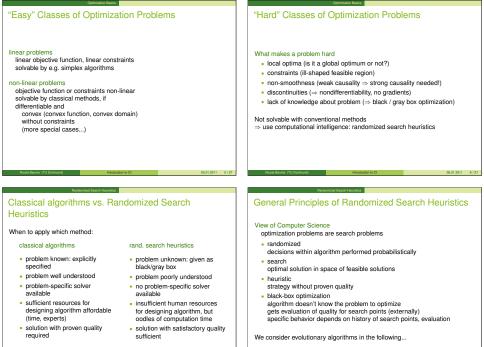


x* global solution (optimizer) $f(\mathbf{x}^*)$ global optimum (optimum)

	Beume	

Introduction to CI

05.01.2011 4/27



Nicola Beume (TU Dortmun

Introduction to CI

05.01.2011 8/27

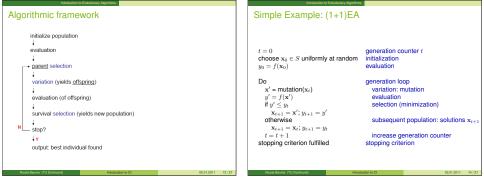
→ try RSH

Noola Beume (TU Dortmund) Introduction to Cl 05.01.2011 7 / 27

Introduction to Evolutionary Algorithms		Introduction to Evolutionary Algorithms		
Optimization in every day life		Optimization in every day life		
every day life problem:		every day life problem: :	optimization problem:	
fastest way from home to university?		fastest way from home to university?	minimize travel time	
try any way. measure time.		try any way. measure time.	initialization function evaluation	
change way slightly		change way slightly	do: generate variation	
try and measure time		try and measure time	function evaluation	
in case of shorter time:		in case of shorter time:		
remember way as favorite repeat until satisfied		remember way as favorite repeat until satisfied	selection until stopping criterion fulfilled	
			this is an evolutionary algorithm!	
Nose Burry (1) Dymmon) Interchance to C (5.81-20	11 9/27	Neola Beurre (TU Domund) Introduction t	0501.2011 10/27	
Introduction to Evolutionary Algorithms		Introduction to Evolutionary Algorithms		
Evolutionary Algorithms (EA)		(Biological) Vocabulary		
inspired by biological evolution		 genome (chromosome): search point 	s, solution $\mathbf{x} = (x_1, \dots, x_n)$	
considered as method of iterative improvements		decision variable, object parameter x		
Task		 objective/fitness function value y = f individual a = (x, y): information bun 		
find $\mathbf{x} \in S$ optimizing some $f \colon S \to \mathbb{R}$.		population P_t : multiset of individuals		
 S search space feasible solution x ∈ S 		 genotype space: search space S of E representation: encoding of genotype 		
 <i>f</i> objective function used as fitness function, values/quality of solution 		 reproduction: generation of search points by variation 		
Often: $S = \mathbb{R}^n$ or $S = \mathbb{B}^n$ or $S = \mathbb{P}^n$ (permutations)		 parent: individual used for reproducti offspring: new individual 	on	
in this lecture today: $S = \mathbb{B}^n$		 variation: recombination and/or muta 	tion	
		mutation: slight alteration of parent recombination/crossover: merging of	several parents	
		 selection: choosing individuals 		
		 generation: 1 iteration of EA 		
Noola Beume (TU Dortmund) Introduction to Cl 05.01.201	1 11/27	Nicola Beume (TU Dortmand) Introduction 1	G 05.01.2011 12/27	

Introduction to Evolutionary Algorithms

Introduction to Evolutionary Algorithms



Introduction to Evolutionary Algorithms EA Operators

Selection

population $P = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\mu})$ with μ individuals

selection at 2 steps of EA

selection for reproduction: choose parents selection for survival: choose individuals for subsequent population

two approaches

repeatedly select individuals from population with replacement
 rank individuals somehow and choose those with best ranks (no replacement)

uniform selection

choose individual uniformly at random

truncation selection (deterministic)

rank individuals according to fitness choose best individuals

plus-selection: choose from current population and offspring, $(\mu+\lambda)$ comma-selection: choose from offspring only, (μ,λ)

