

Winter Term 2010/11

Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Organizational Issues

Who are you?

studying "Automation and Robotics" (Master of Science) Module "Optimization"

either

or

studying "Informatik"

- BA-Modul "Einführung in die Computational Intelligence"

- Hauptdiplom-Wahlvorlesung (SPG 6 & 7)

Organizational Issues Who am I? Günter Rudolph Fakultät für Informatik, LS 11

Plan for Today

Overview CI

U technische universität dortmund

Introduction to ANN

Organization (Lectures / Tutorials)

 McCulloch Pitts Neuron (MCP) Minsky / Papert Perceptron (MPP)

Lecture 01

Tuesday, 10:30-11:30am and by appointment

Lecture 01

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 01

← best way to contact me

← if you want to see me

Organizational Issues Lecture 01				Prerequisites	Lecture 01
Organizational Issues Lecture 01			Lecture 01	rierequisites	Lecture 01
Lectures Tutorials Tutor	Wednesday Wednesday or Dr. Mohamma	16:00-16:45	OH-14, R. 304 OH-14, R. 304 OH-14, R. 304	Knowledge aboutmathematics,programming,logicis helpful.	
lutoi	DI. Wollallilla	u Abaiii, LS 2			
Information http://ls11-www.cs.unidortmund.de/people/rudolph/ teaching/lectures/CI/WS2010-11/lecture.jsp Slides see web Literature see web				But what if something is unknown to me? • covered in the lecture • pointers to literature and don't hesitate to ask!	
technische universität G. Rudolph: Computational Intelligence • Winter Term 2010/11 5				technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2010/11
dortmund				dortmund	· ·
Overview "Computational Intelligence" Lecture 01				Overview "Computational Intelligen	Lecture 01
What is CI? ⇒ umbrella term for computational methods inspired by nature • artifical neural networks • evolutionary algorithms • fuzzy systems				 term "computational intelligence" coined by John Bezdek (FL, USA) originally intended as a demarcation line ⇒ establish border between artificial and computational intelligence nowadays: blurring border 	
swarm intel artificial imi		new de	evelopments	our goals: 1. know what CI methods are good 2. know when refrain from CI meth 3. know why they work at all! 4. know how to apply and adjust CI	nods!
technische univer	sität	G. Rudolph: (Computational Intelligence • Winter Term 2010/11 7	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2010/11 8

Biological Prototype human being: 1012 neurons Neuron - Information gathering electricity in mV range (D) - Information processing (C) speed: 120 m/s - Information propagation (A/S)axon (A) cell body (C) nucleus dendrite (D) synapse (S) G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität Lecture 01 **Introduction to Artificial Neural Networks** Model function f $f(x_1, x_2, ..., x_n)$

McCulloch-Pitts-Neuron 1943:

G. Rudolph: Computational Intelligence • Winter Term 2010/11

 $x_i \in \{0, 1\} =: \mathbb{B}$

 $f: \mathbb{B}^n \to \mathbb{B}$

technische universität

Lecture 01

Introduction to Artificial Neural Networks

Abstraction axon nucleus / dendrites cell body synapse signal signal signal processing input output G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität dortmund

Lecture 01

Lecture 01

1943: Warren McCulloch / Walter Pitts

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks

- description of neurological networks

→ modell: McCulloch-Pitts-Neuron (MCP)

- neuron is either active or inactive - skills result from connecting neurons
- considered static networks (i.e. connections had been constructed and not learnt)

technische universität

• basic idea:

McCulloch-Pitts-Neuron n binary input signals x₁, ..., x_n threshold $\theta > 0$ $f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum\limits_{i=1}^n x_i \ge \theta \\ 0 & \text{else} \end{cases}$ boolean OR boolean AND ⇒ can be realized: G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität Introduction to Artificial Neural Networks Lecture 01 **Analogons** simple MISO processors Neurons (with parameters: e.g. threshold) Synapse connection between neurons (with parameters: synaptic weight)

interconnection structure of net

adaptation of ANN to certain data

G. Rudolph: Computational Intelligence • Winter Term 2010/11

working phase of ANN → processes input to output

Introduction to Artificial Neural Networks

Topology

Training /

Learning

technische universität

Propagation

Lecture 01

in addition: m binary inhibitory signals y₁, ..., y_m $\tilde{f}(x_1,\ldots,x_n;y_1,\ldots,y_m)=f(x_1,\ldots,x_n)\cdot\prod_{j=1}^m(1-y_j)$ • if at least one $y_i = 1$, then output = 0 otherwise: - sum of inputs ≥ threshold, then output = 1 else output = 0technische universität G. Rudolph: Computational Intelligence • Winter Term 2010/11 **Introduction to Artificial Neural Networks Assumption:** inputs also available in inverted form, i.e. ∃ inverted inputs. Theorem: Every logical function $F: \mathbb{B}^n \to \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net. $F(x) = x_1 x_2 \bar{x}_3 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3 \vee x_1 \bar{x}_4$ Example:

Introduction to Artificial Neural Networks

McCulloch-Pitts-Neuron

threshold $\theta > 0$

n binary input signals x₁, ..., x_n

Lecture 01

NOT

Lecture 01

Proof: (by construction) Every boolean function F can be transformed in disjunctive normal form ⇒ 2 layers (AND - OR) 1. Every clause gets a decoding neuron with $\theta = n$ ⇒ output = 1 only if clause satisfied (AND gate) 2. All outputs of decoding neurons are inputs of a neuron with $\theta = 1$ (OR gate) q.e.d. G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität Introduction to Artificial Neural Networks Lecture 01

Introduction to Artificial Neural Networks

Lecture 01

fires 1 if $0.2 x_1 + 0.4 x_2 + 0.3 x_3 \ge 0.7$ · 10

Introduction to Artificial Neural Networks

Generalization: inputs with weights

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 01

Lecture 01

 $2 x_1 + 4 x_2 + 3 x_3 \ge 7$

duplicate inputs!

⇒ equivalent!

technische universität

- Conclusion for MCP nets
- + feed-forward: able to compute any Boolean function

Introduction to Artificial Neural Networks

- - + recursive: able to simulate DFA
 - very similar to conventional logical circuits
 - difficult to construct
- no good learning algorithm available

- Multiplication with $\ \prod \ b_i$ yields inequality with coefficients in $\mathbb N$
- Duplicate input x_i , such that we get $a_i b_1 b_2 \cdots b_{i-1} b_{i+1} \cdots b_n$ inputs.

Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^+$.

Let $\sum_{i=1}^{n} \frac{a_i}{b_i} x_i \geq \frac{a_0}{b_0}$ with $a_i, b_i \in \mathbb{N}$

Threshold $\theta = a_0 b_1 \cdots b_n$ "="

Theorem:

Proof:

- Set all weights to 1. G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität dortmund

q.e.d.

- technische universität

Lecture 01 **Introduction to Artificial Neural Networks** → complex model → reduced by Minsky & Papert to what is "necessary" \rightarrow Minsky-Papert perceptron (MPP), 1969 \rightarrow essential difference: $x \in [0,1] \subset \mathbb{R}$ isolation of x₂ yields: $x_2 \ge \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1 \qquad \begin{array}{c} \downarrow & 1 \\ & \searrow & 1 \end{array}$

Lecture 01

OR

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks

AND

NAND

Lecture 01

contradiction!

NOR

G. Rudolph: Computational Intelligence • Winter Term 2010/11

⇒ realizes XOR

Lecture 01

how to leave the "dead end":

technische universität

dortmund

1. Multilayer Perceptrons:

2. Nonlinear separating functions:

XOR
$$g(x_1, x_2) = 2x_1 + 2x_2 - 4x_1x_2 - 1$$
 with $\theta = 0$

1 ϕ
 $g(0,0) = -1$
 $g(0,1) = +1$
 $g(1,0) = +1$
 $g(1,1) = -1$

technische universität

Perceptron (Rosenblatt 1958)

What can a single MPP do?

