Computational Intelligence

Winter Term 2010/11

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Approximate Reasoning
- Fuzzy control

Approximative Reasoning

So far:

- p : IF X is A THEN Y is B
$\rightarrow R(x, y)=\operatorname{Imp}(A(x), B(y))$
rule as relation; fuzzy implication
- rule: \quad IF X is A THEN Y is B
fact: $\quad X$ is A^{\prime}
conclusion: $\quad Y$ is B^{\prime}
$\rightarrow B^{\prime}(y)=\sup _{x \in X} t\left(A^{\prime}(x), R(x, y)\right) \quad$ composition rule of inference

Thus:

- $B^{\prime}(y)=\sup _{x \in X} t\left(A^{\prime}(x), \operatorname{Imp}(A(x), B(y))\right)$

Approximative Reasoning

Approximative Reasoning

Lemma:
a) $t(a, 1)=a$
b) $t(a, b) \leq \min \{a, b\}$
c) $t(0, a)=0$

Proof:

ad a) Identical to axiom 1 of t-norms.
$a d b)$ From monotonicity (axiom 2) follows for $b \leq 1$, that $t(a, b) \leq t(a, 1)=a$.
Commutativity (axiom 3) and monotonicity lead in case of $a \leq 1$ to $t(a, b)=t(b, a) \leq t(b, 1)=b$. Thus, $t(a, b)$ is less than or equal to a as well as b, which in turn implies $t(a, b) \leq \min \{a, b\}$.
$a d c$) From b) follows $0 \leq t(0, a) \leq \min \{0, a\}=0$ and therefore $t(0, a)=0$.

Approximative Reasoning

Multiple rules:

IF X is A_{1}, THEN Y is B_{1}
IF X is A_{2}, THEN Y is B_{2}
IF X is A_{3}, THEN Y is B_{3}
IF X is A_{n}, THEN Y is B_{n} X is $A^{\text {a }}$
Y is $B^{\text {c }}$
$\rightarrow R_{1}(x, y)=\operatorname{Imp}_{1}\left(A_{1}(x), B_{1}(y)\right)$
$\rightarrow R_{2}(x, y)=\operatorname{lmp}_{2}\left(A_{2}(x), B_{2}(y)\right)$
$\rightarrow R_{3}(x, y)=\operatorname{Imp}_{3}\left(A_{3}(x), B_{3}(y)\right)$
$\rightarrow R_{n}(x, y)=\operatorname{Imp}_{n}\left(A_{n}(x), B_{n}(y)\right)$

Multiple rules for crisp input: x_{0} is given

$$
\left.\begin{array}{l}
B_{1}{ }_{1}(y)=\operatorname{lmp}_{1}\left(A_{1}\left(x_{0}\right), B_{1}(y)\right) \\
\mathrm{B}_{n}^{\prime}(y)=\operatorname{lmp}_{n}\left(A_{n}\left(x_{0}\right), B_{n}(y)\right)
\end{array}\right\} \quad \begin{gathered}
\text { aggregation of rules or } \\
\text { local inferences necessary! }
\end{gathered}
$$

aggregate $!\Rightarrow B^{\prime}(y)=\operatorname{aggr}\left\{B_{1}(y), \ldots, B_{n}^{\prime}(y)\right\}$, where aggr $=\left\{\begin{array}{l}\min \\ \max \end{array}\right.$

Approximative Reasoning

FITA: "First inference, then aggregate!"

1. Each rule of the form IF X is A_{k} THEN Y is B_{k} must be transformed by an appropriate fuzzy implication $\operatorname{Imp}_{k}(\cdot, \cdot)$ to a relation R_{k} :
$R_{k}(x, y)=\operatorname{Imp}_{k}\left(A_{k}(x), B_{k}(y)\right)$.
2. Determine $B_{k}{ }^{\prime}(y)=R_{k}(x, y) \circ A^{\prime}(x)$ for all $k=1, \ldots, n$ (locale inference).
3. Aggregate to $B^{\prime}(y)=\beta\left(B_{1}{ }^{\prime}(y), \ldots, B_{n}{ }^{\prime}(y)\right)$.

