

Computational Intelligence

Winter Term 2010/11

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Approximate Reasoning
- Fuzzy control

So far:

• p: IF X is A THEN Y is B

 $\rightarrow R(x, y) = Imp(A(x), B(y))$ rule as relation; fuzzy implication

 rule: IF X is A THEN Y is B fact: X is A' conclusion: Y is B'

$$\rightarrow$$
 B'(y) = sup_{x \in X} t(A'(x), R(x, y)) composition rule of inference

Thus:

• $B'(y) = \sup_{x \in X} t(A'(x), Imp(A(x), B(y)))$

here:
A'(x) =
$$\begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$
 crisp input!

$$B'(y) = \sup_{x \in X} t(A'(x), Imp(A(x), B(y)))$$

$$= \begin{cases} \sup_{x \neq x_0} t(0, \operatorname{Imp}(A(x), B(y))) & \text{for } x \neq x_0 \\ t(1, \operatorname{Imp}(A(x_0), B(y))) & \text{for } x = x_0 \end{cases}$$

$$\begin{cases} 0 & \text{for } x \neq x_0 & \text{since } t(0, a) = 0 \\\\ \text{Imp}((A(x_0), B(y)) & \text{for } x = x_0 & \text{since } t(a, 1) = a \end{cases}$$

for $y \neq y$

=

ſ

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lemma:

- a) t(a, 1) = a
- b) $t(a, b) \le min \{ a, b \}$
- c) t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b ≤ 1, that t(a, b) ≤ t(a, 1) = a. Commutativity (axiom 3) and monotonicity lead in case of a ≤ 1 to t(a, b) = t(b, a) ≤ t(b, 1) = b. Thus, t(a, b) is less than or equal to a as well as b, which in turn implies t(a, b) ≤ min{ a, b }.

ad c) From b) follows $0 \le t(0, a) \le min \{0, a\} = 0$ and therefore t(0, a) = 0.

by a)

Multiple rules:

IF X is A_1 , THEN Y is B_1 IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3 ... IF X is A_n , THEN Y is B_n X is A'

$$\rightarrow \mathsf{R}_{\mathsf{n}}(\mathsf{x}, \mathsf{y}) = \mathsf{Imp}_{\mathsf{n}}(\mathsf{A}_{\mathsf{n}}(\mathsf{x}), \mathsf{B}_{\mathsf{n}}(\mathsf{y}))$$

Y is B'

Multiple rules for <u>crisp input</u>: x₀ is given

 $B_{1}'(y) = Imp_{1}(A_{1}(x_{0}), B_{1}(y))$... $B_{n}'(y) = Imp_{n}(A_{n}(x_{0}), B_{n}(y))$

aggregation of rules or local inferences necessary!

aggregate!
$$\Rightarrow$$
 B'(y) = aggr{ B₁'(y), ..., B_n'(y) }, where aggr =
 $\begin{cases} min \\ max \end{cases}$

. . .

G. Rudolph: Computational Intelligence • Winter Term 2010/11

FITA: "First inference, then aggregate!"

- 1. Each rule of the form IF X is A_k THEN Y is B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y)).$
- 2. Determine $B_k(y) = R_k(x, y) \circ A(x)$ for all k = 1, ..., n (locale inference).
- 3. Aggregate to $B'(y) = \beta(B_1'(y), ..., B_n'(y))$.

FATI: "First aggregate, then inference!"

- 1. Each rule of the form IF X ist A_k THEN Y ist B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y)).$
- 2. Aggregate $R_1, ..., R_n$ to a **superrelation** with aggregating function $\alpha(\cdot)$: $R(x, y) = \alpha(R_1(x, y), ..., R_n(x, y)).$
- 3. Determine $B'(y) = R(x, y) \circ A'(x)$ w.r.t. superrelation (inference).

7

Approximative Reasoning

- 1. Which principle is better? FITA or FATI?
- 2. Equivalence of FITA and FATI ?

FITA:
$$B'(y) = \beta(B_1'(y), ..., B_n'(y))$$

= $\beta(R_1(x, y) \circ A'(x), ..., R_n(x, y) \circ A'(x))$

FATI:
$$B'(y) = R(x, y) \circ A'(x)$$

= $\alpha(R_1(x, y), ..., R_n(x, y)) \circ A'(x)$

special case:
 $A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$ crisp input!