Mutation in search space \mathbb{B}^n

first: copy parent x to x'

standard bit mutation

invert (flip) each bit x'_i independently with probability p_m

- expected number of inverted bits = p_m · n
- p_m ∈ (0; 1/2] to favor small changes
- most often used mutation probability $p_m = 1/n$

k-bit mutation

choose randomly uniformly k different positions in $\mathbf{x}^\prime,$ and invert these bits

- k often very small, most often k = 1
- easier to analyze than standard-bit-mutation
- · behavior can vary greatly from standard-bit-mutation

suction to Evolutionary Algorithms EA Operators

Recombination/ Crossover in search space \mathbb{B}^n

discrete recombination

copy values (unchanged) from parents

k-point-crossover

choose 2 parents, choose k different positions uniformly at random copy parts from parents alternatingly most often k very small, usually k = 2 or k = 1

uniform crossover

choose ρ parents, for every \mathbf{x}_i^c choose uniformly at random among parents which parent value $\mathbf{x}_i^{(j)}, j \in \{1, \dots, \rho\}$ to copy number of parent usually $\rho = 2$

Nicola Beume (TU Dortmund)

Introduction to CI

heory of Evolutionary Algorithms Motivation

Analysis of Evolutionary Algorithms

What kind of evolutionary algorithms do we want to analyze?

- clearly all kinds of evolutionary algorithms
- more realistic very simple evolutionary algorithms at least as starting point

For what kind of problems do we want to do analyses?

- clearly all kinds of problems
- more realistic very simple problems "toy problems" at least as starting point

Theory of Evolutionary Algorithms

What do we do if we design a problem-specific algorithm?

- prove its correctness (problem solved to optimality)
- · analyze its performance: (expected) run time

What does this mean for optimization with evolutionary algorithms?

- prove that best function value in population converges to global optimum of problem f for generations $t\to\infty$
- · analyze how long this takes on average: expected optimization time
- runtime measure: number of function evaluations black-box evaluation can afford huge resources (execute simulator, build machine, ...)

Introduction to CI

making all other algorithmic steps of the EA marginal

Theory of Evolutionary Algorithms

On "Toy Problems"

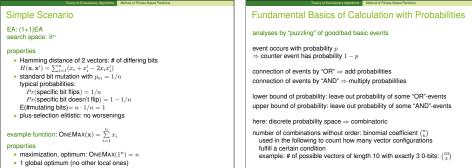
better term example problems

Why should we care?

- · support analysis, help to develop analytical tools
- · are easy to understand, are clearly structured
- · present typical situations in a paradigmatic way
- · make important aspects visible
- · act as counter examples
- help to discover general properties
- · are important tools for further design and analysis

05.01.2011 17/27

05.01.2011 18/27



05.01.2011 21/27

cola Beume (TU Dortmund)

Theory of Evolutionary Algorithms Method of Fitness-Based Partitions

Upper Bounds with Fitness-Based Partitions (FBP)

method of fitness-based partitions works well with plus-selection for upper bounds on runtime

- · group search points with equal/similar fitness in partition
- rank partitions according to ascending fitness values
- all elements of highest partition optimal
- · selection elitistic: leave partition only towards better one
- · worst case perspective to gain upper bound: initialize in worst partition
- sum up time spend in each partition until highest reached

Definition

Let $f\colon \{0,1\}^n\to\mathbb{R}.$ A partition L_0,L_1,\ldots,L_k of $\{0,1\}^n$ is called f-based partition iff the following holds.

