Computational Intelligence

Winter Term 2010/11

- Organization (Lectures / Tutorials)
- Overview CI
- Introduction to ANN
- McCulloch Pitts Neuron (MCP)
- Minsky I Papert Perceptron (MPP)

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Organizational Issues

Lecture 01

Who am I?

Günter Rudolph

Fakultät für Informatik, LS 11
Guenter.Rudolph@tu-dortmund.de $<$ best way to contact me
OH-14, R. 232
\leftarrow if you want to see me
office hours:
Tuesday, 10:30-11:30am
and by appointment

Organizational Issues

Lecture 01

Prerequisites

```
Lecture 01
```

Lectures	Wednesday	$10: 15-11: 45$	$\mathrm{OH}-14$, R. 304
Tutorials	Wednesday	$12: 00-12: 45$	$\mathrm{OH}-14$, R. 304
	or	$16: 00-16: 45$	$\mathrm{OH}-14, \mathrm{R} .304$

Tutor Dr. Mohammad Abam, LS 2

Information

http://ls11-www.cs.unidortmund.de/people/rudolph/
teaching/lectures/CI/WS2010-11/lecture.jsp

Slides see web

Literature see web
Hu technische universität \quad G. Rudolph: Computational Intelligence \cdot Winter Term 2010/11 5
technische
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2010/11

Overview "Computational Intelligence"

Lecture 01

What is Cl ?

\Rightarrow umbrella term for computational methods inspired by nature

- artifical neural networks
- evolutionary algorithms
- fuzzy systems

backbone

- swarm intelligence
- artificial immune systems
- growth processes in trees new developments
-..

Knowledge about

- mathematics,
- programming,
- logic
is helpful.

But what if something is unknown to me?

- covered in the lecture
- pointers to literature
... and don't hesitate to ask
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2010/11
dortmund

Overview "Computational Intelligence"

Lecture 01

- term „computational intelligence" coined by John Bezdek (FL, USA)
- originally intended as a demarcation line
\Rightarrow establish border between artificial and computational intelligence
- nowadays: blurring border

our goals:

1. know what Cl methods are good for!
2. know when refrain from Cl methods!
3. know why they work at all!
4. know how to apply and adjust Cl methods to your problem!

Biological Prototype

- Neuron
- Information gathering
- Information processing
- Information propagation

technische universität
dortmund

Introduction to Artificial Neural Networks

Lecture 01

Model

Abstraction

Introduction to Artificial Neural Networks

Lecture 01

1943: Warren McCulloch / Walter Pitts

- description of neurological networks
\rightarrow modell: McCulloch-Pitts-Neuron (MCP)
- basic idea:
- neuron is either active or inactive
- skills result from connecting neurons
- considered static networks
(i.e. connections had been constructed and not learnt)

McCulloch-Pitts-Neuron

n binary input signals $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
threshold $\theta>0$

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } \sum_{i=1}^{n} x_{i} \geq \theta \\ 0 & \text { else }\end{cases}
$$

\Rightarrow can be realized:

boolean AND

G. Rudolph: Computational Intelligence • Winter Term 2010/11
technische universität
dortmund

Introduction to Artificial Neural Networks

Lecture 01

Analogons

Neurons	simple MISO processors (with parameters: e.g. threshold)
Synapse	connection between neurons (with parameters: synaptic weight)
Topology	interconnection structure of net
Propagation	working phase of ANN \rightarrow processes input to output
Training / Learning	adaptation of ANN to certain data

McCulloch-Pitts-Neuron

n binary input signals x_{1}, \ldots, x_{n}
threshold $\theta>0$

NOT

in addition: m binary inhibitory signals y_{1}, \ldots, y_{m}
$\tilde{f}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)=f\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{j=1}^{m}\left(1-y_{j}\right)$

- if at least one $y_{j}=1$, then output $=0$
- otherwise:
- sum of inputs \geq threshold, then output $=1$
else output $=0$
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2010/11
dortmund

Introduction to Artificial Neural Networks

Lecture 01

Assumption:

inputs also available in inverted form, i.e. \exists inverted inputs.

Theorem:

Every logical function $F: \mathbb{B}^{n} \rightarrow \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net.

Example: $\quad F(x)=x_{1} x_{2} \bar{x}_{3} \vee \bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \vee x_{1} \bar{x}_{4}$

Introduction to Artificial Neural Networks

Lecture 01

Proof: (by construction)
Every boolean function F can be transformed in disjunctive normal form
$\Rightarrow 2$ layers (AND - OR)

1. Every clause gets a decoding neuron with $\theta=n$
\Rightarrow output $=1$ only if clause satisfied (AND gate)
2. All outputs of decoding neurons are inputs of a neuron with $\theta=1$ (OR gate)

Introduction to Artificial Neural Networks

Lecture 01

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^{+}$.

Proof:

" ${ }^{\prime \prime}$

$$
\text { Let } \sum_{i=1}^{n} \frac{a_{i}}{b_{i}} x_{i} \geq \frac{a_{0}}{b_{0}} \text { with } a_{i}, b_{i} \in \mathbb{N}
$$

Multiplication with $\prod_{i=0}^{n} b_{i}$ yields inequality with coefficients in \mathbb{N} Duplicate input x_{i}, such that we get $a_{i} b_{1} b_{2} \cdots b_{i-1} b_{i+1} \cdots b_{n}$ inputs.

Threshold $\theta=a_{0} b_{1} \cdots b_{n}$
„ \Leftarrow "
Set all weights to 1 .

