Introduction to Computational Intelligence

Winter 2010/11
Lecturer: Prof. Dr. Günter Rudolph

Stand-In: Nicola Beume

Computational Intelligence Group, LS11 Dept. of Computer Science

TU Dortmund
05.01 .2011

Opimizalion Basics

Optimization Basics

given:
objective function $f: X \rightarrow \mathbb{R}$
feasible region X (= nonempty set)
objective: find solution with minimal or maximal value!
optimization problem:
find $\mathbf{x}^{*} \in X$ such that $f\left(\mathbf{x}^{*}\right)=\min \{f(\mathbf{x}) \mid \mathbf{x} \in X\}$ x^{*} global solution (optimizer)
$f\left(\mathbf{x}^{*}\right)$ global optimum (optimum)
note: $\max \{f(x) \mid x \in, X\}=-\min \{-f(x) \mid x \in X\}$

Today's Topics

Optimization Basics(2) Randomized Search HeuristicsIntroduction to Evolutionary Algorithms

EA Operators

Theory of Evolutionary AlgorithmsMotivation
Method of Fitness-Based Partitions
Application of FBPSummary and Outlook

Optimization Basics

local optimum
$\mathrm{x}_{l} \in X$ is a local solution if
$\forall \mathbf{x} \in N\left(\mathbf{x}_{l}\right): f\left(\mathbf{x}_{l}\right) \leq f(\mathbf{x})$
$N\left(\mathbf{x}_{l}\right)$ neighborhood of \mathbf{x}_{l} (bounded subset of X)
$f\left(\mathbf{x}_{l}\right)$ local optimum, local minimum
note:
each global optimum is also a local one

"Easy" Classes of Optimization Problems

linear problems
linear objective function, linear constraints solvable by e.g. simplex algorithms
non-linear problems
objective function or constraints non-linear
solvable by classical methods, if
differentiable and
convex (convex function, convex domain)
without constraints
(more special cases...)

Fantamized Search Hevishics

Classical algorithms vs. Randomized Search

 HeuristicsWhen to apply which method:

classical algorithms

- problem known: explicitly specified
- problem well understood
- problem-specific solver available
- sufficient resources for designing algorithm affordable (time, experts)
- solution with proven quality required
\rightsquigarrow don't apply RSH
Nicola Beme (TU Dormman)

"Hard" Classes of Optimization Problems

What makes a problem hard

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- non-smoothness (weak causality \Rightarrow strong causality needed!)
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)

Not solvable with conventional methods
\Rightarrow use computational intelligence: randomized search heuristics

General Principles of Randomized Search Heuristics

View of Computer Science optimization problems are search problems

- randomized decisions within algorithm performed probabilistically
- search
optimal solution in space of feasible solutions
- heuristic
strategy without proven quality
- black-box optimization
algorithm doesn't know the problem to optimize
gets evaluation of quality for search points (externally)
specific behavior depends on history of search points, evaluation

We consider evolutionary algorithms in the following...
$\rightsquigarrow \operatorname{try}$ RSH

- problem unknown: given as black/gray box
- problem poorly understood
- no problem-specific solver available
- insufficient human resources for designing algorithm, but oodles of computation time
- solution with satisfactory quality sufficient

Optimization in every day life

Optimization in every day life

every day life problem:
fastest way from home to university?
try any way.
measure time.
change way slightly
try and measure time
in case of shorter time:
remember way as favorite
repeat until satisfied
every day life problem: :
fastest way from home to university?
try any way.
measure time.
change way slightly try and measure time
in case of shorter time:
remember way as favorite
repeat until satisfied
optimization problem:
minimize travel time
initialization
function evaluation
do:
generate variation
function evaluation
selection
until stopping criterion fulfilled
this is an evolutionary algorithm!

Evolutionary Algorithms (EA)

inspired by biological evolution considered as method of iterative improvements

Task
find $\mathbf{x} \in S$ optimizing some $f: S \rightarrow \mathbb{R}$.