On the equivalence of FITA and FATI:

FITA:
B'(y) =
$$\beta(B_1'(y), ..., B_n'(y))$$

= $\beta(Imp_1(A_1(x_0), B_1(y)), ..., Imp_n(A_n(x_0), B_n(y)))$
FATI:
B'(y) = $R(x, y) \circ A'(x)$
= $sup_{x \in X} t(A'(x), R(x, y))$ (from now: special case)
= $R(x_0, y)$

= $\alpha(\operatorname{Imp}_{1}(A_{1}(x_{0}), B_{1}(y)), ..., \operatorname{Imp}_{n}(A_{n}(x_{0}), B_{n}(y)))$

evidently: sup-t-composition with arbitrary t-norm and $\alpha(\cdot) = \beta(\cdot)$

9

• AND-connected premises

IF
$$X_1 = A_{11}$$
 AND $X_2 = A_{12}$ AND ... AND $X_m = A_{1m}$ THEN $Y = B_1$
...
IF $X_n = A_{n1}$ AND $X_2 = A_{n2}$ AND ... AND $X_m = A_{nm}$ THEN $Y = B_n$
reduce to single premise for each rule k:
 $A_k(x_1,...,x_m) = \min \{ A_{k1}(x_1), A_{k2}(x_2), ..., A_{km}(x_m) \}$ or in general: t-norm

• OR-connected premises

IF
$$X_1 = A_{11}$$
 OR $X_2 = A_{12}$ OR ... OR $X_m = A_{1m}$ THEN $Y = B_1$
...
IF $X_n = A_{n1}$ OR $X_2 = A_{n2}$ OR ... OR $X_m = A_{nm}$ THEN $Y = B_n$
reduce to single premise for each rule k:

 $A_k(x_1,...,x_m) = \max \{ A_{k1}(x_1), A_{k2}(x_2), ..., A_{km}(x_m) \}$ or in general: s-norm

important:

• if rules of the form IF X is A THEN Y is B interpreted as logical implication

 \Rightarrow R(x, y) = Imp(A(x), B(y)) makes sense

- we obtain: $B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$
- \Rightarrow the worse the match of premise A'(x), the larger is the fuzzy set B'(y)
- \Rightarrow follows immediately from axiom 1: a \leq b implies Imp(a, z) \geq Imp(b, z)

interpretation of output set B'(y):

- B'(y) is the set of values that are still possible
- each rule leads to an additional restriction of the values that are still possible
- \Rightarrow resulting fuzzy sets B[']_k(y) obtained from single rules must be mutually <u>intersected</u>!
- \Rightarrow aggregation via B'(y) = min { B₁'(y), ..., B_n'(y) }

important:

if rules of the form IF X is A THEN Y is B are <u>not</u> interpreted as <u>logical</u> implications, then the function Fct(·) in

 $\mathsf{R}(\mathsf{x}, \mathsf{y}) = \mathsf{Fct}(\mathsf{A}(\mathsf{x}), \mathsf{B}(\mathsf{y}))$

can be chosen as required for desired interpretation.

- frequent choice (especially in fuzzy control):
 - R(x, y) = min { A(x), B(x) } Mamdami "implication"
 - $R(x, y) = A(x) \cdot B(x)$ Larsen "implication"
- \Rightarrow of course, they are no implications but special t-norms!
- \Rightarrow thus, if <u>relation R(x, y) is given</u>, then the *composition rule of inference*

 $B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{ A'(x), R(x, y) \}$

still can lead to a conclusion via fuzzy logic.

example: [JM96, S. 244ff.]

industrial drill machine \rightarrow control of cooling supply

modelling

linguistic variable

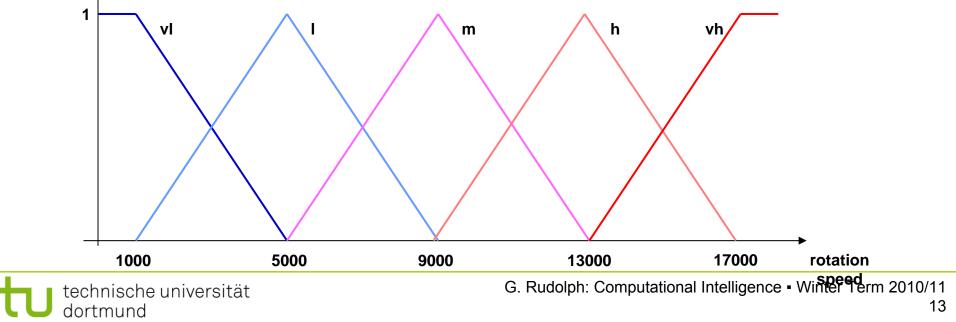
linguistic terms

ground set

: rotation speed

: very low, low, medium, high, very high

: \mathcal{X} with $0 \le x \le 18000$ [rpm]