FATI: "First aggregate, then inference!"

1. Each rule of the form IF X ist A_{k} THEN Y ist B_{k} must be transformed by an appropriate fuzzy implication $\operatorname{Imp}_{k}(\cdot, \cdot)$ to a relation R_{k} : $R_{k}(x, y)=\operatorname{Imp}_{k}\left(A_{k}(x), B_{k}(y)\right)$.
2. Aggregate R_{1}, \ldots, R_{n} to a superrelation with aggregating function $\alpha(\cdot)$: $R(x, y)=\alpha\left(R_{1}(x, y), \ldots, R_{n}(x, y)\right)$.
3. Determine $B^{\prime}(y)=R(x, y) \circ A^{\prime}(x)$ w.r.t. superrelation (inference).

Approximative Reasoning

1. Which principle is better? FITA or FATI?
2. Equivalence of FITA and FATI ?

FITA:

$$
\begin{aligned}
B^{\prime}(y) & =\beta\left(B_{1}^{\prime}(y), \ldots, B_{n}^{\prime}(y)\right) \\
& =\beta\left(R_{1}(x, y) \circ A^{\prime}(x), \ldots, R_{n}(x, y) \circ A^{\prime}(x)\right)
\end{aligned}
$$

FATI:

$$
\begin{aligned}
B^{\prime}(y) & =R(x, y) \circ A^{\prime}(x) \\
& =\alpha\left(R_{1}(x, y), \ldots, R_{n}(x, y)\right) \circ A^{\prime}(x)
\end{aligned}
$$

Approximative Reasoning

special case:
$A^{\prime}(x)= \begin{cases}1 & \text { for } x=x_{0} \\ 0 & \text { otherwise }\end{cases}$ crisp input!

On the equivalence of FITA and FATI:
FITA:

$$
\begin{aligned}
B^{\prime}(y) & =\beta\left(B_{1}{ }^{\prime}(y), \ldots, B_{n}(y)\right) \\
& =\beta\left(\operatorname{lmp}_{1}\left(A_{1}\left(x_{0}\right), B_{1}(y)\right), \ldots, \operatorname{Imp}_{n}\left(A_{n}\left(x_{0}\right), B_{n}(y)\right)\right)
\end{aligned}
$$

FATI:

$$
\begin{aligned}
B^{\prime}(y) & =R(x, y) \circ A^{\prime}(x) \\
& =\sup _{x \in x} t\left(A^{\prime}(x), R(x, y)\right) \quad \text { (from now: special case) } \\
& =R\left(x_{0}, y\right) \\
& =\alpha\left(\operatorname{lmp}_{1}\left(A_{1}\left(x_{0}\right), B_{1}(y)\right), \ldots, \operatorname{lmp}_{n}\left(A_{n}\left(x_{0}\right), B_{n}(y)\right)\right)
\end{aligned}
$$

evidently: sup-t-composition with arbitrary t-norm and $\alpha(\cdot)=\beta(\cdot)$

Approximative Reasoning

- AND-connected premises

IF $X_{1}=A_{11}$ AND $X_{2}=A_{12}$ AND \ldots AND $X_{m}=A_{1 m}$ THEN $Y=B_{1}$
IF $X_{n}=A_{n 1}$ AND $X_{2}=A_{n 2}$ AND \ldots AND $X_{m}=A_{n m}$ THEN $Y=B_{n}$
reduce to single premise for each rule k :
$A_{k}\left(x_{1}, \ldots, x_{m}\right)=\min \left\{A_{k 1}\left(x_{1}\right), A_{k 2}\left(x_{2}\right), \ldots, A_{k m}\left(x_{m}\right)\right\}$
or in general: t-norm

