technische universität dortmund	Plan for Today	Lecture 08
	Approximate Reasoning	
Computational Intelligence	Fuzzy control	
Computational Intelligence		
Winter Term 2010/11		
Prof. Dr. Günter Rudolph		
Lehrstuhl für Algorithm Engineering (LS 11)		
Fakultät für Informatik		
TU Dortmund		
	technische universität dortmund	G. Rudolph: Computational Intelligence - Winter Term 2010/11 2
	7	
Approximative Reasoning Lecture 08	Approximative Reasoning	Lecture 08
So far:	here: $(1 \text{ for } x = x_0)$	
• p: IF X is A THEN Y is B	$A'(x) = \begin{cases} 1 & \text{if } x - x_0 \\ 0 & \text{otherwise} \end{cases}$	crisp input!
\rightarrow R(x, y) = Imp(A(x), B(y)) rule as relation; fuzzy implication		

• p: IF X is A THEN Y is B		A'(x)	=	{ 0	otherwise	crisp input!	
$\rightarrow R(x, y) = Imp(A(x), B(y))$	rule as relation; fuzzy implication						
rule: IF X is A THEN Y is B fact: X is A'		B'(y)	=	su	$ u_{x \in X} $ t(A'(x), Imp(A(x)	, B(y)))	
conclusion: Y is B ⁴	composition rule of information		=	∫ SL ×≠	up t(0, Imp(A(x), B(y))) for $x \neq x_0$	
$\rightarrow B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$	composition rule of inference			l	t(1, Imp(A(x ₀), B(y))) for $x = x_0$	
Thus:				ſ	0	for $x \neq x_0$	since t(0, a) = 0
• $B'(y) = \sup_{x \in X} t(A'(x), Imp(A(x), B(y)))$			=	$\left\{ \right.$			
				l	Imp((A(x ₀), B(y))	for $x = x_0$	since t(a, 1) = a
technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2010/11 3		nische univ mund	versität		G. Rudolph: Computation	nal Intelligence - Winter Term 2010/11 4

Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08				
Lemma:		Multiple rules:					
a) t(a, 1) = a		IF X is A_1 , THEN Y is B_1	$\rightarrow R_1(\mathbf{x}, \mathbf{y}) = Imp_1(A_1(\mathbf{x}), B_1(\mathbf{y}))$				
b) t(a, b) ≤ min { a, b }		IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3	$ \rightarrow R_2(x, y) = Imp_2(A_2(x), B_2(y)) \rightarrow R_3(x, y) = Imp_3(A_3(x), B_3(y)) $				
c) $t(0, a) = 0$							
Proof:	by a)	IF X is A _n , THEN Y is B _n X is A'	$\rightarrow R_{n}(x,y) = Imp_{n}(A_{n}(x),B_{n}(y)\;)$				
ad a) Identical to axiom 1 of t-norms.	/	Y is B'					
,	that $t(a, b) \leq t(a, 1) = a$						
ad b) From monotonicity (axiom 2) follows for b ≤ 1, that t(a, b) ≤ t(a, 1) = a. Commutativity (axiom 3) and monotonicity lead in case of a ≤ 1 to		Multiple rules for crisp input: x ₀ is given					
$t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, $t(a, b)$ is les equal to a as well as b, which in turn implies to		$B_1'(y) = Imp_1(A_1(x_0), B_1(y))$					
ad c) From b) follows $0 \le t(0, a) \le min \{0, a\} = 0$ and			aggregation of rules or local inferences necessary!				
au(c) = 0 and $b = 0$ and		$B_{n}^{\cdot}(y) = Imp_{n}(A_{n}(x_{0}), B_{n}(y))$	J				
		aggregate! \Rightarrow B'(y) = aggr{ B	$B_1'(y),, B_n'(y) \}$, where aggr = $\begin{cases} \min \\ \max \end{cases}$				
technische universität G. Rudolph dortmund	Computational Intelligence • Winter Term 2010/11	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2010/11 6				
Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08				
		, pp. c.i.i.d.i.e. redeelining					
FITA: "First inference, then aggregate!"							
		1. Which principle is better?	? FITA or FATI?				
 Each rule of the form IF X is A_k THEN Y is B_k mu an appropriate fuzzy implication Imp_k(·, ·) to a relation 		2. Equivalence of FITA and	FATI ?				
$R_k(x, y) = Imp_k(A_k(x), B_k(y)).$	2						
2. Determine $B_k(y) = R_k(x, y) \circ A'(x)$ for all $k = 1,$, n (locale inference).	FITA: $B'(y) = \beta(B_1'(y),$					
3. Aggregate to $B'(y) = \beta(B_1'(y),, B_n'(y))$.		$= \beta(R_1(x, y))$	/)				
		FATI: B'(y) = R(x, y) o	A'(x)				
FATI: "First aggregate, then inference!"		$= \alpha(R_1(x, y))$	y),, R _n (x, y)) o A'(x)				
 Each rule of the form IF X ist A_k THEN Y ist B_k m an appropriate fuzzy implication Imp_k(⋅, ⋅) to a rela R_k(x, y) = Imp_k(A_k(x), B_k(y)). 							
2. Aggregate $R_1,, R_n$ to a superrelation with agg $R(x, y) = \alpha(R_1(x, y),, R_n(x, y))$.	regating function α(·):						
3. Determine $B'(y) = R(x, y) \circ A'(x) w.r.t.$ superrelation	on (inference).						
technische universität G. Rudolph dortmund	: Computational Intelligence • Winter Term 2010/11 7	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2010/11 8				