- S search space
feasible solution $\mathrm{x} \in S$
- f objective function used as fitness function, values/quality of solution

Often: $S=\mathbb{R}^{n}$ or $S=\mathbb{B}^{n}$ or $S=\mathbb{P}^{n}$ (permutations)
in this lecture today: $S=\mathbb{B}^{n}$

Introdiction to Evolutionary Algorilims

(Biological) Vocabulary

- genome (chromosome): search point, solution $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ decision variable, object parameter $x_{i}, i \in\{1, \ldots n\}$ objective/fitness function value $y=f(\mathbf{x})$ of the optimization problem
- individual $\mathbf{a}=(\mathbf{x}, y)$: information bundle of solution population P_{t} : multiset of individuals in generation t
- genotype space: search space S of EA representation: encoding of genotype space $\left(\mathbb{R}^{n}, \mathbb{B}^{n}, \mathbb{P}^{n}\right)$
- reproduction: generation of search points by variation
- parent: individual used for reproduction offspring: new individual
- variation: recombination and/or mutation mutation: slight alteration of parent recombination/crossover: merging of several parents
- selection: choosing individuals
- generation: 1 iteration of EA

Algorithmic framework

initialize population
-
evaluation
\downarrow
\rightarrow parent selection
\downarrow
variation (yields offspring)
\downarrow
evaluation (of offspring)
\downarrow
survival selection (yields new population)
\downarrow
stop?
$\downarrow \mathrm{Y}$
output best individual found

Introduction to Eve Lifionary Alporilims EA Operators

Selection

population $P=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mu}\right)$ with μ individuals
selection at 2 steps of EA
selection for reproduction: choose parents
selection for survival: choose individuals for subsequent population

two approaches

1. repeatedly select individuals from population with replacement
2. rank individuals somehow and choose those with best ranks (no replacement)
uniform selection
choose individual uniformly at random
truncation selection (deterministic)
rank individuals according to fitness
choose best individuals
plus-selection: choose from current population and offspring, $(\mu+\lambda)$ comma-selection: choose from offspring only, (μ, λ)

Simple Example: (1+1)EA

$t=0$
choose $\mathbf{x}_{0} \in S$ uniformly at random $y_{0}=f\left(\mathbf{x}_{0}\right)$

Do
$\mathbf{x}^{\prime}=$ mutation $\left(\mathrm{x}_{t}\right)$
$y^{\prime}=f\left(\mathbf{x}^{\prime}\right)$
if $y^{\prime} \leq y_{t}$

$$
\mathbf{x}_{t+1}=\mathbf{x}^{\prime} ; y_{t+1}=y^{\prime}
$$

otherwise
$\mathbf{x}_{t+1}=\mathbf{x}_{t} ; y_{t+1}=y_{t}$
$t=t+1$
stopping criterion fulfilled
generation counter t
initialization evaluation
generation loop
variation: mutation evaluation selection (minimization)
subsequent population: solutions x_{t+1}
increase generation counter
stopping criterion

Mutation in search space \mathbb{B}^{n}

first: copy parent x to x^{\prime}
standard bit mutation
invert (flip) each bit x_{i}^{\prime} independently with probability p_{m}

- expected number of inverted bits $=p_{m} \cdot n$
- $p_{m} \in(0 ; 1 / 2]$ to favor small changes
- most often used mutation probability $p_{m}=1 / n$
k-bit mutation
choose randomly uniformly k different positions in \mathbf{x}^{\prime}, and invert these bits
- k often very small, most often $k=1$
- easier to analyze than standard-bit-mutation
- behavior can vary greatly from standard-bit-mutation

Recombination/ Crossover in search space \mathbb{B}^{n}

discrete recombination
copy values (unchanged) from parents
k-point-crossover
choose 2 parents, choose k different positions uniformly at random
copy parts from parents alternatingly
most often k very small, usually $k=2$ or $k=1$
uniform crossover
choose ρ parents,
for every \mathbf{x}_{i}^{\prime} : choose uniformly at random among parents
which parent value $\mathbf{x}_{i}^{(j)}, j \in\{1, \ldots, \rho\}$ to copy
number of parent usually $\rho=2$

Theory of Evolutionary Algorithms

What do we do if we design a problem-specific algorithm?