Generalization: inputs with weights

Introduction to Artificial Neural Networks

Lecture 01

Conclusion for MCP nets

+ feed-forward: able to compute any Boolean function
+ recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

Introduction to Artificial Neural Networks

Lecture 01

Perceptron (Rosenblatt 1958)
\rightarrow complex model \rightarrow reduced by Minsky \& Papert to what is „necessary"
\rightarrow Minsky-Papert perceptron (MPP), $1969 \rightarrow$ essential difference: $x \in[0,1] \subset \mathbb{R}$

What can a single MPP do?

$w_{1} x_{1}+w_{2} x_{2} \geq \theta \xrightarrow[\mathrm{N}]{\mathrm{J}} 0$

$$
\text { isolation of } x_{2} \text { yields: }
$$

$$
x_{2} \geq \frac{\theta}{w_{2}}-\frac{w_{1}}{w_{2}} x_{1}
$$

Example:

$0,9 x_{1}+0,8 x_{2} \geq 0,6$
$\Leftrightarrow \quad x_{2} \geq \frac{3}{4}-\frac{9}{8} x_{1}$
technische universität
dortmund

Introduction to Artificial Neural Networks

Lecture 01

1969: Marvin Minsky / Seymor Papert

- book Perceptrons \rightarrow analysis math. properties of perceptrons
- disillusioning result:
perceptions fail to solve a number of trivial problems!
- XOR-Problem
- Parity-Problem
- Connectivity-Problem
- "conclusion": All artificial neurons have this kind of weakness! \Rightarrow research in this field is a scientific dead end!
- consequence: research funding for ANN cut down extremely (~ 15 years)

Introduction to Artificial Neural Networks

Lecture 01

?

x_{1}	x_{2}	xor
0	0	0
0	1	1
1	0	1
1	1	0

$\Rightarrow 0<\theta$
$\Rightarrow \mathrm{w}_{2} \geq \theta$
$\Rightarrow \mathrm{W}_{1} \geq \theta$
$\Rightarrow \mathrm{w}_{1}+\mathrm{w}_{2}<\theta$

contradiction!

$$
w_{1} x_{1}+w_{2} x_{2} \geq \theta
$$

Introduction to Artificial Neural Networks

Lecture 01

how to leave the "dead end":

1. Multilayer Perceptrons:

2. Nonlinear separating functions:

$$
\begin{aligned}
& \text { XOR } \begin{array}{l}
g\left(x_{1}, x_{2}\right)=2 x_{1}+2 x_{2}-4 x_{1} x_{2}-1 \quad \text { with } \theta=0 \\
g(0,0)=-1 \\
g(0,1)=+1 \\
g(1,0)=+1 \\
g(1,1)=-1
\end{array}
\end{aligned}
$$

Introduction to Artificial Neural Networks

Lecture 01

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

(1) choose initial weights in arbitrary manner
(2) feed in test pattern
(3) if output of perceptron wrong, then change weights
(4) goto (2) until correct output for al test paterns
graphically:

\rightarrow translation and rotation of separating lines
technische universität

Lecture 01

Introduction to Artificial Neural Networks

P: set of positive examples
N : set of negative examples

1. choose w_{0} at random, $\mathrm{t}=0$
2. choose arbitrary $x \in P \cup N$
3. if $x \in P$ and $w_{t}^{\prime} x>0$ then goto 2 if $x \in N$ and $w_{t}^{\prime} x \leq 0$ then goto 2
4. if $x \in P$ and $w_{t}^{\prime} x \leq 0$ then $w_{t+1}=w_{t}+x ; t++;$ goto 2
5. if $x \in N$ and $w_{t}^{\prime} x>0$ then $w_{t+1}=w_{t}-x ; t++;$ goto 2
6. stop? If I/O correct for all examples!
remark: algorithm converges, is finite, worst case: exponential runtime

I/O correct!

let $w^{\prime} x \leq 0$, should be >0 !
$(w+x)^{\prime} x=w^{\prime} x+x^{\prime} x>w^{\prime} x$
let w'x>0, should be ≤ 0 !
$(w-x)^{\prime} x=w^{\prime} x-x^{\prime} x<w^{\prime} x$

Introduction to Artificial Neural Networks

Lecture 01

Example

$$
\begin{aligned}
& P=\left\{\binom{1}{1},\binom{1}{-1},\binom{0}{-1}\right\} \\
& N=\left\{\binom{-1}{-1},\binom{-1}{1},\binom{0}{1}\right\}
\end{aligned}
$$

threshold as a weight: $\mathrm{w}=\left(\theta, \mathrm{w}_{1}, \mathrm{w}_{2}\right)^{\text {d }}$

$P=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)\right\}$
$N=\left\{\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$
suppose initial vector of weights is
$w^{(0)}=(1,-1,1)^{\text {d }}$

Introduction to Artificial Neural Networks

Lecture 01

We know what a single MPP can do.
What can be achieved with many MPPs?

Single MPP	\Rightarrow separates plane in two half planes
Many MPPs in 2 layers	\Rightarrow can identify convex sets

$$
\lambda a+(1-\lambda) b \in X
$$

1. How? $\quad \Rightarrow 2$ layers! \Leftarrow
2. Convex?

for $\lambda \in(0,1)$
```
Single MPP \(\Rightarrow\) separates plane in two half planes
Many MPPs in 2 layers \(\Rightarrow\) can identify convex sets
Many MPPs in 3 layers \(\Rightarrow\) can identify arbitrary sets
Many MPPs in > 3 layers \(\Rightarrow\) not really necessary!
```

arbitrary sets:

1. partitioning of nonconvex set in several convex sets
2. two-layered subnet for each convex set
3. feed outputs of two-layered subnets in OR gate (third layer)