Approximative Reasoning Lecture 08	Approximative Reasoning Lecture 08		
special case: $A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$ crisp input!	• AND-connected premises IF $X_1 = A_{11}$ AND $X_2 = A_{12}$ AND AND $X_m = A_{1m}$ THEN $Y = B_1$ IF $X_n = A_{n1}$ AND $X_2 = A_{n2}$ AND AND $X_m = A_{nm}$ THEN $Y = B_n$		
On the equivalence of FITA and FATI:	reduce to single premise for each rule k:		
FITA: $B'(y) = \beta(B_1'(y),, B_n'(y))$ = $\beta(Imp_1(A_1(x_0), B_1(y)),, Imp_n(A_n(x_0), B_n(y)))$	$A_k(x_1,,x_m) = \min \{ A_{k1}(x_1), A_{k2}(x_2),, A_{km}(x_m) \}$ or in general: t-norm		
FATI: B'(y) = R(x, y) o A'(x)	OR-connected premises		
$= \sup_{x \in X} t(A'(x), R(x, y)) $ (from now: special case) $= R(x_0, y)$ $= \alpha(Imp_1(A_1(x_0), B_1(y)),, Imp_n(A_n(x_0), B_n(y)))$ evidently: sup-t-composition with arbitrary t-norm and $\alpha(\cdot) = \beta(\cdot)$ $\underbrace{G. Rudolph: Computational Intelligence \cdot Winter Term 2010/11}_{9}$	$IF X_{1} = A_{11} OR X_{2} = A_{12} OR OR X_{m} = A_{1m} THEN Y = B_{1}$ $IF X_{n} = A_{n1} OR X_{2} = A_{n2} OR OR X_{m} = A_{nm} THEN Y = B_{n}$ reduce to single premise for each rule k: $A_{k}(x_{1},,x_{m}) = max \{A_{k1}(x_{1}), A_{k2}(x_{2}),, A_{km}(x_{m})\} $ or in general: s-norm $IT = C + C + C + C + C + C + C + C + C + C$		
Approximative Reasoning Lecture 08	Approximative Reasoning Lecture 08		
 important: if rules of the form IF X is A THEN Y is B interpreted as logical implication ⇒ R(x, y) = Imp(A(x), B(y)) makes sense we obtain: B'(y) = sup_{x∈X} t(A'(x), R(x, y)) 	 important: if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function Fct(·) in R(x, y) = Fct(A(x), B(y)) 		
→ the worse the match of premise $A'(x)$ the larger is the fuzzy set $B'(y)$	can be chosen as required for desired interpretation.		

