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Abstract— This paper provides conditions under which evo-
lutionary algorithms with an elitist selection rule will con-
verge to the global optimum of some function whose do-
main may be an arbitrary space. These results generalize
the previously developed convergence theory for binary and
Euclidean search spaces to general search spaces.

I. INTRODUCTION

The term evolutionary algorithm (EA) is a collective
name for those probabilistic optimization algorithms whose
design is inspired by principles of biological evolution. Al-
though particular EAs may differ considerably at a first
glance, there are more similarities than differences. In fact,
a general convergence theory is possible.

We shall suppose that some EA is used to minimize a
real-valued objective function f : M — IR that is bounded
from below, that is, f(z) > —oo for all € M. No further
assumptions are imposed on the search space M.

It will be shown that a specific class of evolutionary algo-
rithms will converge to the global optimum of the optimiza-
tion problem above regardless of the search space. This re-
sult generalizes results obtained for individual-based EAs
in Euclidean [1; 2; 3; 4; 5; 6] and population—based EAs in
binary (or finite) search spaces [7; 8; 9].

Since evolutionary algorithms are describable by Markov
chains we first introduce some terminology concerning
Markov chains with general state spaces [10] and establish
the connection between the limiting behavior of Markov
chains and the stochastic convergence of random sequences
[11] leading to a precise condition for which an EA con-
verges to the global optimum.

The main result 1s given in section IIT and discussed in
section IV.

II. THE MAarRKOV MODEL

Let (X; : t € T) be a family of random variables on a
joint probability space (§2, F, P) with values in a set F of a
measurable space (E,A) and index set 7'. Then the family
of random variables (X; : t € T) is called a stochastic
process with index set T

In general, there is no mathematical reason for restrict-
ing index set T' to numerical sets. In this article, however,
the index set 7" 1s 1dentical with INg and the indices t € T'
will be interpreted as points of time.

A stochastic process (X; : ¢ € T) with index set T =
INy 1s called a stochastic process with discrete ttme. The
sequence Xp(w), X1(w), .. .1is termed a sample sequence for
each fixed w € Q. The image space £ of (X; :t € T) is

called the state space of the process.

Let (X¢ : ¢ > 0) be a stochastic process with discrete
time on a probability space (€2, F, P) with values in E of a
measurable space (F, A). Tffor 0 < t; <ta < ... <t <t
with some k € IN and A € A

P{XtEA|Xt1,Xt2,...,th}IP{XtEA|th} (1)
with probability 1, then (X; : ¢ > 0) is called a Markov
chain. Tf P{Xy1p € A| X1} = P{X, € A| X} for
arbitrary s,t, k € INg with s <t, then the Markov chain 1s
termed homogeneous, otherwise inhomogeneous.

Let (X; : t > 0) be a homogeneous Markov chain on a
probability space (€2, F,P) with image space (E,.4). The
map K : EF x A — [0,1] is termed a Markovian kernel
or a transition probability function for Markov chain (X3 :
t > 0) if K(., A) is measurable for any fixed set A € A and
K(z,.)is a probability measure on (F, A) for any fixed state
z € E. In particular, K(z;, A) = P{X;j1 € A| Xy = 4 }.

The t-th iteration of the Markovian kernel given by

K(z, A)
[ KU (y, A) K(x, dy)

describes the probability to transition to some set A C F
within ¢ steps when starting from the state © € E. Let p(.)
be the initial distribution over subsets A of A. Then the
probability that the Markov chain is in set A at step ¢ > 0
is determined by

,t=1
,1>1

K (z, A) = {

p(A)
[ KO (2, A) p(de)

where integration is with respect to an appropriate measure
on (F, A). For example, if F = IR" then integration is with
respect to the Lebesgue measure. If E is finite then the
counting measure i1s appropriate and the integrals reduce
to sums. Then the Markovian kernel can be described by a
finite number of transition probabilities py, = K(z, {y}) >
0 that can be gathered in a square matrix P = (pyy) with
x,y€e k.

