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Abstract—Although there are many versions of evolutionary algorithms
that are tailored to multi–criteria optimization, theoretical results are ap-
parently not yet available. Here, it is shown that results known from the
theory of evolutionary algorithms in case of single criterion optimization
do not carry over to the multi–criterion case. At first, three different step
size rules are investigated numerically for a selected problem with two con-
flicting objectives. The empirical results obtained by these experiments lead
to the observation that only one of these step size rules may have the prop-
erty to ensure convergence to the Pareto set. A theoretical analysis finally
shows that a special version of an evolutionary algorithm with this step size
rule converges with probability one to the Pareto set for the test problem
under consideration.

Keywords—multi–criteriaoptimization, evolutionary algorithms, stochas-
tic convergence to Pareto set

I. INTRODUCTION

In classical optimization theory it is tacitly assumed that there
exists a single global objective function. But in practical prob-
lems the decision maker is almost always faced with multiple—
usually conflicting—goals. In this situation one often aggregates
the vector–valued objective function f � IRn � IRm (m � �)
into a scalar–valued surrogate objective function f � IRn � IR,
for example, via f�x� � w� f�x� with some weight vector
w � IRm. Although this approach opens the door for single cri-
teria optimization methods on the one hand, it also introduces a
not negligible degree of uncertainty for the decision maker on
the other hand: One cannot be sure whether the chosen weights
do reflect the importance of each original goal appropriately.
In fact, as soon as a specific weight vector has been chosen,
the original decision space is considerably and prematurely cut
down before enough information could be gathered that might
justify such a reduction. As a consequence, a huge number of
potential good decisions are precluded a priori.

Another approach to attack the problem takes into account
that the vectors of objective function values y � f�x� are par-
tially ordered. An objective vector y is said to dominate objec-
tive vector �y if yi � �yi for all i � �� � � � �m and yi � �yi for at
least one index i. A decision vector x with y � f�x� is called
Pareto–optimal if there is no decision vector �x � IRn for which
�y � f��x� dominates y. The set of all Pareto–optimal decision
vectors is termed the Pareto–optimal, efficient, or admissible set
of the problem. The corresponding set of objective vectors is
called the nondominated set.

If it is possible to determine the Pareto–optimal set (or short:
Pareto set), then the decision maker has the opportunity to learn
about the tradeoffs being associated with the problem at hand
so that a ranking of the decision maker’s true preferences can
be made after all possible solutions are known. Although the
Pareto set may be determined analytically in exceptional cases,
one has to seek remedy in numerical approximation methods
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in general. It has been demonstrated several times that some
versions of evolutionary algorithms are able to accomplish this
task to a reasonable degree. As can be learned from the recent
surveys in [1], [2], [3] there are numerous suggestions of multi–
objective EAs. Moreover, there are some vague empirical rules
indicating which version works better than some other under
certain circumstances whereas theoretical results are apparently
rare. For example, it can be shown that an EA generates at least
one stochastic trajectory converging to the Pareto set with prob-
ability one if the search space is finite, the support of the fixed
mutation distribution covers the search space, and offsprings are
accepted if they dominate the parents [4]. Since these assump-
tion are rather strong it may be instructive to investigate what
happens if some of these assumptions are weakened.

Here, the analysis will focus on a simplified version of a
multi–objective EA originally presented in [5]. Assume there
are two objective functions f� and f�, both to be minimized.
Let Xk � IRn be some individual at generation k � �. An
offspring Yk is generated as follows: After having drawn a ran-
dom vector M with zero mean and a random variable J with
Pf J � � g � Pf J � � g � ��� one sets

Yk � Xk 	 s�J�Xk� �M

where the distribution of M is fixed over time and the step size
s � � may depend on J and Xk. If fJ �Yk� � fJ �Xk� then the
offspring Yk is accepted, otherwise rejected. Then the process
repeats.