- \Rightarrow the worse the match of premise A'(x), the larger is the fuzzy set B'(y)
- \Rightarrow follows immediately from axiom 1: a \leq b implies Imp(a, z) \geq Imp(b, z)

interpretation of output set B'(y):

- B'(y) is the set of values that are still possible
- each rule leads to an additional restriction of the values that are still possible
- \Rightarrow resulting fuzzy sets B'_k(y) obtained from single rules must be mutually intersected!
- $\Rightarrow aggregation \ via \quad B`(y) = min \ \{ \ B_1`(y), \ ..., \ B_n`(y) \ \}$

 $B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{ A'(x), R(x, y) \}$

still can lead to a conclusion via fuzzy logic.

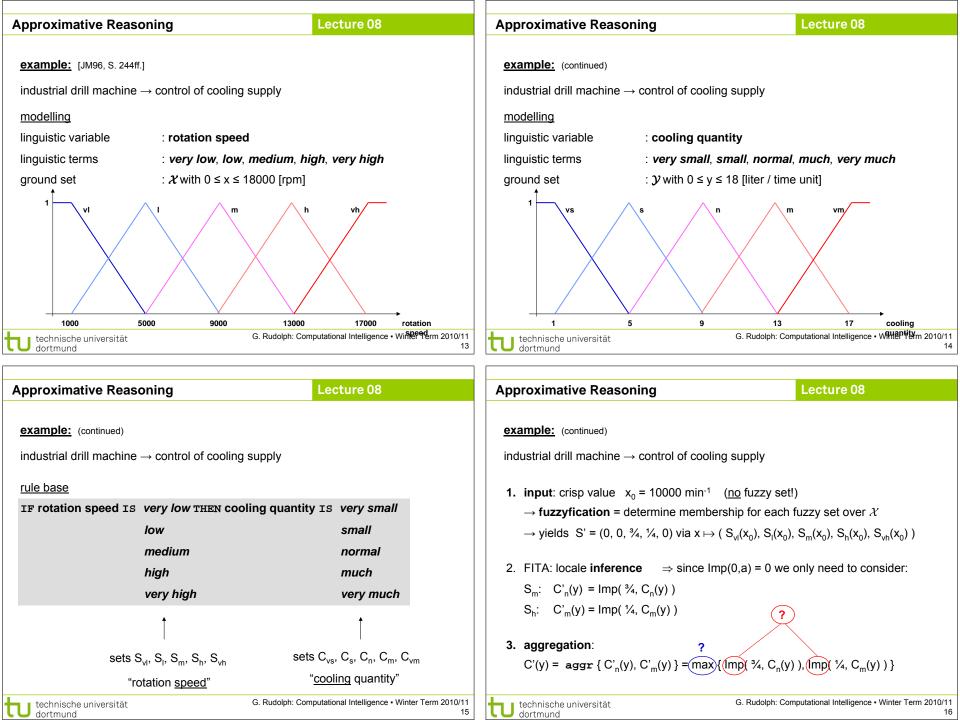
 \Rightarrow of course, they are no implications but special t-norms!

