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Abstract

The standard choice for mutating an individual of an evolutionary algorithm with con�
tinuous variables is the normal distribution� however other distributions� especially some
versions of the multivariate Cauchy distribution� have recently gained increased popularity
in practical applications� Here the extent to which Cauchy mutation distributions may a�ect
the local convergence behavior of evolutionary algorithms is analyzed� The results show that
the order of local convergence is identical for Gaussian and spherical Cauchy distributions�
whereas nonspherical Cauchy mutations lead to slower local convergence� As a by�product
of the analysis some recommendations for the parametrization of the self�adaptive step size
control mechanism can be derived�

� Introduction

The Gaussian distribution is the predominant choice for a mutation distribution in evolutionary
algorithms �EAs	 with search space IR� 
�� �� �� �� �� This choice is usually justi�ed by the
central limit theorem� Since mutations in nature are caused by a variety of physical and chemical
in�uences that are not identi�able or measurable to a degree that would permit a deterministic
model� these in�uences are considered as independent random perturbations whose normed
sum approaches a Gaussian random variable in the limit� provided that the �rst two absolute
moments of the distributions of these random perturbations are �nite and that the so�called
Lindeberg condition is obeyed �see 
�� p� ���	�
But the Gaussian distribution is not the only limit distribution for normed sums of random
variables� If the underlying random variables are independent and identically distributed �i�i�d�	
and have �nite absolute moments at most of order k� then for k � � only the Gaussian distribu�
tion can arise as a limit� whereas if � � k � �� the limit laws are instances of a class called stable
distributions �see 
�� p� ���	� A stable distribution F is characterized by the property that the
distribution of the sum of two independent random variables with distributions of type F is
also of type F � The only stable distributions besides the Gaussian distribution possessing �nite
variances are degenerate� Although each stable distribution �except the degenerate ones	 has
a unimodal and in�nitely often di�erentiable probability density function �p�d�f�	 these p�d�f�s
can be given in explicit form only in exceptional cases �see 
�� p� ���	� Such an example is the
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p�d�f� of the Cauchy distribution

fC�x	 �
�

�

d

d� � x�
��	

whose absolute moments exist only for � � k � �� Probability distributions with in�nite absolute
moments appear in physics in various settings 
�� �� Thus the Cauchy distribution may arise as
a limit law describing the cumulative e�ect of independent random perturbations and therefore
there is no reason to preclude this distribution from the set of candidate distributions playing
the role of mutation distributions in evolutionary algorithms as models of natural systems�
But some care is necessary when comparing the performance of optimization algorithms with
Cauchy and Gaussian mutations� Whereas the univariate Cauchy distribution has a unique
de�nition� there exist at least two multivariate versions of the Cauchy distribution� the spher�
ically symmetric Cauchy distribution and the Cauchy distribution with independent univariate
Cauchy random variables in each dimension� The �rst version was employed as a search distri�
bution in �simulated annealing� �SA	 algorithms 
��� ��� Ingber 
�� also considered the second
version for SA but abandoned the idea for theoretical reasons� Recently� apparently inspired by
these publications� some experimental results 
��� ��� �� concerning Cauchy�type mutations in
evolutionary algorithms became available� These experiments employed the second version of
the multivariate Cauchy distribution whereas the theoretical analysis presented by Kappler 
��
rests on the �rst version�
The work in hand may be seen as a continuation of Kappler�s e�ort� She calculated the expected
convergence rate of a �� � �	�EA for a two�dimensional problem in the case of Gaussian and
spherical Cauchy mutations� The task to solve this optimization problem� called the �bounded
inclined corridor problem�� resembles the situation of �nding the entrance to a small corridor in
the search space leading to better solutions�
Here� we investigate the ability of simple EAs to locate a local minimum under the assumption
that the EA has already entered the local optimum�s basin of attraction� This situation may be
studied by the problem to minimize the objective function f�x	 � x�x with x � IR�� In Section
� the mutation distributions under consideration are spherically symmetric� This includes the
Gaussian� spherical Student� and Cauchy distribution� Cauchy mutations with independent
components are analyzed in Section �� These results lead to implications for the self�adaptive
mutation mechanism that is discussed in Section �� Finally� the conclusions are drawn in Section
��

� Convergence Rates Under Spherically Symmetric Mutations

The convergence rates of simple evolutionary algorithms with di�erent mutation distributions
may be compared for the following problem� minimize f�x	 � x�x with x � IR� and � � �� The
objective function f � IR� � IR is a special instance from the class of quadratic functions with
positive de�nite Hessian matrix�
The evolutionary algorithm under consideration is the �� � �	�EA� An individual � � IR� is
mutated by adding a random vector � Z where parameter � � � controls the scale of the
distribution� If the o�spring �� � Z has a better objective function value than its parent �� i�e��
if f�� � � Z	 � f��	� then the mutation is accepted and the o�spring will serve as new parent
in the next iteration� Otherwise� the mutation is rejected and the old parent will pass into the
next iteration�
Usually� the random vector Z must ful�ll some basic requirements� It is reasonable to postulate
that�at least initially�no preference of a certain direction should be given� This request leads
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to the property that the random vector Z is spherically symmetric with respect to the origin
� � IR��

��� Spherically Symmetric Distributions

There are several avenues to generalize a symmetrical univariate distribution to a multivariate
version 
��� Here� the de�nition below will be used�

Definition �

A random vector X of dimension � � � with location parameter � � IR� is said to possess a
spherically symmetric distribution if �X � �	

d
� T ��X � �	 for every orthogonal matrix T with

T �T � I � where I denotes the unit matrix� The operator
d
� indicates that the distributions of

the random elements to its left� and right�hand side are identical� �

Spherically symmetric distributions possess many nice properties but only a few will be exploited
here� The results summarized below are extracted from 
��� Sect� ����

Theorem �

A random vector X of dimension � � � with location parameter � � IR� is spherically symmetric
if and only if it has the stochastic representation

X
d
� � � r U

where r is a nonnegative random variable and U is a random vector uniformly distributed on the
surface of a unit hyperball of dimension �� Moreover� r and U are independent� If additionally

PfX � � g � � then r d
� kX � �k and U d

� �X � �		kX � �k where k � k denotes the Euclidean
norm� �

Let Z
d
� r U be a spherically symmetric random vector of dimension � � � with location param�

eter � � �� If the random variable r is 
� distributed with � degrees of freedom then random
vector Z is normally distributed with zero mean and covariance matrix described by the unit
matrix� If r	� has F�distribution with � and s � IN degrees of freedom� then Z has a multi�
variate spherical ts�distribution with s degrees of freedom� In case of s � � the multivariate
ts�distribution is called the multivariate spherical Cauchy distribution� The next results are
adapted from 
���

Theorem �

A spherically symmetric random vector X with location parameter � � IR� and scale parameter
� � � has a p�d�f� fX��	 if and only if there exists a nonnegative scalar function g��	 with

c �

Z
�

�
y��� g�y�	 dy ��

such that

fX�x	 �
���	�	

� ���� c
����� g

�
kx� �k�

��

�
��	

where ���	 denotes the complete Gamma function� �

The function g��	 is termed the density generator� Its structural form determines to which class
the distribution of X belongs� Two classes are presented below�
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� Multivariate Kotz�type distributions�
The density generator is g�t	 � tn�� exp��r ts	 with r� s � �� �n � � � �� and constant
c � ��q		�� s rq	 where q � ��n � � � �		��s	� This class includes the multinormal
distribution with n � s � � r � ��

� Multivariate Pearson�type VII distributions�
The density generator is g�t	 � ���t	s	�n with n � �	�� s � �� and constant c � B��	�� n�
�	�	 � s���	� where B��� �	 denotes the complete Beta function� This class includes the
multivariate spherical versions of Student�s t�distribution with s degrees of freedom with
n � ��� s		� as well as the multivariate spherical Cauchy distribution with n � ��� �		�
and s � ��

In the next subsection the distribution of the random scalar product X �X needs to be known�
Notice that the distribution of X �X with X � � � � Z will represent the distribution of the
random o�spring�s objective function value� IfX is normally distributed with location parameter
� 	� � � IR� and scale parameter � � �� then it is known �see e�g� 
��� p� ���	 that X �X is
noncentrally 
�� distributed with � degrees of freedom and noncentrality parameter � � k�k� The
distributions resulting from the scalar product of other spherically symmetric random vectors do
not seem to bear their own names� Nevertheless� their p�d�f�s are not di cult to obtain� Here�
the result given in 
�� is presented in slightly modi�ed form�

Theorem �
Let X be a spherically symmetric random vector of dimension � � � with some p�d�f� as given
in ��	� If � 	� � � IR� then the p�d�f� of V � X �X	��� is

fV �v	 �
�� v�����

� cB���� �		�� �	�	
�Z

��

g��� 
 v � � tpv � � 	 ��� t�	������� dt ��	

with noncentrality parameter � � k�k	� and where B��� �	 denotes the complete Beta function�
�

The random variable V � X �X	��� represents the relative variation of the o�spring�s objective
function value� If � � V � � then the o�spring is better than its parent whereas it is worse
than its parent if V � �� An important property of the relative variation�s distribution is
revealed by ��	� If the scale parameter � is proportional to k�k then the distribution of V is only
parametrized by the noncentrality parameter � and the dimension �� Thus� whatever the actual
location �� the relative variation�s distribution is always the same� Notice that this is true for
every spherically symmetric mutation distribution�
In the remainder� however� the investigation will be restricted to the multivariate spherical
normal and Student�s ts distributions� including the Cauchy distribution� The ts distribution
is of particular interest because it may be seen as an intermediate form between the Gaussian
and Cauchy distribution� If s � � then the ts distribution converges weakly to the Gaussian
distribution whereas it becomes the Cauchy distribution at the other extreme with s � ��
The probability density functions of the associated relative variation can be derived via Theorem
�� Let X � � � � Z be normally distributed� Then the p�d�f� of V is

fV �v	 �
��

�
v������� exp

�
��

� �v � �	

�

�
I�������

�pv	 � �������v	 ��	
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where Im��	 denotes the modi�ed Bessel function of the �rst kind and order m� If X � � � � Z

is ts distributed one obtains

fV �v	 �
ss��

B��	�� s	�	

�� v�����


 s� �� �v � �	 ���s���
�F�

�
�� s

�
�
�� s

�
�
�

�
!
�

�
� z�
�
� �������v	 ��	

with z � �� ��
p
v		�s� �� �v � �		 and where �F���	 denotes the Gauss hypergeometric series�

These p�d�f�s are expressible by elementary functions if the dimension � is odd with � � ��
The Bessel function may be reformulated by using entry ������� in 
��� whereas the Gauss
hypergeometric series can be brought down to a �nite sum of rational polynomials and their
logarithms via entries ������� ���� and repeated application of entries ������� and ������ 
���
For example� if � � � then ��	 becomes

fV �v	 � � exp���� �v � �		�	 sinh���pv		
p
� � � �������v	 ��	

and ��	 reduces to

fV �v	 �
�

�

� ��
p
v

� � �� �v � �	� � � �� �v � �	 � �������v	 ��	

in case of s � ��

��� Exact Convergence Rates of the ������EA in Dimension �

Since the �� � �	�EA only accepts improvements the new objective function value is given by
the random variable minfk� � �Zk�� k�k�g� Therefore the expected convergence rate c � ��� �	
is determined by the relation E
 minfk�� � Zk�� k�k�g j �  � c � k�k� which may be equivalently
expressed as

E

�
min

�
k� � � Zk�
k�k� � �

� 				 �


� E
 minfV� �g j �  � c  ��	

Notice that the convergence velocity increases with smaller c � ��� �	� To see this let �t �
E
 k�t � ��k�  be the expected error at iteration t � � �here� �� � � � IR�	� If there exists a
constant c � ��� �	 then �t�� � c �t or �t � �� c

t for t � �� Elementary transformations of the
latter equation leads to

t �
log����t	��	

log���c	
� � "

log���c	
��	

where " � � denotes the orders of magnitude the error is to be decreased� If " is �xed then the
time t that is required to decrease the error by " orders of magnitude decreases as c decreases
towards zero� To determine the constant c for the ��� �	�EA one must evaluate ��	� Since V is
nonnegative the relation minfV� �g� V � �������V 	 � �	 �����V 	 is valid� Thus�

E
 minfV� �g  �
Z �

�
v fV �v	 dv�

Z
�

�
fV �v	 dv � ��

Z �

�
��� v	 fV �v	 dv  ���	

At �rst� let � � �� Insertion of ��	 into ���	 yields the convergence rate

c��	 � ��
r
�

�

�� � �� exp��� ��	
��

�
�#�� �	� �

� ��

�



in case of Gaussian mutations� Similarly� insertion of ��	 into ���	 leads to

c��	 � �� �

� �

�
�

�
arctan�� �	 �

� �� � �
� ��

log�� ��� �	� �



in case of Cauchy mutations� Figure � shows the convergence rates as a function of � while Table
� summarizes the optimal convergence rate c� � c���	 with optimal �� for several mutation
distributions� Since the constant c� for the Gaussian mutations is smaller than that for Cauchy
mutations� it has been shown that Gaussian mutations lead to faster convergence than Cauchy
mutations� But notice that the order of convergence is the same for both distributions�

Distribution s c� ��

Cauchy � �������� �������
Student � �������� �������
Student � �������� �������
Student � �������� �������
Student � �������� �������
Student �� �������� �������
Student �� �������� �������
Student �� �������� �������
Gauss � �������� �������

Table �� Optimal convergence rates c� � ��� �	 and noncentrality parameters �� � � of the
����	�EA for Cauchy� Student� and Gaussian distribution for � � �� The maximum convergence
velocity increases �since c� decreases	 from Cauchy via Student to Gaussian mutations�

After the analysis of the low�dimensional case one may inquire in the scaling behavior of the
convergence rates if the dimension � becomes large� Since solving the integral in ���	 seems
intractable for arbitrary �� the subsequent analysis will be con�ned to asymptotic convergence
rates ��
 �	�

��� Asymptotic Convergence Rates of the ������EA

The basic idea of the approach presented here is as follows� Since the relative variation V depends
on �� which is hereinafter emphasized by writing V�� it is necessary to determine the constants
a� � � and b� � IR under which the normalized random variable �V� � b�		a� converges in
distribution to a nondegenerate limit random variable L whose distribution is independent from
the dimension �� If such a limit L exists then V� may be approximated by V� � a� L�b� provided
that � is su ciently large� Suppose that b� � �� In this case one obtains the approximation

minfV�� �g � ��maxf�� V�� �g � ��maxf�a� L� �g � �� a� maxf�L� �g 

Consequently� the convergence rate is given by

c � E
 minfV�� �g  � �� a� E
 maxf�L� �g   ���	

In the following it is shown that this plan can be realized� At �rst� observe that the random
objective function value k� � � Zk� has the stochastic decomposition

k� � �Zk� � �� � �Z	��� � � Z	 � ��� � � � ��Z � ��Z�Z � k�k� � � � ��Z � �� kZk� 
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Figure �	 Convergence rate c
�� of the 
� � ���EA as a function of noncentrality parameter � in the case
of Gaussian and Cauchy mutations with scale parameter �  k�k�� in dimension �  �� The optima ��

are less sensitive to a shift to the right than to the left�

To proceed one needs the distribution of the stochastic scalar product ��Z� If Z is a standard
Gaussian vector then the distribution is easily obtained� Since the sum of � independent Gaussian
random variables with zero mean and variances ��i is a Gaussian random variable with zero mean
and variance