- OR-connected premises

IF $X_{1}=A_{11} O R X_{2}=A_{12} O R \ldots O R X_{m}=A_{1 m}$ THEN $Y=B_{1}$
IF $X_{n}=A_{n 1} O R X_{2}=A_{n 2}$ OR \ldots OR $X_{m}=A_{n m}$ THEN $Y=B_{n}$
reduce to single premise for each rule k :
$A_{k}\left(x_{1}, \ldots, x_{m}\right)=\max \left\{A_{k 1}\left(x_{1}\right), A_{k 2}\left(x_{2}\right), \ldots, A_{k m}\left(x_{m}\right)\right\}$
or in general: s-norm
important:

- if rules of the form IF X is A THEN Y is \mathbf{B} interpreted as logical implication
$\Rightarrow R(x, y)=\operatorname{Imp}(A(x), B(y))$ makes sense
- we obtain: $B^{\prime}(y)=\sup _{x \in \mathrm{X}} t\left(A^{\prime}(x), R(x, y)\right)$
\Rightarrow the worse the match of premise $A^{\prime}(x)$, the larger is the fuzzy set $B^{\prime}(y)$
\Rightarrow follows immediately from axiom 1: $\mathrm{a} \leq \mathrm{b}$ implies $\operatorname{Imp}(\mathrm{a}, \mathrm{z}) \geq \operatorname{Imp}(\mathrm{b}, \mathrm{z})$
interpretation of output set $B^{\prime}(y)$:
- $B^{\prime}(y)$ is the set of values that are still possible
- each rule leads to an additional restriction of the values that are still possible
\Rightarrow resulting fuzzy sets $B_{k}^{\prime}(y)$ obtained from single rules must be mutually intersected!
\Rightarrow aggregation via $B^{\prime}(y)=\boldsymbol{\operatorname { m i n }}\left\{B_{1}{ }^{\prime}(y), \ldots, B_{n}{ }^{\prime}(y)\right\}$

Approximative Reasoning

important:

- if rules of the form IF X is A THEN Y is \mathbf{B} are not interpreted as logical implications, then the function $\operatorname{Fct}(\cdot)$ in

$$
R(x, y)=F c t(A(x), B(y))
$$

can be chosen as required for desired interpretation.

- frequent choice (especially in fuzzy control):
$-R(x, y)=\min \{A(x), B(x)\}$
Mamdami - "implication"
$-R(x, y)=A(x) \cdot B(x) \quad$ Larsen - "implication"
\Rightarrow of course, they are no implications but special t-norms!
\Rightarrow thus, if relation $R(x, y)$ is given, then the composition rule of inference

$$
B^{\prime}(y)=A^{\prime}(x) \circ R(x, y)=\sup _{x \in x} \min \left\{A^{\prime}(x), R(x, y)\right\}
$$

still can lead to a conclusion via fuzzy logic.

Approximative Reasoning

example: [JM96, S. 244ff.]
industrial drill machine \rightarrow control of cooling supply
modelling
linguistic variable
linguistic terms
ground set $: \mathcal{X}$ with $0 \leq x \leq 18000$ [rpm]
: rotation speed
: very low, low, medium, high, very high

Approximative Reasoning

example: (continued)
industrial drill machine \rightarrow control of cooling supply
modelling
linguistic variable
linguistic terms
ground set
: cooling quantity
: very small, small, normal, much, very much
$: \mathcal{Y}$ with $0 \leq y \leq 18$ [liter / time unit]
cocling

Approximative Reasoning

Lecture 08

example: (continued)
industrial drill machine \rightarrow control of cooling supply
rule base
IF rotation speed IS very low THEN cooling quantity IS very small

low	small
medium	normal
high	much
very high	very much

sets $S_{v l}, S_{l}, S_{m}, S_{h}, S_{v h}$
"rotation speed"
sets $\mathrm{C}_{\mathrm{vs}}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{n}}, \mathrm{C}_{\mathrm{m}}, \mathrm{C}_{\mathrm{vm}}$
"cooling quantity"

Approximative Reasoning

example: (continued)
industrial drill machine \rightarrow control of cooling supply