industrial drill machine \rightarrow control of cooling supply

modelling

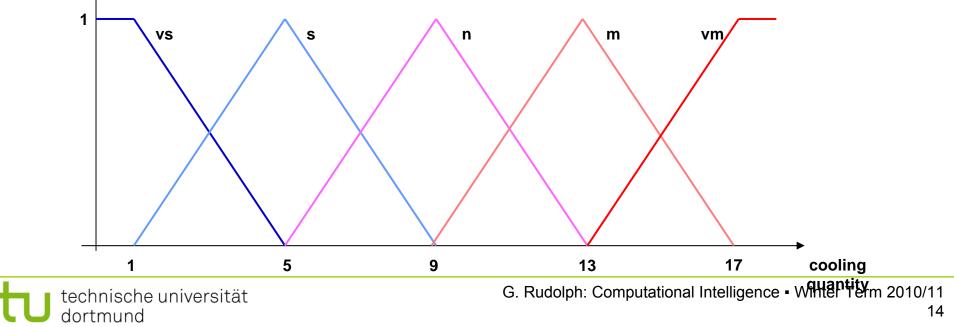
linguistic variable

linguistic terms

ground set

: very small, small, normal, much, very much

: cooling quantity



industrial drill machine \rightarrow control of cooling supply

<u>rule base</u>

IF rotation speed IS very low THEN cooling quantity IS very small

low	small
medium	normal
high	much
very high	very much
sets S _{vI} , S _I , S _m , S _h , S _{vh}	sets C_{vs} , C_s , C_n , C_m , C_{vm}
"rotation <u>speed</u> "	" <u>cooling</u> quantity"

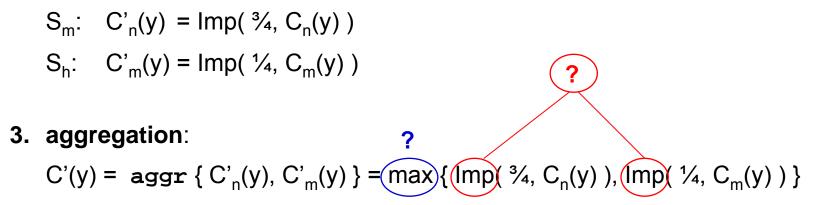
industrial drill machine \rightarrow control of cooling supply

1. input: crisp value $x_0 = 10000 \text{ min}^{-1}$ (<u>no</u> fuzzy set!)

 \rightarrow fuzzyfication = determine membership for each fuzzy set over $\mathcal X$

 \rightarrow yields S' = (0, 0, ³/₄, ¹/₄, 0) via x \mapsto (S_{vl}(x₀), S_l(x₀), S_m(x₀), S_h(x₀), S_{vh}(x₀))

2. FITA: locale **inference** \Rightarrow since Imp(0,a) = 0 we only need to consider:



industrial drill machine \rightarrow control of cooling supply

```
C'(y) = \max \{ Imp(\frac{3}{4}, C_n(y)), Imp(\frac{1}{4}, C_m(y)) \}
```

in case of <u>control task</u> typically no logic-based interpretation:

 \rightarrow max-aggregation and

 \rightarrow relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b) "Mamdani controller"

thus:

```
C'(y) = \max \{ \min \{ \frac{3}{4}, C_n(y) \}, \min \{ \frac{1}{4}, C_m(y) \} \}
```

