

Winter Term 2010/11

Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11)

Considered so far:

• $A^{c}(x) = 1 - A(x)$

Fakultät für Informatik TU Dortmund

Fuzzy Sets

⇒ Compatible with operators for crisp sets

Defined via axioms.

Creation via generators.

with membership functions with values in $\mathbb{B} = \{0, 1\}$

∃ Non-standard operators? ⇒ Yes! Innumerable many!

Lecture 06

Standard fuzzy operators • $(A \cap B)(x) = \min \{ A(x), B(x) \}$

• $(A \cup B)(x) = \max \{ A(x), B(x) \}$

G. Rudolph: Computational Intelligence • Winter Term 2010/11

"nice to have":

Definition

(A1)

(A2)

(A3)

Plan for Today

Fuzzy sets

technische universität

Fuzzy Complement: Axioms

Generators

Dual tripels

 $\forall \ a \in [0,1]: c(c(a)) = a$ (A4)

Examples:

c(0) = 1 and c(1) = 0.

 $c(\cdot)$ is continuous.

A function c: $[0,1] \rightarrow [0,1]$ is a *fuzzy complement* iff

 \forall a, b \in [0,1]: a \leq b \Rightarrow c(a) \geq c(b).

Axioms of fuzzy complement, t- and s-norms

a) standard fuzzy complement c(a) = 1 - aad (A1): c(0) = 1 - 0 = 1 and c(1) = 1 - 1 = 0

ad (A3): ☑ ad (A2): c'(a) = -1 < 0 (monotone decreasing) ad (A4): 1 - (1 - a) = aG. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität dortmund

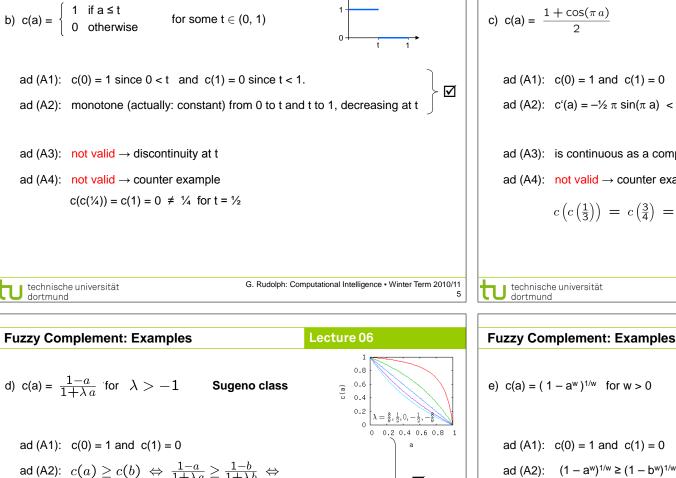
Lecture 06

G. Rudolph: Computational Intelligence • Winter Term 2010/11

monotone decreasing

Lecture 06

involutive



 $(1-a)(1+\lambda b) > (1-b)(1+\lambda a) \Leftrightarrow$

ad (A3): is continuous as a composition of continuous functions

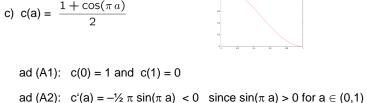
ad (A4): $c(c(a)) = c\left(\frac{1-a}{1+\lambda a}\right) = \frac{1-\frac{1-a}{1+\lambda a}}{1+\lambda \frac{1-a}{1+\lambda}} = \frac{a(\lambda+1)}{\lambda+1} = a$

 $b(\lambda + 1) \ge a(\lambda + 1) \Leftrightarrow b \ge a$

technische universität

Lecture 06

Fuzzy Complement: Examples



Fuzzy Complement: Examples

technische universität

ion of conting
$$\begin{pmatrix} 1 & 1 \end{pmatrix}$$

Lecture 06

Lecture 06

nple
$$rac{1}{2}\left(1-rac{1}{2}
ight)$$

 $c\left(c\left(\frac{1}{3}\right)\right) = c\left(\frac{3}{4}\right) = \frac{1}{2}\left(1 - \frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}$

Yager class

ad (A4): not valid → counter example

G. Rudolph: Computational Intelligence • Winter Term 2010/11

 $\overline{\mathbf{A}}$

technische universität

ad (A1): c(0) = 1 and c(1) = 0

 $a^w \le b^w \Leftrightarrow a \le b$

ad (A2): $(1 - a^w)^{1/w} \ge (1 - b^w)^{1/w} \iff 1 - a^w \ge 1 - b^w \iff$

ad (A3): is continuous as a composition of continuous functions

ad (A4): $c(c(a)) = c\left((1-a^w)^{\frac{1}{w}}\right) = \left(1-\left[(1-a^w)^{\frac{1}{w}}\right]^w\right)^{\frac{1}{w}}$

 $= (1 - (1 - a^w))^{\frac{1}{w}} = (a^w)^{\frac{1}{w}} = a$

G. Rudolph: Computational Intelligence • Winter Term 2010/11

0.2 0.4 0.6 0.8

 $\overline{\mathbf{Q}}$

Theorem

If function c:[0,1] → [0,1] satisfies axioms (A1) and (A2) of fuzzy complement then it has at most one fixed point a* with c(a*) = a*.