 $\begin{array}{l} \textcircled{0} \quad \forall i, j \in \{0, \dots, k\} \colon \forall x \in L_i \colon \forall y \in L_j \colon \ (i < j \Rightarrow f(x) < f(y)) \\ \textcircled{0} \quad L_k = \{x \in \{0, 1\}^n \mid f(x) = \max{\{f(y) \mid y \in \{0, 1\}^n\}} \end{array}$

Theory of Evolutionary Algorithms Method of Fitness-Based Partitions

Upper Bounds with Fitness-Based Partitions (FBP)

 $\begin{array}{l} Pr(\mathbf{x} \text{ mutates to } \mathbf{x}'): p_m^{H(\mathbf{x},\mathbf{x}')} \cdot (1-p_m)^{n-H(\mathbf{x},\mathbf{x}')} \\ \text{mutate } H(\mathbf{x},\mathbf{x}') \text{ bits, do not mutate } n-H(\mathbf{x},\mathbf{x}') \text{ bits} \end{array}$

 $s_i: \text{probability of leaving partition } L_i$ $s_i = \min_{\mathbf{x} \in L_i} \sum_{\substack{i < j \leq \mathbf{x} \\ \mathbf{x}' \in L_j}} p_m^{H(\mathbf{x},\mathbf{x}')} \cdot (1 - p_m)^{n - H(\mathbf{x},\mathbf{x}')}$ inner sum: all sidder partition L_j outer sum: all higher partitions min: worst x

expected optimization time: sum of duration per partition duration = 1/ (probability of leaving) = s_i^{-1} lower bound of s_i leads to upper bound of s_i^{-1}

$$E(T_{(1+1)EA,f}) \le \sum_{0 \le i < k} s_i^{-1}$$

Nicola Beume (TU Dortmund

05.01.2011 22/27

Theory of Evolutionary Algorithms Application of FB Theory of Evolutionary Algorithms Application of FB Upper Bound for (1+1)EA on ONEMAX Upper Bound: (1+1) EA on LEADINGONES use trivial partition: 1 partition for each function value acc. to ONEMAX LEADINGONES: $\{0, 1\}^n \rightarrow \mathbb{R}$ with LEADINGONES $(x) := \sum_{i=1}^{n} \prod_{j=1}^{i} x_j$ useful inequality: $(1 - 1/n)^n < 1/e < (1 - 1/n)^{n-1}$, e: Euler's number use trivial partition: 1 partition for each function value acc. to LEADINGONES vectors in partition L_i: i 1-bits, n - i 0-bits possible improvement: mutate one $0 \rightarrow 1$, other bits unchanged improving step: \Rightarrow function increased by 1 \Rightarrow partition left to leave L_i by one mutation, flip exactly the leftmost 0-bit. $\Pr(0 \to 1) = \text{#0-bits } \cdot p_m = \binom{n-i}{1} \cdot 1/n = (n-i)/n$ $\Pr(\text{other bits do not mutate}) = (1 - p_m)^{n-1} = (1 - 1/n)^{n-1} > 1/e$ $s_i \ge 1 \cdot \frac{1}{n} \cdot \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{1}{n}$ lower bound for probability of leaving partition: $s_i \ge \frac{n-i}{n} \cdot (1-\frac{1}{n})^{n-1} \ge \frac{n-i}{n} \cdot \frac{1}{e} = \frac{n-i}{ne}$ $\mathsf{E}\left(T_{(1+1) \text{ EA, LEADINGONES}}\right) \leq \sum_{i=0}^{n-1} s_i^{-1} = \sum_{i=0}^{n-1} en = n \cdot en$ $= O(n^2)$ $E(T_{(1+1)EA,\mathsf{ONEMAX}}) \leq \sum_{0 \leq i < n} s_i^{-1} \leq \sum_{0 \leq i < n} \frac{en}{n-i} = en \sum_{1 \leq i \leq n} \frac{1}{i}$ $= enH_n < en(\ln(n) + 1) = O(n \log n)$ Introduction to CI 05.01.2011 25/27 Introduction to CI 05.01.2011 28/27

Summary and Outlook

Summary and Outlook

Summary

- · randomized search heuristics suitable tool for complex problems
- · evolutionary algorithms (EA): basic operators
- simple example: (1+1)-EA
- theory possible

Upcoming topics, e.g.

- evolutionary algorithms with search space Rⁿ
- · design principles of EA
- parameters

Acknowledgments: lecture based on slides by Günter Rudolph, Thomas Jansen Thanks!

Introduction to CI	05.01.2011	27/27