- prove its correctness (problem solved to optimality)
- analyze its performance: (expected) run time

What does this mean for optimization with evolutionary algorithms?

- prove that best function value in population converges to global optimum of problem f for generations $t \rightarrow \infty$
- analyze how long this takes on average: expected optimization time
- runtime measure: number of function evaluations black-box evaluation can afford huge resources (execute simulator, build machine, ...)
making all other algorithmic steps of the EA marginal

Thecy of Evo Uilionary Alcorilthms Molivation

Analysis of Evolutionary Algorithms

What kind of evolutionary algorithms do we want to analyze?
clearly all kinds of evolutionary algorithms
more realistic very simple evolutionary algorithms at least as starting point

For what kind of problems do we want to do analyses?
clearly all kinds of problems
more realistic very simple problems - "toy problems" at least as starting point

Theory ol Evolulionary Algaritims
Molvation

On "Toy Problems"

better term example problems

Why should we care?

- support analysis, help to develop analytical tools
- are easy to understand, are clearly structured
- present typical situations in a paradigmatic way
- make important aspects visible
- act as counter examples
- help to discover general properties
- are important tools for further design and analysis

Simple Scenario

EA: (1+1)EA
search space: \mathbb{B}^{n}
properties

- Hamming distance of 2 vectors: \# of differing bits $H\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{i=1}^{n}\left(x_{i}+x_{i}^{\prime}-2 x_{i} x_{i}^{\prime}\right)$
- standard bit mutation with $p_{m}=1 / n$ typical probabilities:
$\operatorname{Pr}($ specific bit flips $)=1 / n$
Pr (specific bit doesn't flip) $=1-1 / n$
$\mathrm{E}($ \#mutating bits) $=n \cdot 1 / n=1$
- plus-selection elitistic: no worsenings
example function: $\operatorname{ONEMAX}(\mathbf{x})=\sum_{i=1}^{n} x_{i}$
properties
- maximization, optimum: $\operatorname{ONEMAX}\left(1^{n}\right)=n$
- 1 global optimum (no other local ones)

Upper Bounds with Fitness-Based Partitions (FBP)

method of fitness-based partitions works well with plus-selection for upper bounds on runtime

- group search points with equal/similar fitness in partition
- rank partitions according to ascending fitness values
- all elements of highest partition optimal
- selection elitistic: leave partition only towards better one
- worst case perspective to gain upper bound: initialize in worst partition
- sum up time spend in each partition until highest reached

Definition

Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$. A partition $L_{0}, L_{1}, \ldots, L_{k}$ of $\{0,1\}^{n}$ is called f-based partition iff the following holds.
(1) $\forall i, j \in\{0, \ldots, k\}: \forall x \in L_{i}: \forall y \in L_{j}:(i<j \Rightarrow f(x)<f(y))$
(2) $L_{k}=\left\{x \in\{0,1\}^{n} \mid f(x)=\max \left\{f(y) \mid y \in\{0,1\}^{n}\right\}\right\}$

Fundamental Basics of Calculation with Probabilities

analyses by "puzzling" of good/bad basic events
event occurs with probability p
\Rightarrow counter event has probability $1-p$
connection of events by "OR" \Rightarrow add probabilities
connection of events by "AND" \Rightarrow multiply probabilities
lower bound of probability: leave out probability of some "OR"-events upper bound of probability: leave out probability of some "AND"-events
here: discrete probability space \Rightarrow combinatoric
number of combinations without order: binomial coefficient $\binom{n}{k}$ used in the following to count how many vector configurations fulfill a certain condition
example: \# of possible vectors of length 10 with exactly 30 -bits: $\binom{10}{3}$