We are now in the position to build the Markov model of
the EA: An EA consists of a population of N individuals
represented by the N-tuple (z1,...,zx) with #; € M for
i =1,...,N. Thus, the state space is £ = M". The
initial population at step ¢ = 0 is chosen according to
some initial distribution p(.) yielding the random popu-
lation Xy = (Xo,1,...,Xon). A population at step ¢t > 0
i1s modified by so—called genetic operators that generate a

t=0

P{XtEA}:{ t>0



new population at step ¢ + 1. The outcome only depends
on the previous population and the probabilistic modifi-
cations caused by the genetic operators are described by
the stochastic kernel K(.,.). Consequently, the stochastic
sequence (X; : t > 0) is a Markov chain.

In the next section we shall investigate whether the EA
is able to converge in some sense to a specific set A that is
related to the globally optimal solutions of our optimization
problem. It is clear that we must study the iterates of the
stochastic kernel. But at first it must be made precise what
we shall understand under the term convergence.

Since random sequences are defined on probability spaces
the main difference between all modes of stochastic con-
vergence and the convergence concept of classical analysis
relies on the fact that the first must take into account the
existence of a probability measure. These various modes of
stochastic convergence distinguish among each other in the
way in which the probability measure enters the definition.
Here, only two concepts will be of interest:

Let (D;) be a sequence of random variables defined on a
probability space (2, F,P). Then (D) is said to converge
completely to 0, denoted as D; — 0, if for any € > 0

3
tlggoZP{|Di|>e}<oo (2)

i=1

and to converge in probability to 0, denoted as Dy L 0, if
for any € > 0

tlim P{|D:|>¢€}=0. (3)

Let 5(X;) = min{f(X¢ 1) : £ =1,..., N} denote the best
objective function value that is represented by some indi-
vidual X; ; of population X; at step ¢ > 0. Provided that
the random sequence b(X;) converges in some mode to the
global optimum f* = min{f(z) : # € M}, we can be
sure that the population X; will contain better and better
solutions of our optimization problem for increasing ¢.

Therefore we define: An EA converges to the global
optimum if the random sequence (D t > 0) with
Dy = d(Xy) = b(Xy) — [* converges completely to zero.

Since (3) is a necessary condition for (2) we shall first
prove convergence in probability. Then we shall show that
the convergence in (3) is fast enough such that the series
in (2) is finite.

III. MaIN REsSULT

We first show an auxiliary result:

Lemma 1 Let A, ={x € E : d(z) < ¢} with some € > 0
be the set of e-optimal states. If K(x, Ac) > 8 > 0 for all
re AS=FE\ A, and K(z, Ao) = 1 for z € A, then

KO (z, A)>1—(1—6)

fort > 1.

Proof: (by induction)
Let ¢t = 1. Then the hypothesis is true because

Now as-

K (2, A) = K(z,4.) > 1 - (1 -8 = 6.
sume that the hypothesis i1s true for ¢ > 1. First note
that K"(z, A,) = 1 for all t > 1 if # € A.. This will be
used to obtain (4). Thus,

KD (2, A)
- / KW (y, A) K(z, dy)
E

- / K (y, Ad) K(z, dy) +
A

€

/ KOy,

€

_ /A K+ [ KOG A K @)

Ad)K(z, dy)

- K(x,AE)—i—/ K (y, A) K(x, dy)

> K A)+(1- (-0 [ Ky
= K(z, Ao +[1— (1 - 8)"] K(z, A7)
= Kz, A) + Kz, AS) — (1 — 6)" K(x, A?)
= 1-(1-8"K(z, A9
= 1-(1-68"(1-K(z,Ar))
> 1—(1-8)"(1-9)
= 1—-(1-6)"t"
Consequently, the hypothesis is true for ¢ > 1. a

Now we are in the position to state our main result:

Theorem 1 An evolutionary algorithm, whose stochastic
kernel satisfies the preconditions of Lemma 1, will con-
verge to the global minimum of a real-valued function
f M —= R with f > —c0 defined on an arbitrary space
M, regardless of the initial distribution.

