutionary Algorithms

Optimization in every day life

every day life problem:
fastest way from home to university?

try any way.
measure time.

change way slightly
try and measure time
in case of shorter time:

remember way as favorite
repeat until satisfied

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 9 / 27

Introduction to Evolutionary Algorithms

Optimization in every day life

every day life problem: : optimization problem:
fastest way from home to university? minimize travel time

try any way. initialization
measure time. function evaluation

do:
change way slightly generate variation
try and measure time function evaluation
in case of shorter time:

remember way as favorite selection
repeat until satisfied until stopping criterion fulfilled

this is an evolutionary algorithm!

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 10 / 27

Introduction to Evolutionary Algorithms

Evolutionary Algorithms (EA)

inspired by biological evolution
considered as method of iterative improvements

Task
find x ∈ S optimizing some f : S → R.

• S search space
feasible solution x ∈ S

• f objective function used as fitness function, values/quality of solution

Often: S = Rn or S = Bn or S = Pn (permutations)

in this lecture today: S = Bn

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 11 / 27

Introduction to Evolutionary Algorithms

(Biological) Vocabulary

• genome (chromosome): search point, solution x = (x1, . . . , xn)
decision variable, object parameter xi, i ∈ {1, . . . n}
objective/fitness function value y = f(x) of the optimization problem

• individual a = (x, y): information bundle of solution
population Pt: multiset of individuals in generation t

• genotype space: search space S of EA
representation: encoding of genotype space (Rn,Bn,Pn)

• reproduction: generation of search points by variation
• parent: individual used for reproduction

offspring: new individual
• variation: recombination and/or mutation

mutation: slight alteration of parent
recombination/crossover: merging of several parents

• selection: choosing individuals
• generation: 1 iteration of EA

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 12 / 27

Introduction to Evolutionary Algorithms

Algorithmic framework

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 13 / 27

Introduction to Evolutionary Algorithms

Simple Example: (1+1)EA

t = 0 generation counter t
choose x0 ∈ S uniformly at random initialization
y0 = f(x0) evaluation

Do generation loop
x′ = mutation(xt) variation: mutation
y′ = f(x′) evaluation
if y′ ≤ yt selection (minimization)
xt+1 = x′; yt+1 = y′

otherwise subsequent population: solutions xt+1

xt+1 = xt; yt+1 = yt
t = t+ 1 increase generation counter

stopping criterion fulfilled stopping criterion

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 14 / 27

Introduction to Evolutionary Algorithms EA Operators

Selection

population P = (x1,x2, . . . ,xµ) with µ individuals

selection at 2 steps of EA
selection for reproduction: choose parents
selection for survival: choose individuals for subsequent population

two approaches
1. repeatedly select individuals from population with replacement
2. rank individuals somehow and choose those with best ranks (no
replacement)

uniform selection
choose individual uniformly at random

truncation selection (deterministic)
rank individuals according to fitness
choose best individuals
plus-selection: choose from current population and offspring, (µ+ λ)
comma-selection: choose from offspring only, (µ, λ)

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 15 / 27

Introduction to Evolutionary Algorithms EA Operators

Mutation in search space Bn

first: copy parent x to x′

standard bit mutation
invert (flip) each bit x′i independently with probability pm
• expected number of inverted bits = pm · n
• pm ∈ (0; 1/2] to favor small changes
• most often used mutation probability pm = 1/n

k-bit mutation
choose randomly uniformly k different positions in x′, and invert these bits

• k often very small, most often k = 1

• easier to analyze than standard-bit-mutation
• behavior can vary greatly from standard-bit-mutation

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 16 / 27

Introduction to Evolutionary Algorithms EA Operators

Recombination/ Crossover in search space Bn

discrete recombination
copy values (unchanged) from parents

k-point-crossover
choose 2 parents, choose k different positions uniformly at random
copy parts from parents alternatingly
most often k very small, usually k = 2 or k = 1

uniform crossover
choose ρ parents,
for every x′i: choose uniformly at random among parents

which parent value x
(j)
i , j ∈ {1, . . . , ρ} to copy

number of parent usually ρ = 2

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 17 / 27

Theory of Evolutionary Algorithms Motivation

Theory of Evolutionary Algorithms

What do we do if we design a problem-specific algorithm?
• prove its correctness (problem solved to optimality)
• analyze its performance: (expected) run time

What does this mean for optimization with evolutionary algorithms?
• prove that best function value in population converges to global optimum

of problem f for generations t→∞
• analyze how long this takes on average: expected optimization time
• runtime measure: number of function evaluations

black-box evaluation can afford huge resources (execute simulator, build
machine, ...)
making all other algorithmic steps of the EA marginal

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 18 / 27

Theory of Evolutionary Algorithms Motivation

Analysis of Evolutionary Algorithms

What kind of evolutionary algorithms do we want to analyze?

clearly all kinds of evolutionary algorithms

more realistic very simple evolutionary algorithms
at least as starting point

For what kind of problems do we want to do analyses?

clearly all kinds of problems

more realistic very simple problems — “toy problems”
at least as starting point

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 19 / 27

Theory of Evolutionary Algorithms Motivation

On “Toy Problems”

better term example problems

Why should we care?
• support analysis, help to develop analytical tools
• are easy to understand, are clearly structured
• present typical situations in a paradigmatic way
• make important aspects visible
• act as counter examples
• help to discover general properties
• are important tools for further design and analysis