Evidently, this method may be seen as a multi–objective gen-
eralization of the �� 	 ��–EA as it is known in single criterion
optimization. One might be tempted to speculate that the exist-
ing theory for the single criterion �� 	 ��–EA is easily transfer-
able to the multiple criteria version. But this is a misspeculation.
For example, it is numerically shown in Section II that the step
size control must be changed significantly. Moreover, the old
notion of “convergence to the optimum” needs a reformulation
before a theoretical convergence analysis, given in Section III,
can begin.

II. NUMERICAL PRELIMINARY STUDY

Let f � IR� � IR� be a vector–valued function with

f�x� � � kxk�� kx� zk� �� (1)

and 0 �� z � IR�. Assume that the two objective functions are to
be minimized. The efficient set can be determined analytically
and it is given by

X � � f x � IR� � x � r z� r � 
 �� � � g �
In the sequel three different step size rules and two mutation
distributions are compared numerically. The first mutation dis-
tribution is the two–dimensional Gaussian distributionwith zero
mean and the unit matrix as covariance matrix. The second mu-
tation distribution is the uniform distribution on the unit circle.



To distinguish between the different distributions of the muta-
tion vector we shall write G resp. U in lieu of M. A two–
dimensional random vector G � �G�� G��

� is generated by
drawing two independent standard normal random variables G�

and G�, whereas random vector U � �U�� U��
� is obtained by

drawing random variable � uniformly distributed in 
 �� ��� and
setting U� � cos � and U� � sin�. Since both distributions are
spherically symmetric one may choose z � �z�� ��

� with z� � �
without affecting the generality of the results—but the theoreti-
cal analysis in the next section will be considerably simplified.
For example, the distance d�x�X �� � minfkx�x�k � x� � X �g
of some point x to the Pareto set X � reduces to

d�x�X �� �

��
�

kxk if x� � �
jx�j if � � x� � z�

kx� zk if x� � z� �
(2)

For the sake of brevity, the efficient set will be omitted from
the argument list, i.e., we shall simply write d�x� to denote the
distance to the efficient set.

A. Fixed Step Size

In single criterion optimization it is known that the ��	��–EA
with fixed variance 	� � � and Gaussian mutations converges
with probability one to the global optimum under weak regular-
ity assumptions. This property does not hold for fixed step size
s � � with uniform mutations on the surface of a unit hyperball.
This difference remains valid even for convex objective func-
tions. One might speculate that these result carry over in some
manner to multi–objective EAs. Two simple numerical experi-
ments, however, reveal that this hypothesis must be rejected.

If z � ����� ��� then the efficient set is located on the x�–axis
between � and ���. The initial point is set to X� � ����� �����,
the step size is set to s � �� and the variance 	� is chosen such
that E
 k	Gk � � 	

p
��� equals E
 ksUk � � s. The upper

graphs of Figs. 1 & 2 show a typical run in case of Gaussian
and uniform mutations, respectively. One might be tempted to
deduce from these curves that the ��	��–EA has got stuck pre-
maturely in some small region. But this is not the case. Rather,
the sequence �Xk � k � �� cycles between the two single crite-
rion optima ��� ��� and ����� ��� as it may become visible from
the lower graphs of Figs. 1 & 2. In any case, there is no conver-
gence to the Pareto set regardless which mutation distribution
(Gaussian or uniform) is chosen.

B. Optimal Single Objective Step Sizes

Since both objective functions are strongly convex it might
appear reasonable to exploit the existing theory for the single
criterion �� 	 ��–EA. Following [6, p. 170f.] the optimal step
size for uniform mutations is

s��Xk� J� �
c�

�
krfJ �Xk�k � ������ � krfJ �Xk�k

where c� � ������� with g�c�� � ����� is the minimizing
solution of

g�c� � �� c
p
�� c� 	 c� arcsin�c���

�
	

c�

�
� (3)

Fig. 1. Typical run of the multi–objective �����–EA under Gaussian mutations
with fixed variance. The upper graph shows the distances d�X k� to the
Pareto set during the run, while the lower one shows the distances kX kk and
kXk � zk to the single criterion solutions of f� and f�.