Proof:

Let (X; : t > 0) be the random sequence of populations
generated by the EA. To prove the theorem we have to
show that the random sequence (d(Xy) : t > 0) converges
completely to zero under the preconditions of Lemma 1.
To this end first note that for t > 1

P{X, €A}
= / K (z, A) p(de)
E
> [1—(1—6)t]/p(dx) by Lemma 1
= 1-(1-¢)" :
Since P{d(X;) < ¢} =P{X, € A.} for all t > 0 we obtain
Pld(X)>e}=1-P{X, €4} <(1-6)"—0

as t — oo and hence d(X7) Fo. Finally, note that

ZP{dXt >€}<Zl—6 :T6<oo



satisfying the condition that the random sequence (d(X3) :
t > 0) converges completely to zero. This completes the
proof. a

Thus, owing to Theorem 1 it is sufficient to investigate
the properties of the stochastic kernel associated with the
particular EA instead of its iterates. But which EAs pos-
sess a stochastic kernel that satisfies the preconditions of
Lemma 1 7 This question will be discussed in the next
section.

IV. DiscussioN

In general, one iteration of an EA can be split into two
phases: A modification and a selection phase. In the mod-
ification phase we subsume all those genetic operators that
are used to create offspring from the parents. The selection
phase represents the operation to choose offspring that will
serve as parents in the next iteration. Since the selection
phase begins after the modification phase is finished, both
phases may be described separately by their own Marko-
vian kernels. Thus, the Markovian kernel of the entire EA
may be written as the product kernel

K(z, 4) = (K K;s)(z, A) = /

E

K (z, dy) Ks(y, A)

of the “modification kernel” K,,, and the “selection kernel”
Ks. We shall suppose that the selection phase is performed
by an elitist selection operator — a notion that was intro-
duced in [12] and can be realized in various ways. In any
case, the key property of elitist selection rules is that the
best individual of a population at step ¢ + 1 is not worse
than the best individual of a population at step ¢ > 0.

Let us start with a very simple EA: The population only
consists of a single individual. Thus, the state space F is
just £ = M. Exactly one offspring is generated from the
parent by mutation. We shall assume that this operation
is representable by the modification (or mutation) kernel
Ky If the offspring y € F 1s not worse than its parent
z € E, that is, y € B(z) = {v € E: f(v) < f(»)}, then
the offspring will serve as new parent, otherwise the parent
will survive. Thus, the algorithm may be written as

Xey1 = Ye - 1px (Vo) + X - 1pe(x) (V1) (5)

where 14(2) denotes the indicator function for some set A
and where B¢(z) = E'\ B(x). Evidently, the EA described
in (5) uses an elitist selection rule. Next, we shall derive
the selection kernel K, for this EA.

Since the selection kernel depends on the previous state
x € I this state is attached to K, as an additional param-
eter. Then the selection kernel is given by

Ks(y, 4;2) = 1) (y) - 1a(y) + 1pe@)(y) - La(z)  (6)

and may be interpreted as follows: If state y € E is better
equal state z (i.e., y € B(x)) and also in set A, then y
transitions to set A, and more precisely to set A N B(z),
with probability one. If y is worse than = (i.e., y € B%(x))
then y is not accepted. Rather, y will transition to the

old state x with probability one. But if x was in set A

then y will transition to x € A with probability one. All
other cases have probability zero. Evidently, the selection
kernel is purely deterministic here. Putting all together the
product kernel of mutation and selection is

/Km(x,dy) Ko(y, 4;2)

E

- / Kon (2, dy) - Lans(e) ()
E

+1a(x) - / K (%, dy) - 1ge()(y)

— /Km(x,dy)—l-lA(l‘)'/ K (2, dy)

ANB(zx) Be(z)
= Kn(z,ANB(z))+ 1a(z) - Kn(z, B°(x)).