\rightarrow graphical illustration

U technische universität dortmund

Lecture 08

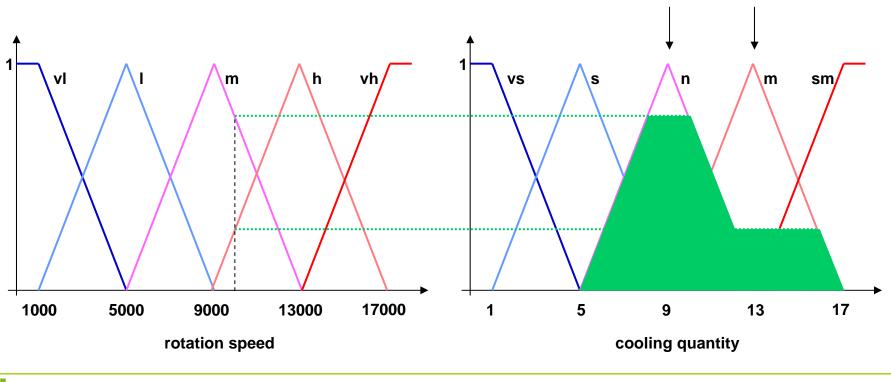
example: (continued)

technische universität

dortmund

industrial drill machine \rightarrow control of cooling supply

C'(y) = max { min { $\frac{3}{4}$, C_n(y) }, min { $\frac{1}{4}$, C_m(y) } }, x₀ = 10000 [rpm]



G. Rudolph: Computational Intelligence • Winter Term 2010/11 18

open and closed loop control:

affect the dynamical behavior of a system in a desired manner

open loop control

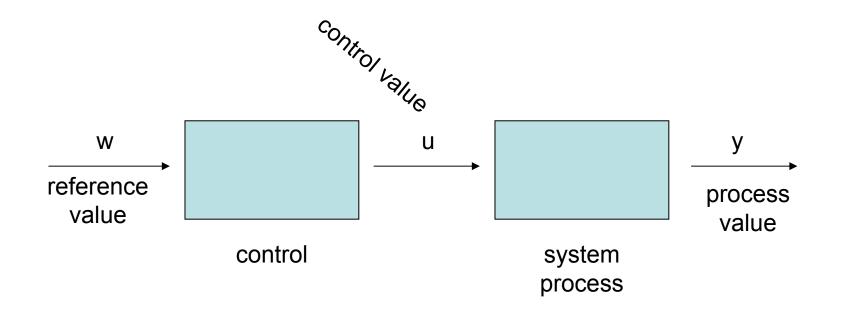
control is aware of reference values and has a model of the system \Rightarrow control values can be adjusted,

such that process value of system is equal to reference value

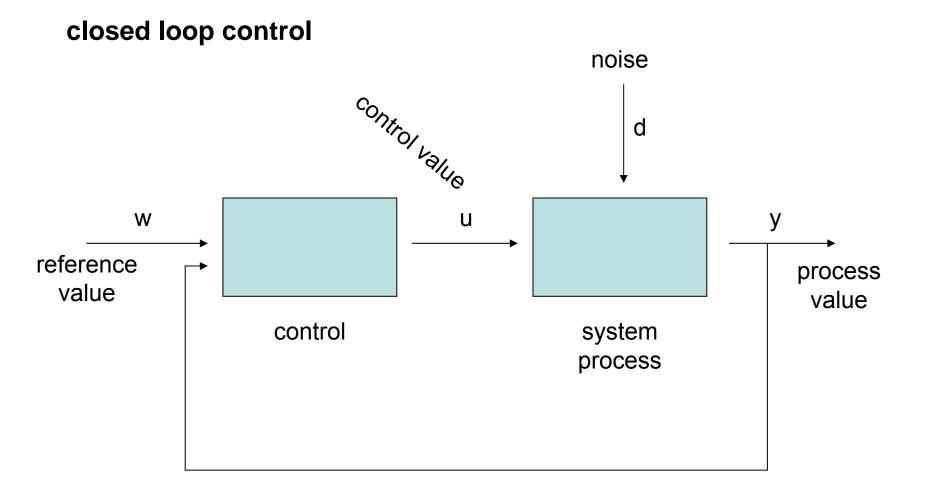
problem: noise! \Rightarrow deviation from reference value not detected

closed loop control

now: detection of deviations from reference value possible (by means of measurements / sensors) and new control values can take into account the amount of deviation open loop control



assumption: undisturbed operation \Rightarrow process value = reference value



control deviation = reference value - process value

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2010/11

required:

model of system / process

- \rightarrow as differential equations or difference equations (DEs)
- \rightarrow well developed theory available

so, why fuzzy control?