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 20 / 27

Theory of Evolutionary Algorithms Method of Fitness-Based Partitions

Simple Scenario
EA: (1+1)EA
search space: Bn

properties
• Hamming distance of 2 vectors: # of differing bits
H(x,x′) =

∑n
i=1(xi + x′i − 2xix

′
i)

• standard bit mutation with pm = 1/n
typical probabilities:
Pr(specific bit flips) = 1/n
Pr(specific bit doesn’t flip) = 1− 1/n

E(#mutating bits)= n · 1/n = 1

• plus-selection elitistic: no worsenings

example function: ONEMAX(x) =
n∑
i=1

xi

properties
• maximization, optimum: ONEMAX(1n) = n

• 1 global optimum (no other local ones)
Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 21 / 27

Theory of Evolutionary Algorithms Method of Fitness-Based Partitions

Fundamental Basics of Calculation with Probabilities

analyses by “puzzling” of good/bad basic events

event occurs with probability p
⇒ counter event has probability 1− p

connection of events by “OR”⇒ add probabilities
connection of events by “AND”⇒ multiply probabilities

lower bound of probability: leave out probability of some “OR”-events
upper bound of probability: leave out probability of some “AND”-events

here: discrete probability space⇒ combinatoric

number of combinations without order: binomial coefficient
(
n
k

)

used in the following to count how many vector configurations
fulfill a certain condition
example: # of possible vectors of length 10 with exactly 3 0-bits:

(
10
3

)

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 22 / 27

Theory of Evolutionary Algorithms Method of Fitness-Based Partitions

Upper Bounds with Fitness-Based Partitions (FBP)

method of fitness-based partitions works well with plus-selection for upper
bounds on runtime

• group search points with equal/similar fitness in partition
• rank partitions according to ascending fitness values
• all elements of highest partition optimal
• selection elitistic: leave partition only towards better one
• worst case perspective to gain upper bound: initialize in worst partition
• sum up time spend in each partition until highest reached

Definition
Let f : {0, 1}n → R. A partition L0, L1, . . . , Lk of {0, 1}n is called f -based
partition iff the following holds.

1 ∀i, j ∈ {0, . . . , k} : ∀x ∈ Li : ∀y ∈ Lj : (i < j ⇒ f(x) < f(y))

2 Lk = {x ∈ {0, 1}n | f(x) = max {f(y) | y ∈ {0, 1}n}}

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 23 / 27

Theory of Evolutionary Algorithms Method of Fitness-Based Partitions

Upper Bounds with Fitness-Based Partitions (FBP)

Pr(x mutates to x′) : pH(x,x′)
m · (1− pm)n−H(x,x′)

mutate H(x,x′) bits, do not mutate n−H(x,x′) bits

si : probability of leaving partition Li
si = minx∈Li

∑
i<j≤k

∑
x′∈Lj

p
H(x,x′)
m · (1− pm)n−H(x,x′)

inner sum: all x′ of higher partition Lj
outer sum: all higher partitions
min: worst x

expected optimization time: sum of duration per partition
duration = 1/ (probability of leaving) = s−1i
lower bound of si leads to upper bound of s−1i

E(T(1+1)EA,f) ≤
∑

0≤i<k
s−1i

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 24 / 27

Theory of Evolutionary Algorithms Application of FBP

Upper Bound for (1+1)EA on ONEMAX

use trivial partition: 1 partition for each function value acc. to ONEMAX

useful inequality: (1− 1/n)n < 1/e < (1− 1/n)n−1, e: Euler’s number

vectors in partition Li: i 1-bits, n− i 0-bits
possible improvement: mutate one 0→ 1, other bits unchanged
⇒ function increased by 1⇒ partition left

Pr(0→ 1) = #0-bits ·pm =
(
n−i
1

)
· 1/n = (n− i)/n

Pr(other bits do not mutate)= (1− pm)n−1 = (1− 1/n)n−1 > 1/e

lower bound for probability of leaving partition:
si ≥ n−i

n · (1− 1
n)
n−1 ≥ n−i

n · 1e = n−i
ne

E(T(1+1)EA,ONEMAX) ≤
∑

0≤i<n
s−1i ≤

∑
0≤i<n

en
n−i = en

∑
1≤i≤n

1
i

= enHn < en(ln(n) + 1) = O(n log n)

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 25 / 27

Theory of Evolutionary Algorithms Application of FBP

Upper Bound: (1+1) EA on LEADINGONES

LEADINGONES : {0, 1}n → R with LEADINGONES(x) :=
n∑
i=1

i∏
j=1

xj

use trivial partition: 1 partition for each function value acc. to LEADINGONES

improving step:
to leave Li by one mutation, flip exactly the leftmost 0-bit.

si ≥ 1 · 1n ·
(
1− 1

n

)n−1 ≥ 1
en

E
(
T(1+1) EA,LEADINGONES

)
≤

n−1∑

i=0

s−1i =
n−1∑

i=0

en = n · en

= O(n2)

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 26 / 27

Summary and Outlook

Summary and Outlook

Summary
• randomized search heuristics suitable tool for complex problems
• evolutionary algorithms (EA): basic operators
• simple example: (1+1)-EA
• theory possible

Upcoming topics, e.g.
• evolutionary algorithms with search space Rn

• design principles of EA
• parameters

Acknowledgments:
lecture based on slides by Günter Rudolph, Thomas Jansen

Thanks!

Nicola Beume (TU Dortmund) Introduction to CI 05.01.2011 27 / 27