K(z,A) =

There is an important observation: The structure of kernel
K would remain valid for a population-based EA with a
special version of elitist selection and if the mutation kernel
K, 1s replaced by the corresponding modification kernel.
To see this let £ = MY with arbitrary M and recall the
definition of map b : £ — IR that extracts the objective
function value of the best individual from a population.
Then the set of states better equal state x can be re—defined
via B(z) = {y € £ : b(y) < b(x)}.

What happens with the selection kernel? If y € £ is in
B(z)N A the population transitions to A. If y ¢ B(z) then
the best individual of population y is worse than the best
individual of population x. If the entire population is re-
jected then the structure of the population—based kernel is
identical to the individual-based kernel above. But under
usual elitist selection the best individual is re-inserted —
somehow — into population y yielding ¢ = e(x,y) € B(z).
Here the map e : E x £ — FE encapsulates the method to
re—insert the best individual of z € F into y. Consequently,
the selection kernel becomes

Ks(y, 4;2) = 1p@)na(y) + Lpe(a)(y) - La(z) - Lale(, y))
leading to

K(z,4) = Kpn(z,B(z)NnA)
A [ Kond) L) - (7)

Be()

The integral in (7) is unpleasant. But if this Markovian
kernel is restricted to the set A. of e—optimal solutions,
it will shrink to a very simple expression. To this end
consider EAs whose Markovian kernel is represented by (7):
If Ac C B(z) then z ¢ A., AcN B(x) = Ac and K(x, A,) =
Kin(z, Ae). If B(x) C A¢ then z € A, A. N B(x) = B(x)
and

K(z, Ae) = Kn(z,B(z))+

Be(x)
= Kn(z,B(2))+ Kn(z, B (2)) =1

Km(l‘, dy) : 1A6(6(l‘, y))



since e(z,y) € B(x) C A.. Therefore the Markovian kernel
restricted to set A, 1s

K(z, Ac) = K (2, Ac) - Tac(x) + 14, (x)

satisfying the preconditions of Theorem 1 if Ky, (2, A;) >
6 >0 for all z € Af.

As a consequence, we must guarantee that the set A, can
be reached from everywhere out of A, with some minimal
probability é that is strictly bounded from zero and may
depend on € > 0. It is clear that this property must be
realized by the genetic operators represented by the mod-
ification phase. In most cases the modification phase can
be split further into the crossover and mutation operation.
We assume that the mutation operation can be described
by the Markovian kernel K,,(#, A) whereas the crossover
operation is represented by the kernel K.(z, A). Thus, the
modification kernel is now interpreted as the product ker-
nel of the crossover kernel K. and the mutation kernel K,,.

If the mutation kernel is strictly bounded from zero for
each A, ie., Kpn(z, As) > é(¢) > 0 for each population
z € E and each subset A, C A, then the product kernel
(K¢ K )(z, A), describing the joint probabilistic behavior
of the crossover and mutation operation, is also strictly
bounded from zero for A, because

(KoK, Al) = /E K. (2, dy) Ko (4, A,)

> 6/ Ke(z, dy)
E
= § Kz, E) = 6§>0

for each # € F where § = é(¢). Evidently, this guarantees
that arbitrary sets A, with ¢ > 0 are reachable in one step
from any z € F at least with probability § > 0. Conse-
quently, the Markovian kernel of the entire EA meets the
requirements of Theorem 1 and we may state the following
sufficient condition:

Theorem 2 An evolutionary algorithm with elitist se-
lection and a mutation kernel Kn(x, A) that is strictly
bounded from zero for each x € E and A, € A will
converge to the global minimum of a real-valued function
f M —= R with f > —c0 defined on an arbitrary space
M. O

This result reveals that it can be sufficient to look at the
mutation and selection operators separately. Since the se-
lection operator is independent from the search space M
and elitism is easy to check, we only have to investigate
the mutation operator to detect potential difficulties in en-
suring the bounded positiveness of the mutation kernel for
sets A..