1. input: crisp value $x_{0}=10000 \mathrm{~min}^{-1}$ (no fuzzy set!)
\rightarrow fuzzyfication $=$ determine membership for each fuzzy set over \mathcal{X}
\rightarrow yields $S^{\prime}=(0,0,3 / 4,1 / 4,0)$ via $\mathrm{x} \mapsto\left(\mathrm{S}_{\mathrm{v} 1}\left(\mathrm{x}_{0}\right), \mathrm{S}_{\mathrm{l}}\left(\mathrm{x}_{0}\right), \mathrm{S}_{\mathrm{m}}\left(\mathrm{x}_{0}\right), \mathrm{S}_{\mathrm{h}}\left(\mathrm{x}_{0}\right), \mathrm{S}_{\mathrm{vh}}\left(\mathrm{x}_{0}\right)\right)$
2. FITA: locale inference \Rightarrow since $\operatorname{Imp}(0, a)=0$ we only need to consider:
$S_{m}: \quad C_{n}^{\prime}(y)=\operatorname{Imp}\left(3 / 4, C_{n}(y)\right)$
$S_{h}: \quad C_{m}^{\prime}(y)=\operatorname{Imp}\left(1 / 4, C_{m}(y)\right)$
3. aggregation:
$\left.C^{\prime}(y)=\operatorname{aggr}\left\{C_{n}^{\prime}(y), C_{m}^{\prime}(y)\right\}=\max \left\{\left(1 / 4, C_{n}(y)\right), 1 \operatorname{Imp}^{1 / 4}, C_{m}(y)\right)\right\}$

Approximative Reasoning

example: (continued)
industrial drill machine \rightarrow control of cooling supply
$C^{\prime}(y)=\max \left\{\operatorname{Imp}\left(3 / 4, C_{n}(y)\right), \operatorname{Imp}\left(1 / 4, C_{m}(y)\right)\right\}$
in case of control task typically no logic-based interpretation:
\rightarrow max-aggregation and
\rightarrow relation $R(x, y)$ not interpreted as implication.
often: $R(x, y)=\min (a, b) \quad$ "Mamdani controller"
thus:
$C^{\prime}(y)=\max \left\{\min \left\{3 / 4, C_{n}(y)\right\}, \min \left\{1 / 4, C_{m}(y)\right\}\right\}$
\rightarrow graphical illustration

Approximative Reasoning

example: (continued)
industrial drill machine \rightarrow control of cooling supply
$C^{\prime}(y)=\max \left\{\min \left\{3 / 4, C_{n}(y)\right\}, \min \left\{1 / 4, C_{m}(y)\right\}\right\}, x_{0}=10000[r p m]$

open and closed loop control:

affect the dynamical behavior of a system
in a desired manner

- open loop control
control is aware of reference values and has a model of the system
\Rightarrow control values can be adjusted, such that process value of system is equal to reference value
problem: noise! \Rightarrow deviation from reference value not detected
- closed loop control
now: detection of deviations from reference value possible (by means of measurements / sensors) and new control values can take into account the amount of deviation

Fuzzy Control

open loop control

assumption: undisturbed operation \Rightarrow process value $=$ reference value

Fuzzy Control

closed loop control

control deviation $=$ reference value - process value

required:

model of system / process
\rightarrow as differential equations or difference equations (DEs)
\rightarrow well developed theory available

so, why fuzzy control?

- there exists no process model in form of DEs etc. (operator/human being has realized control by hand)
- process with high-dimensional nonlinearities \rightarrow no classic methods available
- control goals are vaguely formulated („soft" changing gears in cars)

Fuzzy Control

fuzzy description of control behavior

IF X is A_{1}, THEN Y is B_{1}
IF X is A_{2}, THEN Y is B_{2}
IF X is A_{3}, THEN Y is B_{3}
IF X is A_{n}, THEN Y is B_{n} X is A^{\cdot}
Y is $B^{\text {c }}$
similar to approximative reasoning
but fact A^{\prime} is not a fuzzy set but a crisp input
\rightarrow actually, it is the current process value
fuzzy controller executes inference step
\rightarrow yields fuzzy output set $B^{\prime}(y)$
but crisp control value required for the process / system
\rightarrow defuzzification (= "condense" fuzzy set to crisp value)

defuzzification

Def: rule k active $\Leftrightarrow \mathrm{A}_{k}\left(\mathrm{x}_{0}\right)>0$

- maximum method
- only active rule with largest activation level is taken into account
\rightarrow suitable for pattern recognition / classification
\rightarrow decision for a single alternative among finitely many alternatives
- selection independent from activation level of rule (0.05 vs .0 .95)
- if used for control: incontinuous curve of output values (leaps)

defuzzification

$$
Y^{*}=\left\{y \in Y^{\prime} B^{\prime}(y)=\operatorname{hgt}\left(B^{\prime}\right)\right\}
$$