Proof:

one fixed point → see example (a) → intersection with bisectrix

no fixed point → see example (b) → no intersection with bisectrix

assume
$$\exists$$
 n > 1 fixed points, for example a* and b* with a* < b*

⇒ c(a*) = a* and c(b*) = b* (fixed points)

⇒ c(a*) < c(b*) with a* < b* impossible if c(·) is monotone decreasing

⇒ contradiction to axiom (A2)

technische universität
dortmund

G. Rudolph: Computational Intelligence · Winter Term 2010/11
9

Fuzzy Complement: 1st Characterization

Lecture 06

g(-1)(x) pseudo-inverse

increasing generator

defines an

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 06

Examples \Rightarrow g⁻¹(x) = x \Rightarrow c(a) = 1 - a a) g(x) = x(Standard)

a)
$$g(x) = x$$
 $\Rightarrow g^{-1}(x) = x$ $\Rightarrow c(a) = 1 - a$ (Standard)
b) $g(x) = x^w$ $\Rightarrow g^{-1}(x) = x^{1/w}$ $\Rightarrow c(a) = (1 - a^w)^{1/w}$ (Yager class, $w > 0$)

c)
$$g(x) = log(x+1) \Rightarrow g^{-1}(x) = e^x - 1 \Rightarrow c(a) = exp(log(2) - log(a+1)) - 1$$

= $\frac{1-a}{1+a}$ (Sugeno class. $\lambda = 1$)

If function c: $[0,1] \rightarrow [0,1]$ satisfies axioms (A1) – (A3) of fuzzy complement then it has exactly one fixed point a^* with $c(a^*) = a^*$.

Intermediate value theorem →

Proof:

Theorem

Examples:

Examples

If $c(\cdot)$ continuous (A3) and $c(0) \ge c(1)$ (A1/A2)

then $\forall v \in [c(1), c(0)] = [0,1]$: $\exists a \in [0,1]$: c(a) = v.

Fuzzy Complement: Fixed Points

⇒ there must be an intersection with bisectrix ⇒ a fixed point exists and by previous theorem there are no other fixed points! ■

(a) c(a) = 1 - a $\Rightarrow a = 1 - a$ $\Rightarrow a^* = \frac{1}{2}$

(b) $c(a) = (1 - a^w)^{1/w}$ $\Rightarrow a = (1 - a^w)^{1/w}$ $\Rightarrow a^* = (\frac{1}{2})^{1/w}$

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 06

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 06

Fuzzy Complement: 1st Characterization

technische universität

technische universität

d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a)$ for $\lambda > -1$

• $a(0) = \log_e(1) = 0$

• strictly monotone increasing since $g'(a) = \frac{1}{1+\lambda a} > 0$ for $a \in [0,1]$

 $c(a) = g^{-1} \left(\frac{\log(1+\lambda)}{\lambda} - \frac{\log(1+\lambda a)}{\lambda} \right)$

• inverse function on [0,1] is $g^{-1}(a) = \frac{\exp(\lambda a) - 1}{\lambda}$, thus

 $= \frac{\exp(\log(1+\lambda) - \log(1+\lambda a)) - 1}{\lambda}$ $= \frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a}$ (Sugeno Complement)

■ technische universität

• g(0) = 0

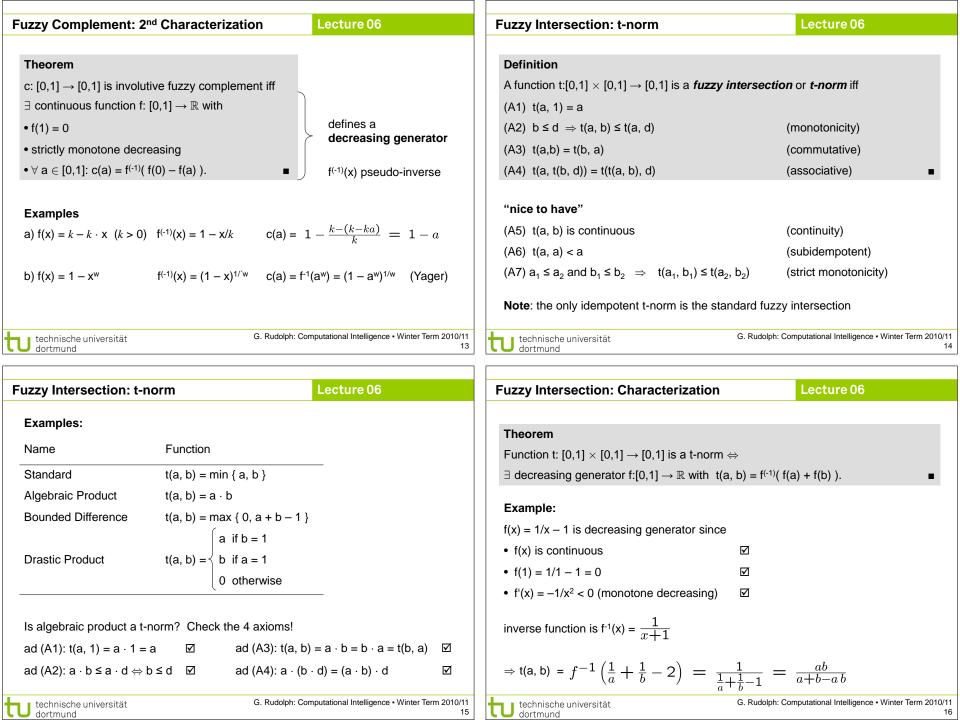
c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff

 \exists continuous function g: $[0,1] \rightarrow \mathbb{R}$ with

• \forall a \in [0,1]: c(a) = $g^{(-1)}(g(1) - g(a))$.

strictly monotone increasing

Fuzzy Complement: Fixed Points



Fuzzy Union: s-norm	Lecture 06	Fuzzy Union: s-norm
Definition		Examples:
A function s:[0,1] \times [0,1] \rightarrow [0,1] is a <i>fuzzy</i>	runion or s-norm or t-conorm iff	Name
(A1) $s(a, 0) = a$		Standard
(A2) $b \le d \Rightarrow s(a, b) \le s(a, d)$	(monotonicity)	Algebraic Sum
(A3) $s(a, b) = s(b, a)$	(commutative)	Bounded Sum
(A4) $s(a, s(b, d)) = s(s(a, b), d)$	(associative) ■	
"nice to have"		Drastic Union
(A5) s(a, b) is continuous	(continuity)	
(A6) s(a, a) > a	(superidempotent)	
(A7) $a_1 \le a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) \le s(a_2, b_2)$	a ₂ , b ₂) (strict monotonicity)	Is algebraic sum a t-nori
		ad (A1): s(a, 0) = a + 0 -
Note: the only idempotent s-norm is the standard fuzzy union		ad (A2): a + b − a · b ≤ a
U technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2010/11	
Fuzzy Union: Characterization	Lecture 06	Combination of Fuzzy
		Background from class
Theorem		∩ and ∪ operations are d
Function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a s-norm		
\exists increasing generator g:[0,1] $\rightarrow \mathbb{R}$ with s($(a, b) = g^{(-1)}(g(a) + g(b)).$	Definition
Example:		A pair of t-norm $t(\cdot, \cdot)$ and dual with regard to the
$g(x) = -\log(1 - a)$ is decreasing generators	since	• $c(t(a, b)) = s(c(a), c(b))$
• g(x) is continuous		• $c(s(a, b)) = t(c(a), c(b))$
• $g(0) = -\log(1-0) = 0$	☑	for all $a, b \in [0,1]$.
• $g'(x) = 1/(1-a) > 0$ (monotone increasing)		101 all a, b \([0,1].
inverse function is $g^{-1}(x) = 1 - \exp(-a)$		Examples of dual tripel
$\Rightarrow s(a, b) = q^{-1}(-\log(1 - a) - \log(1 - b))$		t-norm
$\Rightarrow s(a, b) = g^{-1}(-\log(1-a) - \log(1-b))$ $= 1 - \exp(\log(1-a) + \log(1-b))$		min { a, b }
$= 1 - \exp(\log(1 - a) + \log(a))$ $= 1 - (1 - a)(1 - b) = a$	`	max { 0, a + b - 1 }
technische universität	G. Rudolph: Computational Intelligence • Winter Term 2010/11	technische universität
dortmund	19	dortmund

ad (A2): $a + b - a \cdot b \le a + d - a \cdot d \Leftrightarrow b (1 - a) \le d (1 - a) \Leftrightarrow b \le d \square$ technische universität dortmund **Combination of Fuzzy Operations** Background from classical set theory: \cap and \cup operations are dual w.r.t. complement since they obey DeMorgan's laws

A pair of t-norm $t(\cdot, \cdot)$ and s-norm $s(\cdot, \cdot)$ is said to be

dual with regard to the fuzzy complement c(·) iff

s-norm

max { a, b }

 $a + b - a \cdot b$

 $min \{ 1, a + b \}$

ad (A1): $s(a, 0) = a + 0 - a \cdot 0 = a$

Lecture 06

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 06

Definition

s- and t-norm.

complement

1 - a

1 - a

1 - a

Let (c, s, t) be a tripel

of fuzzy complement $c(\cdot)$,

If t and s are dual to c

called a dual tripel.

G. Rudolph: Computational Intelligence • Winter Term 2010/11

then the tripel (c,s, t) is

ad (A3): ☑

ad (A4): ☑

Is algebraic sum a t-norm? Check the 4 axioms!

s(a, b) = b if a = 0

 $s(a, b) = min \{ 1, a + b \}$

1 otherwise

a if b = 0

• c(t(a, b)) = s(c(a), c(b))

• c(s(a, b)) = t(c(a), c(b))

 $s(a, b) = max \{ a, b \}$ $s(a, b) = a + b - a \cdot b$

Function