We shall postulate that the mutation operator has the
following working scheme: Each individual 1s modified at
random independently.

Let M. = {z € M : f(z)— f* < e} for € > 0 be the set of
e—optimal solutions. If the probability that an individual
is mutated to an individual in the set M, C M is larger
equal 8 = f(e) > 0, then the probability that a population

of N individuals enters the set 4, € A 1s at least § = 1 —
(1—8)Y > 0. In this case we may restrict our attention to
mutation at the individuals’ level. This works well for finite
sample spaces E. For example, take M = IB® = {0,1}¢ so
that £ = B“Y. For this search space M an individual
z € B’ is mutated almost always by inverting each entry
z; independently with some probability ¢ € (0,1). Tt is easy
to see that the probability to mutate x to z’ is larger equal
min{¢®, (1 — ¢)*} = 3 > 0 independent from the choices
for z,z’ € B (here B does not depend on ¢€). Since § >0
implies § > 0, Theorem 2 guarantees global convergence of
EAs with elitist selection and usual mutation for pseudo—
boolean optimization problems. This result subsumes the
specialized results given in [7; 8; 9].

Now consider problems with search space M = IR’.
Here, the mutation of some individual z € IR’ is real-
ized by adding a random vector z = ¢ .5z with o > 0,
where 2z’ is a /—dimensional random vector with support
IR® and expectation E[2'] = 0, and where S is a matrix
with det(S) = 1 such that STS is positive definite with
full rank. To ensure that the probability that individual =
mutates to x + z = &’ € M, is larger than zero we have to
exclude functions f with isolated global solutions z* € IR
But this is not enough to obtain a lower bound for the
probability to mutate to A.. Additional restrictions are
necessary.

Suppose that K.(z, 4) = 14(x) is the identity kernel,
l.e., the EA only employs mutation. Moreover, assume
that the best individual at step ¢ > 0 is mutated with
probability one and that M, is bounded for each ¢ > 0. We
now restrict our attention to the best individual, because
whenever the best individual enters M. with probability
G > 0 then the population will also enter A, at least with
probability 3 =6 > 0.

Let the best individual of the initial population be in M,
for some v > ¢ > 0. Since M, is bounded and cannot be
left by the best individuals of subsequent generations there
exists a lower bound

f=min{P{X+Z=X"eM | X=a}:2€M}>0

for the probability that the best individual will enter M.
and convergence to the global optimum is guaranteed. This
result was given in [1; 3; 4] for N = 1 while [5; 6] offered a
slight generalization that is postponed for while.

Now suppose that K.(z, A) is not the identity kernel.
Then the construction above does not work, because the
crossover operation may push all individuals out of M,
and it is not obvious how to specify the set M, with some
1 > v that cannot be left in general. The situation changes
if the crossover operation is applied with some probability
pe € (0,1), because the best individual may pass through
the crossover operation without being affected with some
fixed probability. Although this decreases the bound g
derived in case of the identity kernel, the argumentation
given there remains valid.

Next, let p. = 1. If there is some minimum probability
that the crossover operator leaves the best individual un-
altered then the argumentation also remains valid. In fact,



many crossover operators possess this property.

Summing up: In general, it is not sufficient to check the
mutation kernel for positiveness and the selection kernel for
elitism to fulfill the preconditions of Lemma 1 and Theorem
1 in general search spaces. But it seems possible to derive
conditions for further genetic operators and problem classes
leading to more powerful results than Theorem 2.

V. OuTLOOK

A slight generalization of Lemma 1 is possible. Similar to
[2; 5; 6] we could replace the constant § > 0 by a sequence
of constants 6; > 0 that must have certain properties.

Our general goal, however, is to derive conditions on
kernels for specific operators that imply global convergence,
are easy to check and are general enough to be useful for
a broad class of evolutionary algorithms. This approach
appears promising since 1t is much easier to analyze the
behavior of single genetic operators than the complicated
interactions between them.
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