- maximum mean value method
- all active rules with largest activation level are taken into account
\rightarrow interpolations possible, but need not be useful
\rightarrow obviously, only useful for neighboring rules with max. activation
- selection independent from activation level of rule (0.05 vs .0 .95)
- if used in control: incontinuous curve of output values (leaps)

$$
\check{y}=\frac{1}{\left|Y^{*}\right|} \sum_{y^{*} \in Y^{*}} y^{*}
$$

defuzzification

$$
Y^{*}=\left\{y \in Y^{\prime} B^{\prime}(y)=\operatorname{hgt}\left(B^{\prime}\right)\right\}
$$

- center-of-maxima method (COM)
- only extreme active rules with largest activation level are taken into account
\rightarrow interpolations possible, but need not be useful
\rightarrow obviously, only useful for neighboring rules with max. activation level
- selection indepependent from activation level of rule (0.05 vs .0 .95)
- in case of control: incontinuous curve of output values (leaps)

$$
\bar{y}=\frac{\inf Y^{*}+\sup Y^{*}}{2}
$$

Fuzzy Control

defuzzification

- Center of Gravity (COG)
- all active rules are taken into account
\rightarrow but numerically expensiveonly valid for HW solution, today!
\rightarrow borders cannot appear in output (\exists work-around)
- if only single active rule: independent from activation level
- continuous curve for output values

$$
\bar{y}=\frac{\int y \cdot B^{\prime}(y) d y}{\int B^{\prime}(y) d y}
$$

Excursion: COG

$$
\check{y}=\frac{\int y \cdot B^{\prime}(y) d y}{\int B^{\prime}(y) d y}
$$

pendant in probability theory: expectation value
triangle:

trapezoid:

Fuzzy Control

assumption: fuzzy membership functions piecewise linear
output set $B^{\prime}(y)$ represented by sequence of points $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right), \ldots,\left(y_{n}, z_{n}\right)$
\Rightarrow area under $\mathrm{B}^{\prime}(\mathrm{y})$ and weighted area can be determined additively piece by piece
\Rightarrow linear equation $\mathrm{z}=\mathrm{my}+\mathrm{b} \Rightarrow \operatorname{insert}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ and $\left(\mathrm{y}_{\mathrm{i}+1}, \mathrm{z}_{\mathrm{i}+1}\right)$
\Rightarrow yields m and b for each of the $\mathrm{n}-1$ linear sections
$\Rightarrow F_{i}=\int_{y_{i}}^{y_{i+1}}(m y+b) d y=\frac{m}{2}\left(y_{i+1}^{2}-y_{i}^{2}\right)+b\left(y_{i+1}-y_{i}\right)$
$\Rightarrow G_{i}=\int_{y_{i}}^{y_{i+1}} y(m y+b) d y=\frac{m}{3}\left(y_{i+1}^{3}-y_{i}^{3}\right)+\frac{b}{2}\left(y_{i+1}^{2}-y_{i}^{2}\right)$
$\check{y}=\frac{\sum_{i} G_{i}}{\sum_{i} F_{i}}$

Fuzzy Control

Defuzzification

- Center of Area (COA)
- developed as an approximation of COG
- let \hat{y}_{k} be the COGs of the output sets $\mathrm{B}_{\mathrm{k}}^{\prime}(\mathrm{y})$:

$$
\check{y}=\frac{\sum_{k} A_{k}\left(x_{0}\right) \cdot \widehat{y}_{k}}{\sum_{k} A_{k}\left(x_{0}\right)}
$$