- there exists no process model in form of DEs etc. (operator/human being has realized control by hand)
- process with high-dimensional nonlinearities \rightarrow no classic methods available
- control goals are vaguely formulated ("soft" changing gears in cars)

fuzzy description of control behavior

```
IF X is A_1, THEN Y is B_1
IF X is A_2, THEN Y is B_2
IF X is A_3, THEN Y is B_3
...
IF X is A_n, THEN Y is B_n
X is A'
```

similar to approximative reasoning

Y is B'

but fact A' is not a fuzzy set but a crisp input

 \rightarrow actually, it is the current process value

fuzzy controller executes inference step

```
\rightarrow yields fuzzy output set B'(y)
```

but crisp control value required for the process / system

 \rightarrow defuzzification (= "condense" fuzzy set to crisp value)

defuzzification

Def: rule k active $\Leftrightarrow A_k(x_0) > 0$

<u>maximum method</u>

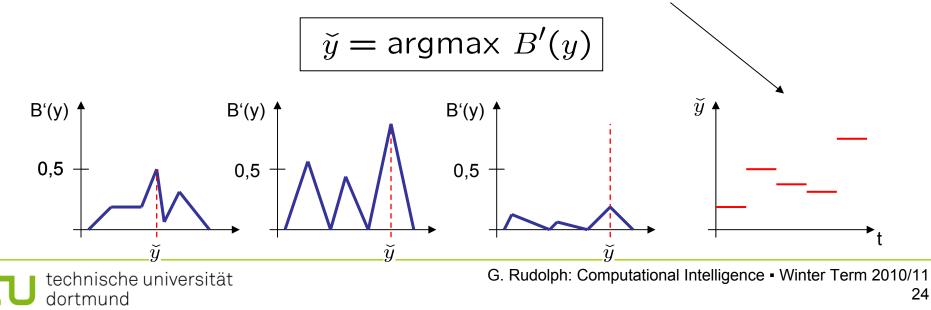
- only active rule with largest activation level is taken into account

 \rightarrow suitable for pattern recognition / classification

 \rightarrow decision for a single alternative among finitely many alternatives

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)



defuzzification

technische universität

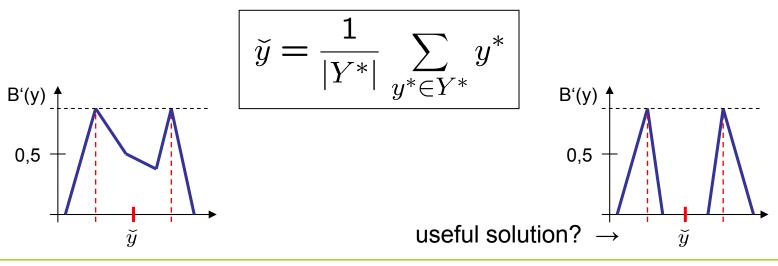
dortmund

 $Y^* = \{ y \in Y : B'(y) = hgt(B') \}$

- maximum mean value method
 - all active rules with largest activation level are taken into account
 - \rightarrow interpolations possible, but need not be useful

 \rightarrow obviously, only useful for neighboring rules with max. activation

- selection independent from activation level of rule (0.05 vs. 0.95)
- if used in control: incontinuous curve of output values (leaps)



G. Rudolph: Computational Intelligence • Winter Term 2010/11 25

Fuzzy Control

defuzzification

 $Y^* = \{ y \in Y : B'(y) = hgt(B') \}$

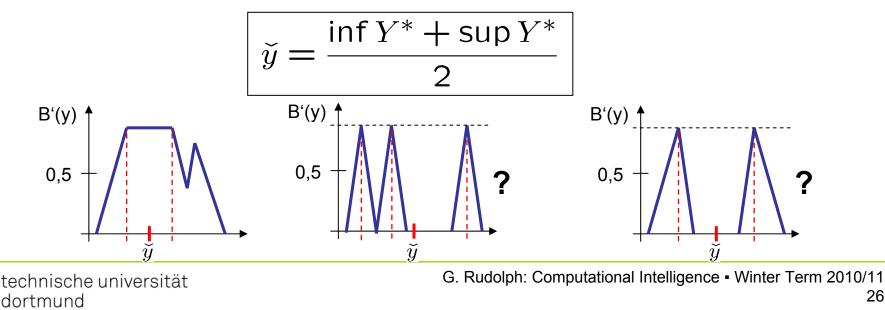
26

- center-of-maxima method (COM)
 - only **extreme** active rules with largest activation level are taken into account

 \rightarrow interpolations possible, but need not be useful

 \rightarrow obviously, only useful for neighboring rules with max. activation level