In general, for arbitrary c � ��� �� one obtains

E
 fj�Xk��� jXk � � g�c� fj�Xk� (4)

which implies a geometrically fast approach to the optimum of
the single criterion problem. In case of Gaussian mutations [6,
p. 185f.] the relation

E
 fj�Xk��� jXk � � ������� � fj�Xk�

with 	�k � ������� � krfj�Xk�k is valid.
When using this type of step size or variance control for the

multicriteria �� 	 ��–EA there is again hardly a difference in
the convergence behavior between Gaussian and uniform muta-
tions. Since the steps sizes (or variances) in the vicinity of the
Pareto set are often much larger than s � ��, the sequence of
parents �Xk � k � �� now cycles more frequently between the
minimizing points of the single criterion problems during 1000
iterations than the fixed step size version. Therefore, it is re-
frained from presenting plots of these runs. But it should be



Fig. 2. Typical run of the multi–objective �����–EA under uniform mutations
with fixed step size. The upper graph shows the distances d�X k� to the
Pareto set during the run, while the lower one shows the distances kX kk and
kXk � zk to the single criterion solutions of f� and f� .

noted that the average distance to the Pareto set is much larger
than using fixed step sizes. As a consequence, there is no con-
vergence to the Pareto set when using this type of step size rules.

C. Step Sizes Proportional to Distance to Pareto Set

A closer look at the upper graphs of Figs. 1 & 2 reveals that
the average distance to the Pareto set is approximately of the
order of the fixed step size s � �� as soon as the sequence �Xk�
starts cycling. One might speculate that a decreasing of the step
size would also decrease the average distance to the Pareto set.
Therefore, the third step size rule is chosen as follows: sk �
d�Xk�. As can be seen from Fig. 3, this step size rule offers a
rapid approach to the Pareto set. Another noteworthy property
of this step size rule is illustrated by the following experiment:
The multicriteria �� 	 ��–EA is started from X� � ����� �����

and it is stopped as soon as d�Xk� � 
 � ����. Then the first
component of vector Xk is stored to some file and the ��	��–EA
is restarted again. Fig. 4 summarizes the results obtained after

Fig. 3. The distance to the Pareto set of the multi–objective �� � ��–EA with
step size rule s � d�Xk� under uniform mutations (typical run).

Fig. 4. The frequency distribution of the first component’s value of the process
stopped as soon as d�Xk� � ����.

10,000 experiments. Evidently, the ��	 ��–EA converges more
frequently in the vicinity of the solutions of the single criterion
problems, but it also converges to other points of the Pareto set.
The most frequent realizations are close to z, which is closest to
the starting point.

Summing up: After this numerical preliminary study one may
conclude that only the third step size rule deserves a theoretical
investigation. This is done in the next section.

III. ANALYSIS

In the sequel the convergence analysis will be restricted to
uniform mutations on the circle with step size s � d�xk�. But
at first it must be made rigorous what is meant by the notion of
“convergence to the Pareto set.”

Definition 1: Let �Xk � k � �� be the sequence of points
generated by the multi–objective �� 	 ��–EA. The EA is said



to converge (with probability 1, in probability, in mean, etc.)
to the Pareto set if the random sequence �Dk � k � �� with
Dk � d�Xk� converges (with probability 1, in probability, in
mean, etc.) to zero. �

A convenient avenue to establish such a property is shown by
a customized version of a convergence result proven in [7, pp.
83–84].