P�
i
� �

�
i � k�k� it follows that

��Z �
�X

i
�

�i Zi
d
� k�kZ� �

that is� the random scalar product ��Z has the same distribution as its marginal Z� multiplied
by k�k� This remarkable property is characteristic not only for Gaussian random vectors but
for all spherically symmetric random vectors�

Lemma � �
��� p� ��	

The random vector Z � �Z��    � Z�	� with location parameter � � IR� is spherically symmetric
if and only if ��Z

d
� k�kZ� for every � � IR�� �

Recall from Theorem � that the scaling parameter of the mutation vector was set to � � k�k	��
Owing to Lemma � one may write

k� � �Zk� � k�k� d
� � � k�kZ� � �� kZk� � � ��� k�k� Z� � ��� k�k� kZk� 

�



Division by k�k� 	� � leads to
k� � � Zk�
k�k� � � d

� � ���Z� � ��� kZk� � � �
�
Z� �

��

��
kZk�

with � � �	�� � � �� Multiplication by � yields

� �V� � �	 d
� � �Z� � ��

�

�

�X
i
�

Z�
i  ���	

This equation is valid for every spherically symmetric random vector Z� Now suppose that Z is
standard multinormally distributed� With the result below� the limit of the random variable in
���	 is easy to identify�

Lemma �
Let Z�� Z��    be a sequence of independent and identically distributed �i�i�d�	 standard normal
random variables� As ��� then

�

�

�X
i
�

Z�
i �� � with probability ��

Proof� Since Z�� Z��    are i�i�d� random variables so are Z�
� � Z

�
� �    with E
Z

�
�  � �� Now the

desired result follows immediately from the strong law of large numbers� Also see exercise �����
in 
�� p� ���� �

According to Lemma � the random variables in ���	 converge in distribution to the limit
L � � � Z� � ��� Thus� the limit L is normally distributed with mean �� and variance � ���
The normalizing constants are a� � �	� and� as required� b� � �� It remains to calculate
E
 maxf�L� �g � Since maxfx� �g � x � �������x	 one obtains

E
 maxf�L� �g  �
Z
�

�
x
�

� �
�

�
x� �

�� �
�
dx � � � � ���	�	� �� �#���	�	 � g��	

where ���	 and #��	 denote the probability density and cumulative distribution function of the
standard normal distribution� respectively� Owing to ���	 the convergence rate is approximately
c��	 � ��g��		�� The optimal convergence rate can be obtained by maximizing g��	� Numerical
optimization yields �� � ���� with g���	 � ������� which is the same result established more
than �� years earlier by Rechenberg 
� but with much more e�ort�
Now insist that Z has a multivariate spherical Cauchy distribution� A random vector with this
distribution may be generated as follows� Let N be a standard normal vector and S� be a 
�
distributed random variable with one degree of freedom� where N and S� are independent� Then
Z � N	S� is multivariate spherically Cauchy distributed 
��� p� ��� Owing to Lemma � one
obtains

��Z
d
� ��N	S�

d
� k�kN�	S�

d
� k�kC ���	

where C is a standard Cauchy random variable with p�d�f� as given in ��	 with d � �� Notice
that the distribution is independent from the dimension �� Therefore it is su cient to enter the
previous analysis at ���	 yielding

� �V� � �	 d
� � � C � ��

�

�

�X
i
�

Z�
i ���	

under usage of ���	� To proceed� one needs a result that parallels Lemma ��
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Lemma �
Let Z � �Z��    � Z�	

� be a standard multivariate spherical Cauchy vector� As ��� then

�

�

�X
i
�

Z�
i �� G in distribution

where G has p�d�f� fG�x	 � x���� exp���	�� x			p� � � �������x	�

Proof� Since Z
d
� N	S� it follows that

�

�

�X
i
�

Z�
i

d
�

���
P�

i
�N
�
i

S�
�

 ���	

Notice that the random variables N�
� � N

�
� �    are independent squared standard normally dis�

tributed random variables� Therefore Lemma � ensures that the numerator of the r�h�s� in
���	 converges almost surely to unity� The distribution of S�

� is not a�ected by parameter
�� Owing to Slutsky�s Theorem �see e�g� 
��� p� ���	 one may conclude that the normal�
ized sum on the l�h�s� of ���	 converges in distribution to the random variable G � �	S�

��
Since S�

� possesses 

�
� distribution with one degree of freedom and probability density function

fS�

�

�x	 � �� � x	���� exp��x	�	 � �������x	 the density transformation fG�x	 � x�� fS�

�

��	x	
leads to the distribution of the limit G� �

Now let � � � in ���	� Thanks to Lemma � one may conclude that � �V� � �	 converges in
distribution to the limit random variable L � � � C � ��G whose distribution only depends
on �� Again� the normalizing constants are a� � �	� and� as required� b� � �� It remains to
determine g��	 � E
 maxf�L� �g � The explicit distribution of the limit L is unknown yet�only
its existence has been shown� A not necessarily successful route to obtain the limit distribution
is as follows� Consider the random variable W� � � �V���	� Its density is easily obtained via the
transformation fW�

�x	 � fV����x	�		�� If fW�
�x	 converges to fW��x	 for every continuity point

as � � �� then fW���	 is the density of the limit L� This would follow from Sche�$e�s �useful
convergence theorem� 
��� But notice that in general the densities need not converge even
though the distribution functions converge weakly to a limit distribution function possessing a
continuous density �see the instructive example in 
��� p� ���	� To see whether or not such a
scenario is appropriate here set s � � and � � �	� with � � � in ��	 before applying the density
transformation fW�

�x	 � fV��� � x	�		� for x � �����	� As can be seen from Figure � the
density of W� quickly stabilizes for increasing �� Thus� there is some evidence that the densities
of W� will converge to the density of the limit L�
The limit operation on these densities� however� is di cult� This is primarily caused by the
complicated limit behavior of the Gauss hypergeometric series when the �rst three parameters
tend to in�nity� As a consequence� the density of the limit L has not been found yet so that
another method is required to derive the optimal convergence rate� A remedy to obtain the
optimal values �� and g���	 might be as follows� Since it is known empirically from Figure �
that the density of W� quickly stabilizes for increasing � simply choose a large value for �� set
s � �� and use � � �	� in the p�d�f� of V� given in ��	� Insert this density into ���	� Since
the limits in the resulting integral are � and � there is no problem in evaluating the integral
numerically for given � and �� Let c��� �	 be the result of the numerical integration� According
to ���	 and taking into account that a� � �	� one �nds that g��	 � � ��� c��� �		 for su ciently
large �� Thus� the value of g��	 should become stable for increasing �� Then the optimal value of
� can be approximated via univariate numerical optimization over � with large �xed �� Table �
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Figure �	 Top	 The p�d�f� of the normalized relative variation W� for dimension �  ��� and scale
parameters c  ����� 
left� and c  � 
right�� Bottom	 The absolute di�erences between the p�d�f�s of
W��� and W� for �  ��� ��� ��� Evidently� the p�d�f� of W� converges weakly to a limit p�d�f� as ����

summarizes the results of this approach for the spherical Cauchy as well as the Gaussian mutation
distribution� Evidently� the value of � ���c���� �		 already stabilizes for both distributions when
� � ���� But even � � �� yields reasonable results� In case of the Gaussian distribution there
is a tiny discrepancy between the approximation in Table � and the theoretical values obtained
previously�
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Cauchy mutations Gaussian mutations
� � ��� c���� �		 �� � ��� c���� �		 ��
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Table �� Approximated optimal values for �� and g���	 � � �� � c���� �		 in case of spherical
Cauchy and Gaussian mutation vectors for increasing dimension �� As conjectured� the optimal
step size scaling parameters �� quickly stabilize as the dimension gets large�

��	 Convergence Rates for the ��� �	�EA

For the determination of the convergence rates of the ��� �	�EA the theory of order statistics

�� has been proven successful� Let Y�� Y��    � Y� be random variables� If they are rearranged
in ascending order of magnitude� written as

Y��� � Y��� �    Y��� �

then Yi�� is called the ith order statistic �i � ��    � �	� In this terminology the ��� �	�EA accepts
that o�spring having objective function value Y���� where Y�� Y��    � Y� denote the unordered
random objective function values of the � o�spring� Notice that the o�spring are generated
independently and with the same distribution� Therefore the probability density functions of
the ith order statistic has a simple form�

Lemma � �
��� p� �	
Suppose that Y�� Y��    � Y� are i�i�d� random variables with p�d�f� fY ��	 and distribution function
FY ��	� Then the p�d�f� of the ith order statistic is

fYi���x	 �
�

B�i� �� i� �	
fY �x	F

i��
Y 
 �� FY �x	 

��i ���	

where B��� �	 denotes the complete Beta function� �

Recall from Theorem � that the random variable Y � k� � �Zk� with � � � and k�k 	� � can
be represented by Y � k�k� V � where random variable V only depends on the dimension � and
noncentrality parameter � � k�k	�� Suppose that E
V���  exists� Since

E
 Y���  � E
 k�k�V���  � k�k� E
V��� 
the convergence rate of the ��� �	�EA is simply E
V��� � If the mutation vector Z has standard
Gaussian distribution then E
V���   ����� for �xed � and increasing �� whereas E
V���  
� � � log��		� for �xed � and increasing � �see 
��� pp� �������	� If Z is a spherical Cauchy
vector then E
Z  does not exist� As a consequence� E
 k� � � Zk�  and hence E
V  does not
exist as well� But this does not preclude that E
V���  may exist for su ciently large ��

��



Theorem �

Let Y � k� � � Zk� with � 	� � � IR�� � � �� and where Z is a spherical Student random vector
with s � IN degrees of freedom and dimension �� The kth moment of the ith order statistic Yi��
with � � i � � from a sample of � i�i�d� random variables of type Y do exist if the relation
� k � s �� � i � �	 is valid� In particular� if s � � then the expectation exists for � � � and
� � i � � � �� If s � � then the expectation exists for � � � and � � i � �� �� If s � � then
E
X  and hence the expectation of all order statistics do exist�
Proof�

It su ces to prove the theorem for random variable V � Y	k�k�� Since V is nonnegative Lemma
� reveals that the kth moment E
V k

i��  does exist if and only ifZ
�

�
xk fV �x	F

i��
V �x	 
 �� FV �x	 

��i dx ��  ���	

Notice that fV ��	 is continuous on ����	 with f�x	 � � as x � �� Therefore FV ��	 and hence
the entire integrand in ���	 do not have singularities� Thus� the integral diverges if the integrand
decays proportional to x� with � � �� as x � �� Let g��	 denote the integrand� It follows
from the theory of regularly varying functions 
��� p� ��� thatZ

�

�
g�x	 dx �� � �x � � � lim

h��

g�h x	

g�h	
� x�

with � � ��� Thus one has to consider the limit of the quotient
g�h x	

g�h	
� xk

fV �h x	

fV �h	

�
FV �h x	

FV �h	

�i�� � �� FV �h x	

�� FV �h	

���i


Since FV �h x	 � � and FV �h	 � � as h � � it follows that FV �h x		FV �h	 � � as h � ��
Taking into account the rule of l�Hospital one obtains

lim
h��

�� FV �h x	

�� FV �h	
� lim

h��

x fV �h x	

fV �h	

revealing that it su ces to investigate the limit behavior of fV �h x		fV �h	� Owing to ��	 the
limit is

lim
h��

fV �h x	

fV �h	
� x��s����� lim

h��

�F��a� b! c! d�h x		

�F��a� b! c!d�h		
���	

with a � ��� s		�� b � a� �	�� c � �	�� and

d�y	 �
� �� y

�s� �� � �� y	�
� �

as y � �� Since entry ������ in 
�� yields �F��a� b! c! d�y		 � � as d�y	 � � the rightmost
limit in ���	 converges to unity as h� �� Putting everything together one �nds that

lim
h��

g�h x	

g�h	
� xk�s ���i������� 

Since the exponent must be smaller than ��� one �nally arrives at the desired condition � k �
s ��� i� �	� �

Thus� the expected convergence rate E
V���  does also exist for spherical Cauchy mutations if
� � �� This observation shows that it makes sense to derive an asymptotical expression for
E
V���  in case of �xed � and �
 �� For this purpose� regularly varying functions also play an
important role 
���

��



Lemma �
Let V be a nonnegative continuous random variable with distribution function FV ��	� If for
every x � �

lim
h��

FV �x h	

FV �h	
� x� �� � �	 ���	

then PfV���	a� � x g converges weakly to 
 �� exp��x�	  � �������x	 and conversely� A suitable

choice the normalizing constants is a� � F��V ����	� �

The limit distribution in the lemma above is termed the Weibull distribution� Let W have
Weibull distribution and assume that the condition ���	 is ful�lled for random variable V � In
this case one may conclude that V��� � a�W and hence E
V���  � a� E
W  for su ciently large
�� According to ��	 and l�Hospital�s rule one obtains

lim
h��

FV �x h	

FV �h	
� x lim

h��

fV �x h	

fV �h	
� x��� lim

h��

�F��a� b! c! d�h x		

�F��a� b! c! d�h		
���	

with a � ��� s		�� b � a� �	�� c � �	�� and

d�y	 �
� �� y

�s� �� � �� y	�
� �

as y � �� Again� entry ������ in 
�� yields �F��a� b! c! d�y		 � � as d�y	 � � so that the
rightmost limit in ���	 converges to unity� As a consequence� condition ���	 is ful�lled with
� � �	� � �� Lemma � also implies that FV �x	  x��� as x � � which in turn implies that
a� � F��V ����	  ����� � ������ Since E
W  � ��� � �	�	 one �nally arrives at

E
V���  � a� E
W   ����� ��� � �	�	

for large � and �xed �� Thus� the order of the convergence rate of the ��� �	�EA with spherical
Cauchy mutations is identical to the order in the case of Gaussian mutations� To decide which
type of mutations actually lead to faster convergence it is necessary to determine the constants
hidden by the asymptotical expression O������	� A �rst assessment of the di�erences can be
gained from setting � � � and calculating E
V���  for varying � � �� Table � summarizes the
results revealing that Gaussian mutations consistently lead to faster convergence than spherical
Cauchy mutations regardless of the number of o�spring � � ��
One might conjecture that this relation also holds in dimension � � �� Actually� numerical
integration and optimization reveals that this relation also holds for � � �� but the computational
e�ort to obtain the optimal values is not negligible� Moreover� the knowledge of the optimal
values is of no practical interest�it should su ce to know that Gaussian mutations o�er faster
convergence than Cauchy mutations�

� Convergence Rate Under Nonspherical Cauchy Mutations

Another multivariate version of the Cauchy distribution can be obtained by drawing a univariate
standard Cauchy random number independently for each entry of the random vector� The
resulting multivariate distribution is� however� not spherically symmetric� Therefore it cannot
be expected that there is a uniform convergence rate being valid for all locations � � IR�� In