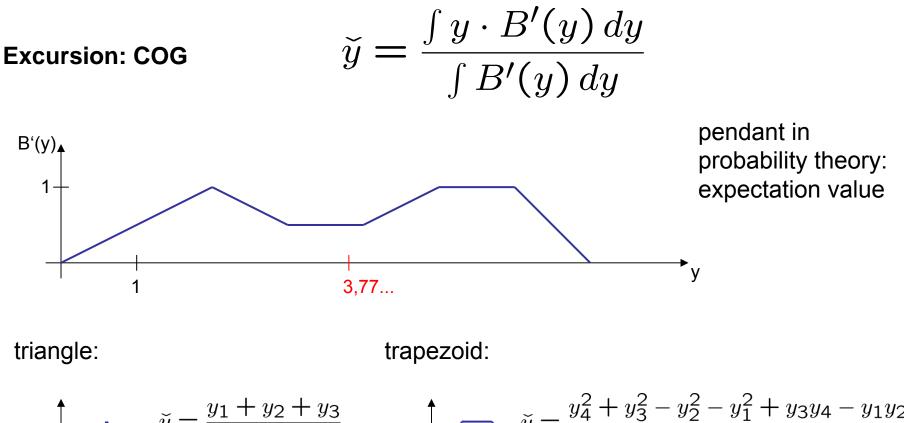
- selection independent from activation level of rule (0.05 vs. 0.95)
- in case of control: incontinuous curve of output values (leaps)

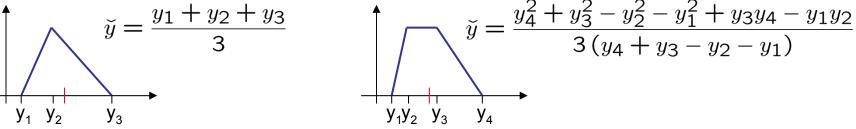


defuzzification

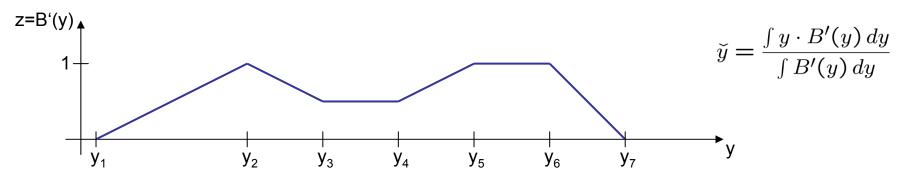
- Center of Gravity (COG)
 - all active rules are taken into account
 - \rightarrow but numerically expensiveonly valid for HW solution, today!
 - \rightarrow borders cannot appear in output (\exists work-around)
 - if only single active rule: independent from activation level
 - continuous curve for output values

$$\widetilde{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy}$$





G. Rudolph: Computational Intelligence • Winter Term 2010/11 28



assumption: fuzzy membership functions piecewise linear

output set B'(y) represented by sequence of points $(y_1, z_1), (y_2, z_2), ..., (y_n, z_n)$ \Rightarrow area under B'(y) and weighted area can be determined additively piece by piece \Rightarrow linear equation z = m y + b \Rightarrow insert (y_i, z_i) and (y_{i+1}, z_{i+1}) \Rightarrow yields m and b for each of the n-1 linear sections

$$\Rightarrow F_{i} = \int_{y_{i}}^{y_{i+1}} (m \, y + b) \, dy = \frac{m}{2} (y_{i+1}^{2} - y_{i}^{2}) + b(y_{i+1} - y_{i}) \\\Rightarrow G_{i} = \int_{y_{i}}^{y_{i+1}} y \, (m \, y + b) \, dy = \frac{m}{3} (y_{i+1}^{3} - y_{i}^{3}) + \frac{b}{2} (y_{i+1}^{2} - y_{i}^{2}) \\ \end{cases} \quad \breve{y} = \frac{\sum_{i} G_{i}}{\sum_{i} F_{i}}$$

G. Rudolph: Computational Intelligence • Winter Term 2010/11 29

Defuzzification

- Center of Area (COA)
 - developed as an approximation of COG
 - let \hat{y}_k be the COGs of the output sets $B'_k(y)$:

$$\tilde{y} = \frac{\sum_k A_k(x_0) \cdot \hat{y}_k}{\sum_k A_k(x_0)}$$