Theorem 1: Let �Dk � k � �� be a sequence of nonnega-
tive random variables and let � � IR� � IR� be a continuous
function vanishing only at the origin. If E
D k � �	 and

E
Dk�� j Fk � � Dk � ��Dk�

for all k � � then the sequence �Dk � k � �� converges to zero
with probability one as k �	. �

Thus, it is sufficient to find a function ���� such that

E
 d�Xk��� jXk � x � � d�x� � ��d�x��

for all x � IR�. Notice that the distribution of d�Xk��� depends
on the location of the current parent xk and on the two random
variables J and �. The stochastic effect of J can be “elimi-
nated” by further conditioning:

E
Dk�� jXk � x � �
E
Dk�� jXk � x� J � � �
 Pf J � � g 	
E
Dk�� jXk � x� J � � �
 Pf J � � g �

(5)

But the analysis can be further simplified by exploiting the sym-
metries of our particular test problem. Since for all x � IR� and
z� � � holds

E
Dt�� jXt � �x�� x��� J � � � �

E
Dt�� jXt � �z� � x�� x��� J � � � (6)

the analysis may be restricted to selection with respect to ob-
jective function f�. Moreover, it suffices to consider the case
x� � � since for all x � IR� holds

E
Dt�� jXt � �x�� x�� � � E
Dt�� jXt � �x���x�� � �
As a consequence, one only needs to determine

E
Dk�� jXk � x� J � � � � E�
Dk�� �

for all x with x� � IR and x� � �. The shorthand expression
on the r.h.s. of the equation above will be used for notational
convenience.

The analysis has to be split in several subcases. At first con-
sider those x � IR� with x � L � fy � IR� � y� � �� y� � �g.
Their distances to the Pareto set are given by d�x� � kxk. Since
the step size is set to s � d�x� � krf��x�k�� it follows from
eqns. (4) and (3) that E
 f��Xk��� � � g��� f��x� � g��� d��x�
with g��� � ������. Notice that the relation � � d��Xk��� �
f��Xk��� is valid in general. This leads to

E�
 d
��Xk��� � � E
 f��Xk��� � � g��� d��x� � (7)

Owing to Jensen’s inequality for conditional expectations and
taking the square root in (7) one finally obtains

E�
 d�Xk��� � � E�
 d
��Xk��� �

��� �
p
g��� d�x� �

Now suppose that it can be shown that E�
 d�Xk��� � � d�x�
for all x with x � R � fy � IR� � x� � z�� x� � �g, i.e.,
d�x� � kx�zk. Owing to the symmetry property (6) this would
imply E�
 d�Xk��� � � d�x� for all x � L. Insertion into (5)
would yield

E
Dk�� jXk � x � �
p
g��� d�x�
 �

�
	 d�x� 
 �

�

�

p
g��� 	 �

�
� d�x�

�
�

��
� d�x� (8)

for all x � L. But if inequality (8) holds for all x � L then it
must also hold for all x � R which follows immediately from
the symmetry property (6).

Thus, to verify inequality (8) it is necessary to prove inequal-
ity E�
 d�Xk��� � � d�x� for all x � R. Therefore let x � R so
that the step size is set to s � d�x� � kx� zk. Since

Xk�� �

�
x 	 sU if f��x 	 sU� � f��x�

x otherwise

one obtains

d�Xk��� �

�
d�x 	 sU� if f��x 	 sU� � f��x�
kx� zk otherwise

for the random distance of the new parent provided selection is
with respect to f�. Recall from the previous section that U �
�cos �� sin��� where � is uniformly distributed on 
 �� ��� and
assume that ���, ��� with �� � �� represents the interval with
the property:

� � ���� ��� �� f��x 	 sU� � f��x� �

Then the expectation may be obtained via

E�
 d�x	sU� � �

��Z
��

d�x 	 sU�

��
d�	kx�zk

�
�� �� � ��

��

�
�

Let p and q with p� � q� are the two points of intersection
of the two circles fy � IR� � ky � xk � sg and fy � IR� �
ky � zk � kx � zkg. Then the first angle is �� � arccos�h��
with h� � �p� � x���kx� zk if p� � x� and �� � arcsin�h��
otherwise, whereas the second angle is �� � arccos�h�� with
h� � �q� � x���kx � zk if q� � x� and �� � arcsin�h��
otherwise.