��
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Table �� Optimal convergence rates c� � ��� �	 and scaling parameters �� � �	�� of the ��� �	�
EA in dimension � � �� Since the convergence rate c� for Gaussian mutations is consistently
smaller than the rate for Cauchy mutation� the convergence velocity is fastest with Gaussian
mutations regardless of the number of o�spring � � ��

fact� it will turn out that the convergence rate depends not only on the dimension but also on
the ratio k�k�	k�k� � 
 ��

p
�  with � � IR�� Here� k � k� denotes the norm

k�k� �
�X

i
�

j �i j

whereas k � k� is the usual Euclidean norm� Notice that the interval bounds for the ratio
given above are sharp� If � is located on some coordinate axis then k�k� � k�k�� whereas
k�k� �

p
� k�k� if all the entries of vector � are identical� The result below reveals at which

point the norm k � k� enters the scene�
Lemma � �
��� p� ���	
Let Z � �Z��    � Z�	� be a random vector where Z��    � Z� are i�i�d� standard Cauchy random
variables with p�d�f� as given in ��	 with d � �� For every � � IR it holds true that

��Z
d
� k�k�Z�  �

Thus the decomposition of k� � � Zk�� will be di�erent from that of the preceding section�
According to Lemma � one obtains

k� � � Zk�� � k�k�� d
� � � k�k�Z� � �� kZk�� � k�k�� �� c Z�� c� kZk��	

��



where � � c k�k�� c � �� Division by k�k�� 	� � yields

k�k��
k�k��

�V� � �	 d
� � c Z� � c�

�X
i
�

Z�
i  ���	

To proceed one needs to know under which normalization the sum of squares on the r�h�s� of
���	 converges to a limit random variable whose distribution is independent from the dimension
�� The result below o�ers the desired information�

Lemma � �
��	
Let Z�� Z��    be i�i�d� standard Cauchy random variables with p�d�f� as given in ��	 with d � ��
As ��� then

�

��

�X
i
�

Z�
i �� G in distribution

where G has the same distribution as in Lemma �� �

Thus� one has to choose c � �	��� Insertion into ���	 and subsequent multiplication by �� yields

��
k�k��
k�k��

�V� � �	 d
� � � Z� � ��

�

��

�X
i
�

Z�
i  ���	

Finally� Lemma � ensures that the l�h�s� of ���	 converges in distribution to the limit random
variable L � � � Z���

�G as �� �� Since Z� is a standard Cauchy random variable the limit L
only depends on �� Moreover� the limit distribution is identical to the limit distribution in case
of spherical Cauchy mutation� But notice that the normalizing constants a� di�er� At this point
a cautionary remark is necessary� It is not guaranteed that the accuracy of the approximations
for given � is equally good for both types of Cauchy mutations�
But if the approximations are equally good �which is assumed for the moment	 then the optimal
choice for g��	 � E
 minfL� �g  may be taken from Table �� Thus� �� � ���� with g���	 �
����� as in case of spherical Cauchy mutations� Since k�k��	k�k�� � 
 �� �  and hence

g���	

��
� g���	

��
� k�k

�
�

k�k��
� g���	

�

it would follow that spherical Cauchy mutations generally lead to faster convergence than mu�
tation vectors with independent Cauchy random variables�
Now assume that the approximations are not equally good for given �� Then there exists a
function %g��	� attaining its minimum at %��� that replaces g��	 in case of i�i�d� Cauchy mutations�
It may be expected that %�� and hence %g�%��	 quickly stabilizes for increasing �� Thus� g���	 as well
as %g�%��	 may be regarded as constants provided that � is su ciently large� If %g�%��	 � g���	 then
spherical Cauchy mutations lead to faster convergence than nonspherical Cauchy mutations�
Even if %g�%��	 � g���	 then there exists an �� such that in case of a �xed ratio k�k��	k�k�� the
relation

%g�%��	

��
� %g�%�

�	

��
� k�k

�
�

k�k��
� g���	

�

is valid for all � � ��� This observation reveals that spherical Cauchy mutations o�er faster
convergence than nonspherical Cauchy mutations as ����
As an illustration of the di�erences consider the following numerical experiment� The ����	�EA
was run ��� times with starting point �� � ������    � ����	

�� Owing to ��	 it was measured how

��



many iterations were necessary to reduce the error by " � �� orders of magnitude� The scaling
parameter � for the mutation distribution was set to the optimal value

�� �

����������
����������

����

�
k�k� for Gaussian mutations

����

�
k�k� for spherical Cauchy mutations

����

��
k�k� for nonspherical Cauchy mutations

according to the preceding theoretical analysis �it was assumed that the approximations for
spherical and nonspherical Cauchy mutations are equally good for given �	� Figure � reveals
that the running time increases linearly in � for spherical Cauchy and Gaussian mutations� but
quadratically in � for nonspherical Cauchy mutations�

Figure �	 Observed mean running time of the 
� � ���EA to reduce the error by �� orders of magnitude
under Gaussian� spherical and nonspherical Cauchy mutations with optimal scaling parameter ��� The
running time increases linearly in � for spherical Cauchy and Gaussian mutations� but quadratically in �
for nonspherical Cauchy mutations�

��



� Implications for Self�Adaptive Mutation Mechanisms

In the analysis presented so far it was tacitly presupposed that the EA has knowledge about its
Euclidean distance to the optimum in order to optimally adjust the mutation distributions�an
assumption that is usually not justi�ed in practice� In contemporary evolutionary algorithms
with multiple o�spring the task of adjusting the mutation distribution is accomplished by a
mechanism termed �self�adaptation�� The probably most popular version was introduced by
Schwefel 
� and works as follows�
Consider a ��� �	�EA with � � � and a mutation distribution that is adjustable by a single
parameter� The parent at iteration t � � consists of the pair ��t� �t	 where �t � IR� is the
current position in the search space and �t the scale parameter of the mutation distribution� An

o�spring ��
�i�
t � �

�i�
t 	 with i � ��    � � is produced according to

�
�i�
t � �t � exp�N	
�
�i�
t � �t � �

�i�
t �Z

where Z is a random vector with some �xed mutation distribution and N is a Gaussian random
variable with zero mean and variance ��� Since the random variable exp�N	 is lognormally
distributed the probability of increasing the scale parameter �t at least by factor a � � is equal
to the probability of decreasing �t at least by factor �	a� More speci�cally� if b � a � � then

Pf a �t � �t exp�N	 � b �t g � #
�
log b

�

�
� #

�
log a

�

�
� Pf �t	b � �t exp�N	 � �t	a g

where #��	 is the cumulative distribution function of a standard Gaussian random variable� The
reason for permitting a potential enlargement of the scale parameter rests on the fact that the
initial setting of �� may be too small� In this case the scale parameter must be increased until
reaching a nearly optimal value� As soon as this has happened the scale parameter should
decrease�
Needless to say� the crucial point in achieving this behavior is an appropriate setting of � � It is
clear that a theoretical argumentation must be based on the dynamics of the process� Beyer 
��
has given a detailed treatise of this topic in the case of Gaussian random vectors Z� A similar
consideration for Cauchy random vectors� however� is beyond the scope of this paper� Instead�
a heuristic argumentation from a more static point of view is o�ered here�
Assume that the scale parameter �t at iteration t � � is optimally adjusted� If Z is a Gaussian
or spherically symmetric Cauchy random vector then ��t � �� k�tk�	�� To achieve an optimally
adjusted scale parameter in the next iteration� the current scale parameter should be decreased
by the factor

��t��

��t
�
k�t��k�
k�tk� 

Since E
 k�t��k�� j �t  � c k�tk��� where c � ��� �	 is the convergence rate� Jensen�s inequality yields
E
 k�t��k� j �t  � c��� k�tk� and hence ��t��	�

�

t � c���� It appears plausible that the realizations
of the lognormal random variable exp�N	 should be placed more frequently in the vicinity of
c��� than in the vicinity of any other point� This property can be achieved by adjusting the
distribution of exp�N	 such that its mode equals c���� i�e�� exp����	 � c���� Recall from Section
��� that c  ����� for Gaussian as well as spherical Cauchy mutations� This leads to

exp����	 � c���  ����� � exp�� log��		�	 � � 
�
log�

�

����

��



for large �� Notice that this relationship was also established in 
�� in the case of Gaussian
random vectors�
Now let Z be a nonspherical Cauchy vector� The optimal scale parameter is ��t � �� k�tk�	��
As a consequence� the reduction factor should be

��t��

��t
�
k�t��k�
k�tk� �

�t��

�t

k�t��k�
k�tk�  ���	

where �t � k�tk�	k�tk� with �t � 
��
p
�� Recall from Section ��� that k�t��k�� � V�����	 k�tk���

Owing to ���	 one obtains
�

��
�V�����	� �	 d� L��� ���	

where L��� is the minimum of � independent random variables possessing the distribution of
the limit random variable L� Notice that E
L���  � � for su ciently large � � �� Let h��	 �
jE
L���  j � �� Under usage of ���	 the reduction factor in ���	 can be approximated by

��t��

��t
� �t��

�t

s
�� ��

t h��	

��
� �t��

�t
exp

�
��

�
t h��	

� ��

�
���	

for large �� Notice that the sequence ��t � t � �	 changes its values only gradually� Therefore it
may be assumed that �t��	�t � �� Again� insist that the mode of exp�N	 should be approxi�
mately equal to the reduction factor� Owing to the rightmost approximation in ���	 one �nally
obtains the relationship

� � �t
p
h��		�

�


Notice that � depends on �t � k�tk�	k�tk� � 
��
p
�� As a consequence� even a more rigorous

theoretical analysis would not lead to an optimal �xed value for � �

� Conclusions

If fast local convergence is desirable� Gaussian mutations are preferable to spherical Cauchy mu�
tations which are in turn preferable to nonspherical Cauchy mutations� If the problem dimension
is �xed then each of the three mutation distributions leads to an exponentially fast approach
to the local optimum� But the di�erences between the convergence velocities associated with
these three distributions get larger as the problem dimension increases� Whereas the number of
iterations required to reduce the objective function value by a certain amount under Gaussian or
spherical Cauchy mutations increase as a linear function of the problem dimension� the number
of iterations increase as a quadratic function of the problem dimension if nonspherical Cauchy
mutations are used� But since fast local convergence enhances the danger that the evolution�
ary algorithm may be quickly trapped by local minima� these results may be interpreted as an
advantage of nonspherical Cauchy mutations in the case of multimodal optimization problems�
From a practical point of view� nonspherical Cauchy mutations require another parametrization
of the self�adaptation mechanism� the parameter �� of the lognormal distribution should be
proportional to ��� in lieu of ���� This observation leads to the recommendation that the
parametrization of the self�adaptation mechanism should be carefully reviewed whenever another
mutation distribution than the Gaussian distribution is employed in an evolutionary algorithm�
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