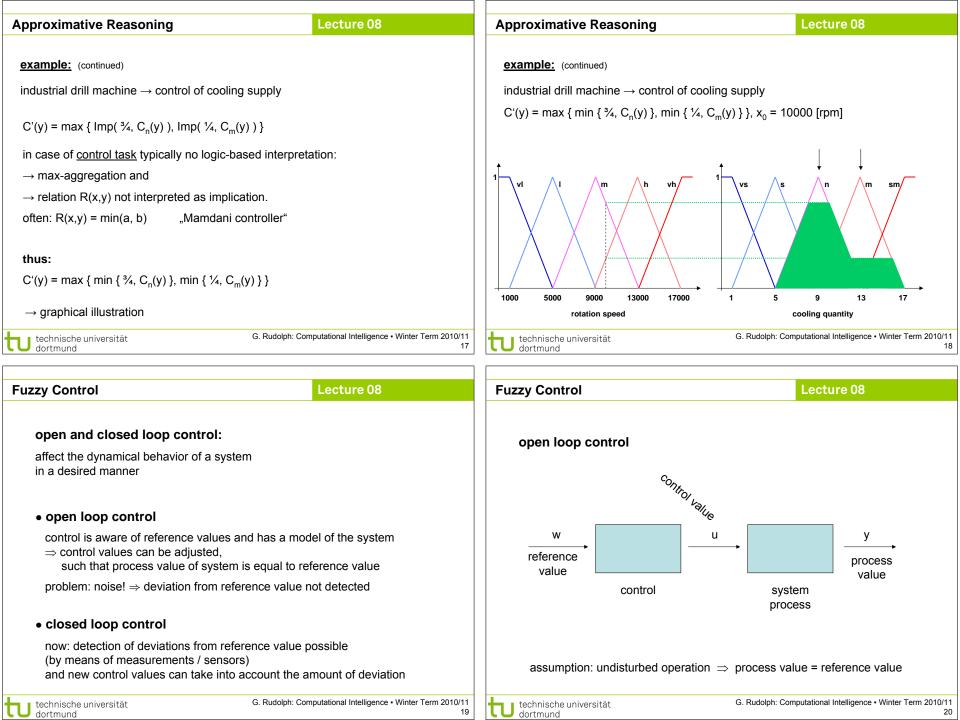
• frequent choice (especially in fuzzy control):