Notice that the evaluation of the integral above must take into
account that x 	 s �cos �� sin��� may move through all sets L,
R, and C � fy � IR� � � � y� � z�� y� � �g for � �
���� ���. This means that the formula for d�x 	 sU� changes
while � moves from �� to ��. As a consequence, the interval
���� ��� must be divided into several subsets by determining
the angles at which there are transitions between the sets L, C,
and R. In general, the transitions between R and C happen
at �� � arcsin�h�� � �� � arccos�h�� with h� � h� �
�z� � x���kx � zk whereas the transitions between L and C
occur at �� � arcsin�h�� � �� � arccos�h�� with h� � h� �
�x��kx � zk. The angles �� and �� do exist if and only if



x�� � �x� z�� z��. If so then geometrical considerations lead to
the relations �� � �� and �� � �� � �� � �� � ��. Thus,
there are four subcases depending on the value of ��. If �� and
�� do not exist then only two cases must be considered.

If x 	 sU � C then d�x 	 sU��d�x� � x��kx� zk 	 sin�
which can be easily integrated. The situation changes if x 	
sU � L or R. In both cases one obtains an expression of the
type

d�x 	 sU�

d�x�
�
p
c �
p
� 	 a cos� 	 b sin� (9)

with v� � a�	b� � �. The integral of this expression cannot be
expressed in terms of elementary functions in general. In fact,
using the identity cos� cos� 	 sin� sin� � �� � sin�����
�����, where � � arccos�a�v� if b � � and � � arcsin�a�v�
otherwise, one gets

Z ��

��

�� 	 a cos� 	 b sin����� d� �

� �� 	 v����
�
E

�
�� �

�
�m

�
�E

�
�� �

�
�m

��

where m � � v��� 	 v� � � and

E���m� �

Z �

�

���msin������ d�

denotes the incomplete elliptic integral of the second kind [8].
If x 	 sU � L then �a� b� c� �

�
�x� kx� zk

kxk� 	 kx� zk� �
�x� kx� zk

kxk� 	 kx� zk� � � 	
kxk�

kx� zk�
�

and if x 	 sU � R then

�a� b� c� �

�
x� � z�
kx� zk �

x�
kx� zk � �

�
�

Notice that the integral over the quotient d�x 	 sU��d�x� is in-
variant with respect to scale, i.e., the replacement of x by � x
and of z by � z with some � � � changes neither the parameters
�a� b� c� in eqn. (9) nor the value of the angles �i. Therefore one
may choose any z� � �, say z� � ���, to calculate the values
for E�
 d�x	 sU� ��d�x� over the “critical” subset ofR numer-
ically. As can be seen from Fig. 5, the values are less than � and
they rapidly approach unity in the vicinity of the point �z �� ���.
With some additional effort it may be shown analytically that the
relation E�
 d�x	sU� � � d�x� is valid for all x � R. This leads
to the conclusion that inequality (8) does indeed hold true which
in turn implies that the precondition of Theorem 1 is fulfilled for
all x � L R.

It remains to investigate the case x � C with d�x� � s � x� �
�. Again, several subcases must be considered separately. Now
let p and q denote the points of intersection of the two circles
fy � IR� � ky � xk � sg and fy � IR� � kyk � kxkg. The
interval ���� ��� with the property

� � ���� ��� �� f��x 	 sU� � f��x�

is specified by the angles �� � arccos�h�� with h� � �p� �
x���x� if x� � x��� otherwise �� � arcsin�h��, and �� �

Fig. 5. Contour plot of E��d�x � sU� ��d�x� for x � R.

arcsin�h�� with h� � �q� � x���x�. The transitions be-
tween C and L occur at �� � arcsin��x��x�� � �� �
arccos��x��x��, whereas the transitions between C andR hap-
pen at �� � arcsin��z� � x���x�� � �� � arccos��z� �
x���x��. Depending on the actual location x � C it may happen
that the pair of angles ��� ��, or the pair ��� ��, or even both
pairs do not exist.