 $0.9x_1 + 0.8x_2 > 0.6$

 $\Leftrightarrow x_2 \ge \frac{3}{4} - \frac{9}{8}x_1$

■ technische universität

• disillusioning result:

 XOR-Problem - Parity-Problem

- Connectivity-Problem

Example:

 $w_1 x_1 + w_2 x_2 \ge \theta$

Introduction to Artificial Neural Networks

1969: Marvin Minsky / Seymor Papert

book Perceptrons → analysis math. properties of perceptrons

perceptions fail to solve a number of trivial problems!

• "conclusion": All artificial neurons have this kind of weakness!

• consequence: research funding for ANN cut down extremely (~ 15 years)

⇒ research in this field is a scientific dead end!

technische universität

Introduction to Artificial Neural Networks Lecture 01 **Introduction to Artificial Neural Networks** How to obtain weights w_i and threshold θ ? as yet: by construction example: NAND-gate NAND 0 0 1 $\Rightarrow 0 \ge \theta$ $\Rightarrow W_2 \ge \theta$ requires solution of a system of 0 linear inequalities (∈ P) $\Rightarrow w_1 \ge \theta$ 1 \Rightarrow W₁ + W₂ < θ (e.g.: W₁ = W₂ = -2, θ = -3) now: by "learning" / training G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität Introduction to Artificial Neural Networks Lecture 01 P: set of positive examples **Perceptron Learning** N: set of negative examples 1. choose w_0 at random, t = 02. choose arbitrary $x \in P \cup N$ 3. if $x \in P$ and w_t 'x > 0 then goto 2 I/O correct! if $x \in N$ and w_t ' $x \le 0$ then goto 2 let w'x \leq 0, should be > 0! 4. if $x \in P$ and w_t ' $x \le 0$ then (w+x)'x = w'x + x'x > w'x $W_{t+1} = W_t + X$; t++; goto 2 5. if $x \in N$ and w_t 'x > 0 then let w'x > 0, should be \leq 0! $(w-x)^{\cdot}X = w^{\cdot}X - x^{\cdot}X < w^{\cdot}X$ $W_{t+1} = W_t - X$; t++; goto 2 6. stop? If I/O correct for all examples! remark: algorithm converges, is finite, worst case: exponential runtime G. Rudolph: Computational Intelligence • Winter Term 2010/11 technische universität dortmund

Assumption: test examples with correct I/O behavior available

Perceptron Learning

Principle:

- (1) choose initial weights in arbitrary manner (2) feed in test pattern
- (3) if output of perceptron wrong, then change weights
- (4) goto (2) until correct output for al test paterns

→ translation and rotation of separating lines

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Lecture 01

Introduction to Artificial Neural Networks Lecture 01

$$P = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
suppose initial vector of weights in

$$N = \left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 suppose initial vector of weights is
$$\mathbf{w}^{(0)} = (1, -1, 1)^{\circ}$$

technische universität

Example

Introduction to Artificial Neural Networks

Lecture 01

We know what a single MPP can do.

What can be achieved with many MPPs?

Single MPP

 \Rightarrow separates plane in two half planes

Many MPPs in 2 layers \Rightarrow can identify convex sets

1. How?

How?
$$\Rightarrow$$
 2 layers!

2. Convex?

 \forall a,b \in X:

$$\lambda a + (1-\lambda) b \in X$$

for $\lambda \in (0,1)$

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2010/11

Introduction to Artificial Neural Networks

Lecture 01

Single MPP \Rightarrow separates plane in two half planes

Many MPPs in 2 layers \Rightarrow can identify convex sets

Many MPPs in 3 layers \Rightarrow can identify arbitrary sets

Many MPPs in > 3 layers \Rightarrow not really necessary!

arbitrary sets:

- 1. partitioning of nonconvex set in several convex sets
- 2. two-layered subnet for each convex set
- 3. feed outputs of two-layered subnets in OR gate (third layer)

technische universität