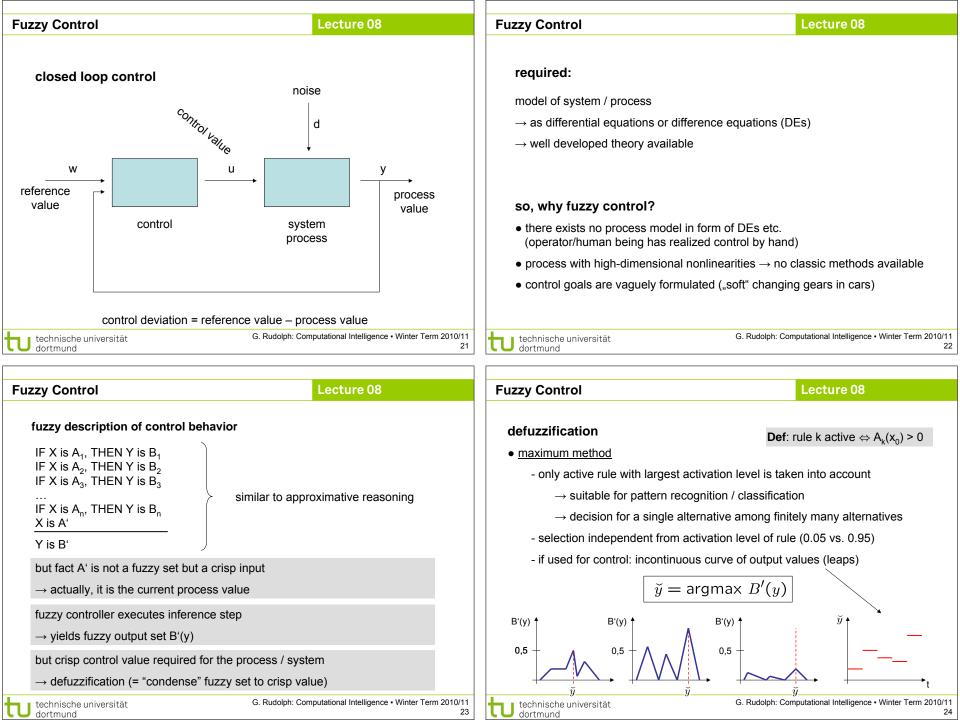
then the composition rule of inference

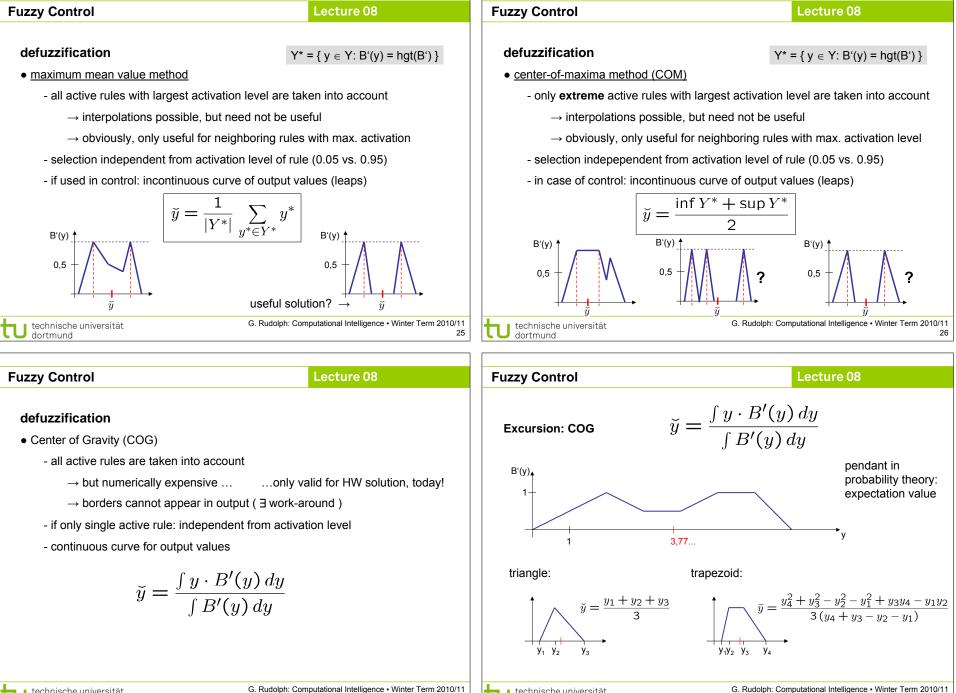
 $- R(x, y) = min \{ A(x), B(x) \}$

 \Rightarrow thus, if relation R(x, y) is given,

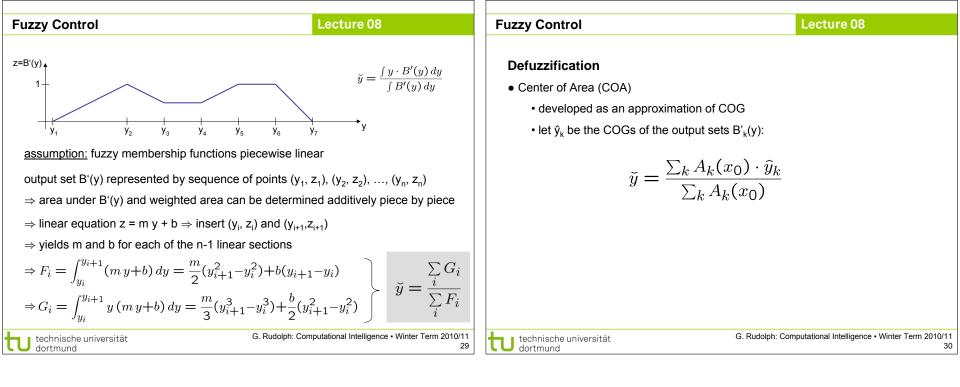

 $- R(x, y) = A(x) \cdot B(x)$


U technische universität dortmund


τ


Mamdami - "implication"

Larsen - "implication"



28

dortmund