Upper Bounds with Fitness-Based Partitions (FBP)

$\operatorname{Pr}\left(\mathbf{x}\right.$ mutates to $\left.\mathbf{x}^{\prime}\right): p_{m}^{H\left(\mathbf{x}, \mathbf{x}^{\prime}\right)} \cdot\left(1-p_{m}\right)^{n-H\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}$
mutate $H\left(\mathbf{x}, \mathrm{x}^{\prime}\right)$ bits, do not mutate $n-H\left(\mathbf{x}, \mathrm{x}^{\prime}\right)$ bits
s_{i} : probability of leaving partition L_{i}
$s_{i}=\min _{\mathbf{x} \in L_{i}} \sum_{i<j \leq k} \sum_{\mathbf{x}^{\prime} \in L_{j}} p_{m}^{H\left(\mathbf{x}, \mathbf{x}^{\prime}\right)} \cdot\left(1-p_{m}\right)^{n-H\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}$
inner sum: all x^{\prime} of higher partition L_{j}
outer sum: all higher partitions
min: worst x
expected optimization time: sum of duration per partition
duration $=1 /$ (probability of leaving) $=s_{i}^{-1}$
lower bound of s_{i} leads to upper bound of s_{i}^{-1}
$E\left(T_{(1+1) E A, f}\right) \leq \sum_{0 \leq i<k} s_{i}^{-1}$

Upper Bound for (1+1)EA on OnEMAX

use trivial partition: 1 partition for each function value acc. to ONEMAX useful inequality: $(1-1 / n)^{n}<1 / e<(1-1 / n)^{n-1}, e$: Euler's number vectors in partition $L_{i}: i$ 1-bits, $n-i 0$-bits
possible improvement: mutate one $0 \rightarrow 1$, other bits unchanged
\Rightarrow function increased by $1 \Rightarrow$ partition left
$\operatorname{Pr}(0 \rightarrow 1)=\# 0$-bits $\cdot p_{m}=\binom{n-i}{1} \cdot 1 / n=(n-i) / n$
$\operatorname{Pr}($ other bits do not mutate $)=\left(1-p_{m}\right)^{n-1}=(1-1 / n)^{n-1}>1 / e$
lower bound for probability of leaving partition:
$s_{i} \geq \frac{n-i}{n} \cdot\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{n-i}{n} \cdot \frac{1}{e}=\frac{n-i}{n e}$
$E\left(T_{(1+1) E A, \text { ONEMAX }}\right) \leq \sum_{0 \leq i<n} s_{i}^{-1} \leq \sum_{0 \leq i<n} \frac{e n}{n-i}=e n \sum_{1 \leq i \leq n} \frac{1}{i}$
$=e n H_{n}<e n(\ln (n)+1)=O(n \log n)$

Upper Bound: $(1+1)$ EA on LEAdingOnes

LEAdingOnes: $\{0,1\}^{n} \rightarrow \mathbb{R}$ with LeAdingOnes $(x):=\sum_{i=1}^{n} \prod_{j=1}^{i} x_{j}$
use trivial partition: 1 partition for each function value acc. to LEADINGONES improving step:
to leave L_{i} by one mutation, flip exactly the leftmost 0 -bit.
$s_{i} \geq 1 \cdot \frac{1}{n} \cdot\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{1}{e n}$

$$
\begin{aligned}
\mathrm{E}\left(T_{(1+1) \mathrm{EA}, \text { LEADINGONES }}\right) & \leq \sum_{i=0}^{n-1} s_{i}^{-1}=\sum_{i=0}^{n-1} e n=n \cdot e n \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Summary and Outlook

Summary

- randomized search heuristics suitable tool for complex problems
- evolutionary algorithms (EA): basic operators
- simple example: (1+1)-EA
- theory possible

Upcoming topics, e.g.

- evolutionary algorithms with search space \mathbb{R}^{n}
- design principles of EA
- parameters

