Computational Intelligence

Winter Term 2010/11

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Plan for Today

- Application Fields of ANNs
- Classification
- Prediction
- Function Approximation
- Radial Basis Function Nets (RBF Nets)
- Model
- Training
- Recurrent MLP
- Elman Nets
- Jordan Nets

Application Fields of ANNs

Classification

given: set of training patterns (input / output)

$$
\tilde{x}_{i} \quad \tilde{y}_{i}
$$

parameters
output $=$ label
(e.g. class A, class B, ...)

phase I:

train network
phase II:
apply network to unkown inputs for classification

Application Fields of ANNs

Prediction of Time Series

time series $x_{1}, x_{2}, x_{3}, \ldots$
(e.g. temperatures, exchange rates, ...)
task: given a subset of historical data, predict the future
$f\left(x_{t-k}, x_{t-k+1}, \ldots, x_{t} ; w_{1}, \ldots, w_{n}\right) \rightarrow \widehat{x}_{t+\tau}$

predictor
training patterns:
historical data where true output is known;
error per pattern $=\left(\widehat{x}_{t+\tau}-x_{t+\tau}\right)^{2}$

phase I:

train network
phase II:
apply network to historical inputs for predicting unkown outputs

Application Fields of ANNs

Function Approximation (the general case)
task: given training patterns (input / output), approximate unkown function
\rightarrow should give outputs close to true unkown function for arbitrary inputs

- values between training patterns are interpolated
- values outside convex hull of training patterns are extrapolated

x : input training pattern
- : input pattern where output to be interpolated
s : input pattern where output to be extrapolated

Radial Basis Function Nets (RBF Nets)

Lecture 03

Definition:

A function $\phi: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ is termed radial basis function
iff $\exists \varphi: \mathbb{R} \rightarrow \mathbb{R}: \forall x \in \mathbb{R}^{n}: \phi(x ; c)=\varphi(\|x-c\|)$.

Definition:
RBF local iff
$\varphi(r) \rightarrow 0$ as $r \rightarrow \infty$
typically, || x || denotes Euclidean norm of vector x
examples:

$$
\varphi(r)=\exp \left(-\frac{r^{2}}{\sigma^{2}}\right)
$$

Gaussian
$\varphi(r)=\frac{3}{4}\left(1-r^{2}\right) \cdot 1_{\{r \leq 1\}}$
$\varphi(r)=\frac{\pi}{4} \cos \left(\frac{\pi}{2} r\right) \cdot 1_{\{r \leq 1\}}$
Cosine $\left.\begin{array}{l}\text { unbounded } \\ \text { bounded } \\ \text { bounded }\end{array}\right\}$ local

Radial Basis Function Nets (RBF Nets)

Definition:

A function $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ is termed radial basis function net (RBF net)

$$
\text { iff } f(x)=w_{1} \varphi\left(\left\|x-c_{1}\right\|\right)+w_{2} \varphi\left(\left\|x-c_{2}\right\|\right)+\ldots+w_{p} \varphi\left(\left\|x-c_{q}\right\|\right)
$$

- layered net
- 1st layer fully connected
- no weights in 1st layer
- activation functions differ

Radial Basis Function Nets (RBF Nets)

given : N training patterns $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ and q RBF neurons
find : weights w_{1}, \ldots, w_{q} with minimal error

solution:

we know that $f\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, N$ or equivalently

$\Rightarrow \sum_{k=1}^{q} w_{k} \cdot p_{i k}=y_{i} \quad \Rightarrow \mathrm{~N}$ linear equations with q unknowns

Radial Basis Function Nets (RBF Nets)

in matrix form: $\mathrm{Pw}=\mathrm{y}$
with $P=\left(p_{i k}\right)$ and $P: N \times q, y: N \times 1, w: q \times 1$,
case $N=q: \quad w=P^{-1} y \quad$ if P has full rank
case $\mathrm{N}<\mathrm{q}$: many solutions but of no practical relevance
case $\mathrm{N}>\mathrm{q}: \quad \mathrm{w}=\mathrm{P}^{+} \mathrm{y} \quad$ where P^{+}is Moore-Penrose pseudo inverse
$P w=y$
$P^{\prime} P w=P^{\prime} y$
$\left(P^{\prime} P\right)^{-1} P^{\prime} P w=\left(P^{\prime} P\right)^{-1} P^{\prime} y$

unit matrix
| • P^{\prime} from left hand side (P^{\prime} is transpose of P)
| • ($\left.\mathrm{P}^{\prime} P\right)^{-1}$ from left hand side
| simplify

Radial Basis Function Nets (RBF Nets)

```
complexity (naive)
w = (P'P) -1 P'y
```



```
O(N2 q)
```

remark: if N large then inaccuracies for P‘P likely
\Rightarrow first analytic solution, then gradient descent starting from this solution
requires
differentiable
basis functions!

Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given
\Rightarrow center c_{k} and radii σ considered given and known
how to choose c_{k} and σ ?

uniform covering

if training patterns inhomogenously distributed then first cluster analysis
choose center of basis function from each cluster, use cluster size for setting σ

Radial Basis Function Nets (RBF Nets)

advantages:

- additional training patterns \rightarrow only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

Recurrent MLPs

Lecture 03

Jordan nets (1986)

- context neuron:
reads output from some neuron at step t and feeds value into net at step $t+1$

> Jordan net =
> MLP + context neuron for each output, context neurons fully connected to input layer

Recurrent MLPs

Elman nets (1990)

Elman net =

MLP + context neuron for each neuron output of MLP, context neurons fully connected to associated MLP layer

Recurrent MLPs

Training?

\Rightarrow unfolding in time ("loop unrolling")

- identical MLPs serially connected (finitely often)
- results in a large MLP with many hidden (inner) layers
- backpropagation may take a long time
- but reasonable if most recent past more important than layers far away

Why using backpropagation?
\Rightarrow use Evolutionary Algorithms directly on recurrent MLP!