If x 	 sU � C then d�x 	 sU��d�x� � � 	 sin� which
is easily integrated. The other two subcases for L and R lead
again to expressions of the type given in eqn. (9). The constants
�a� b� c� are given by

�
�x� x�
x�� 	 �x��

�
�x��

x�� 	 �x��
� � 	

x��
x��

�

in case of x 	 sU � L and by

�
� �x� � z��x�
kx� zk� 	 x��

�
�x��

kx� zk� 	 x��
� � 	

kx� zk�
x��

�

in case of x 	 sU � R.
Figure 6 shows the values of E�
 d�x	 sU� ��d�x� for x � C.

Evidently, the value is less than � unless x approaches the Pareto
set. Therefore the region defined by the triangle � � fx �
IR� � � � x� � x� � z� � x�g deserves a closer inspection.
Notice that x � � implies x 	 sU � C for all � � ���� ���.
Consequently,

E�
 d�x 	 sU� �

d�x�
�

Z ��

��

� 	 sin�

��
d� 	

�
�� �� � ��

��

�

� �� cos�� � cos��
��

� �� �

��

�
q� � x�
x�

� p� � x�
x�

�



Fig. 6. Contour plot of E��d�x � sU� ��d�x� for x � C.

� �� �

��
� q� � p�

x�

� �� x� � ��x
�
� 	 �x���

���

�� kxk� � (10)

For every x� � � the nonnegative rightmost term in eqn. (10)
vanishes if and only if x� � �. Since d�x� � x� � � for x � �
and owing to the symmetry property (6) one obtains

E
Dk�� jXk � x � � d�x�� ��d�x��

with

��x�� �
x��
��

�
��x�� 	 �x���

���

x�� 	 x��
	

�� �x� � z��
� 	 �x���

���

�x� � z��� 	 x��

�

provided that x � �. Thus, the precondition of Theorem 1 is
also fulfilled for x � �. Summing up:

Theorem 2: Let X��X�� � � � be the sequence of parents gen-
erated by the multi–objective �� 	 ��–EA and let the objec-
tive functions be specified by eqn. (1). Then the �� 	 ��–
EA converges with probability one to the Pareto set X �, i.e.,
d�Xk�X ��� � with probability one as k �	. �

IV. CONCLUSIONS

It was shown that the multi–objective �� 	 ��–EA may con-
verge with probability 1 to the Pareto set if the step size is
proportional to the distance to the Pareto set. Although the
proof itself is admittedly laborious—and only valid for a spe-
cific problem—it is an instructive example already disclosing
the main difficulty which is inherent to this type of problems:
There exists a subset of the search space in which the probabil-
ity of accepting a point with smaller distance to the Pareto set
decreases to ��� whereas the probability of accepting a point
with larger distance increases to ��� as the parent moves closer

and closer to the Pareto set. This fact makes the analysis not
only complicated but it is also the reason why the mean rate of
convergence to the Pareto set is subexponential in general.

Nevertheless, it is still an interesting question whether a sim-
ilar result still holds in a more general situation or not. From a
practical point of view it is necessary to find a method that re-
alizes the step size rule without exploiting the knowledge about
the location of the optimal solutions of both objective functions.
In case of the special problem considered here, it is sufficient to
know the gradients since

d�x� �
�

�
min

�����
f k ��� ��rf��x� 	 �rf��x� k g �

Notice that it is easy to determine the optimal � analytically. If
the objective functions are convex then it may be conjectured
that d�x� can be bounded from below and above by functions of
the gradients. Provided that these bounds are sufficiently tight
it may happen that the specialized result presented here is trans-
ferable to more general situations.

REFERENCES

[1] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[2] H. Tamaki, H. Kita, and S. Kobayashi. Multi–objective optimization by ge-
netic algorithms: a review. In Proceedings of the 3rd IEEE International
Conference on Evolutionary Computation, pages 517–522. IEEE Press, Pis-
cataway (NJ), 1996.

[3] J. Horn. Multicriterion decision making. In T. Bäck, D. B. Fogel, and
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