

Winter Term 2010/11

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik

TU Dortmund

Application Fields of ANNs

Classification

given: set of training patterns (input / output)

(unknown)

input

■ technische universität

parameters

(known)

training patterns

 \tilde{x}_i

 $f(x; (\tilde{x}_1, \tilde{y}_1), \ldots, (\tilde{x}_m, \tilde{y}_m), w_1, \ldots, w_n) \rightarrow \hat{y}$ weights (learnt)

output classification (guessed)

Lecture 03

(e.g. class A, class B, ...)

output = label

phase II: apply network to unkown inputs for

train network

phase I:

training patterns: historical data where true output is known;

Application Fields of ANNs Classification Prediction

Plan for Today

Function Approximation

Radial Basis Function Nets (RBF Nets)

Model Training

time series $x_1, x_2, x_3, ...$

 Recurrent MLP ■ Elman Nets

Jordan Nets technische universität

Application Fields of ANNs

Prediction of Time Series

(e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future

 $f(x_{t-k}, x_{t-k+1}, \dots, x_t; w_1, \dots, w_n) \to \hat{x}_{t+\tau}$ predictor

inputs for predicting unkown outputs

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 03

G. Rudolph: Computational Intelligence • Winter Term 2010/11

phase I:

phase II:

train network

apply network

to historical

Lecture 03

error per pattern = $(\hat{x}_{t+\tau} - x_{t+\tau})^2$ G. Rudolph: Computational Intelligence • Winter Term 2010/11

J technische universität dortmund

→ should give outputs close to true unknown function for arbitrary inputs typically, || x || denotes Euclidean norm of vector x values between training patterns are interpolated examples: values outside convex hull of training patterns are extrapolated $\varphi(r) = \exp\left(-\frac{r^2}{\sigma^2}\right)$ x: input training pattern •: input pattern where output to be interpolated : input pattern where output to be extrapolated G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität Radial Basis Function Nets (RBF Nets) Lecture 03

Lecture 03

Application Fields of ANNs

Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

Definition: A function f: $\mathbb{R}^n \to \mathbb{R}$ is termed radial basis function net (RBF net) iff $f(x) = w_1 \varphi(||x - c_1||) + w_2 \varphi(||x - c_2||) + ... + w_p \varphi(||x - c_q||)$ **RBF** neurons $\phi(||x-c_1||)$ W_2 $\varphi(||\mathbf{x}-\mathbf{c}_2||$ layered net 1st layer fully connected no weights in 1st layer φ(||x-c_a||) · activation functions differ G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität

unbounded Gaussian $\varphi(r) = \frac{3}{4} (1 - r^2) \cdot 1_{\{r \le 1\}}$ Epanechnikov bounded local $\varphi(r) = \frac{\pi}{4} \cos\left(\frac{\pi}{2}r\right) \cdot 1_{\{r \le 1\}}$ Cosine bounded J technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 03

Definition:

RBF local iff

 $\varphi(r) \to 0 \text{ as } r \to \infty$

Radial Basis Function Nets (RBF Nets)

A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is termed **radial basis function**

iff $\exists \varphi : \mathbb{R} \to \mathbb{R} : \forall x \in \mathbb{R}^n : \varphi(x; c) = \varphi(||x - c||)$. \Box

Definition:

unknown

known value

Radial Basis Function Nets (RBF Nets) Lecture 03 : N training patterns (x_i, y_i) and q RBF neurons : weights w₁, ..., w_a with minimal error find solution: we know that $f(x_i) = y_i$ for i = 1, ..., N or equivalently $\sum_{k=1}^{n} w_k \cdot \varphi(\|x_i - c_k\|) = y_i$

 $\Rightarrow \sum_{k=1}^{r} w_k \cdot p_{ik} = y_i$ \Rightarrow N linear equations with q unknowns G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität

Radial Basis Function Nets (RBF Nets) Lecture 03			
in matrix form:	P w = y	with $P = (p_{ik})$ and	P: N x q, y: N x 1, w: q x 1,
case N = q:	$W = P^{-1} y$	if P has full rank	
case N < q:	many solutions	but of no practical relevance	
case N > q:	$w = P^+ y$	where P ⁺ is Moore-Penrose pseudo inverse	
P'P w = P' y		· P' from left hand side (P' is transpose of P) · (P'P) -1 from left hand side simplify	
unit matrix	P+	i annibini	
technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2010/11 9			
Radial Basis Function Nets (RBF Nets) Lecture 03			
so far: tacitly assumed that RBF neurons are given $\Rightarrow \text{ center } c_k \text{ and radii } \sigma \text{ considered given and known}$ how to choose c_k and σ ?			
uniform cover	x x x	x x x x x x x x x x x x x x x x x x x	if training patterns inhomogenously distributed then first cluster analysis choose center of basis function from each cluster, use cluster size for setting σ
uimoini covei	"'y		
technische univers dortmund	sität	G. Rudolph: Computational Intelligence • Winter Term 2010/11 11	

advantages: additional training patterns → only local adjustment of weights • optimal weights determinable in polynomial time • regions not supported by RBF net can be identified by zero outputs disadvantages:

basis functions! G. Rudolph: Computational Intelligence • Winter Term 2010/11

requires differentiable

⇒ first analytic solution, then gradient descent starting from this solution

 $O(N^2 q)$

P'y: qN

Radial Basis Function Nets (RBF Nets)

inversion: q3

remark: if N large then inaccuracies for P'P likely

Radial Basis Function Nets (RBF Nets)

complexity (naive) $W = (P'P)^{-1} P' y$

P'P: N2 q

Lecture 03

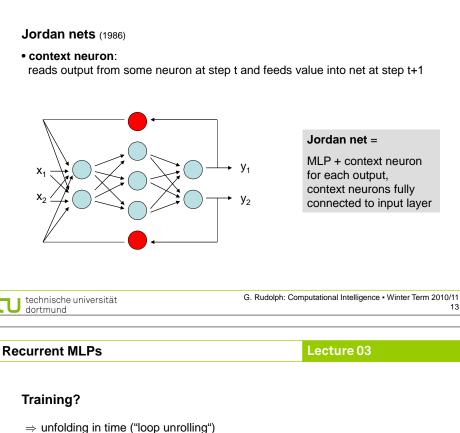
multiplication: q2

Lecture 03

technische universität dortmund

- number of neurons increases exponentially with input dimension • unable to extrapolate (since there are no centers and RBFs are local)

technische universität G. Rudolph: Computational Intelligence • Winter Term 2010/11 dortmund



Lecture 03

- identical MLPs serially connected (finitely often)
- results in a large MLP with many hidden (inner) layers
- backpropagation may take a long time
- but reasonable if most recent past more important than layers far away

Why using backpropagation?

⇒ use Evolutionary Algorithms directly on recurrent MLP!

Elman nets (1990)

Elman net =

Recurrent MLPs

MLP + context neuron for each neuron output of MLP, context neurons fully connected to associated MLP layer

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 03

Recurrent MLPs