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Abstract�This paper provides conditions under which evo�
lutionary algorithms with an elitist selection rule will con�
verge to the global optimum of some function whose do�
main may be an arbitrary space� These results generalize
the previously developed convergence theory for binary and
Euclidean search spaces to general search spaces�

I� Introduction

The term evolutionary algorithm �EA� is a collective
name for those probabilistic optimization algorithms whose
design is inspired by principles of biological evolution� Al

though particular EAs may di
er considerably at a �rst
glance� there are more similarities than di
erences� In fact�
a general convergence theory is possible�
We shall suppose that some EA is used to minimize a
real�valued objective function f �M� IR that is bounded
from below� that is� f�x� � �� for all x �M� No further
assumptions are imposed on the search spaceM�
It will be shown that a speci�c class of evolutionary algo

rithms will converge to the global optimumof the optimiza

tion problem above regardless of the search space� This re

sult generalizes results obtained for individual�based EAs
in Euclidean �	� �� �� �� �� �� and population�based EAs in
binary �or �nite� search spaces ��� �� ���
Since evolutionary algorithms are describable by Markov
chains we �rst introduce some terminology concerning
Markov chains with general state spaces �	�� and establish
the connection between the limiting behavior of Markov
chains and the stochastic convergence of random sequences
�		� leading to a precise condition for which an EA con

verges to the global optimum�
The main result is given in section III and discussed in
section IV�

II� The Markov Model

Let �Xt � t � T � be a family of random variables on a
joint probability space ���F �P� with values in a set E of a
measurable space �E�A� and index set T � Then the family
of random variables �Xt � t � T � is called a stochastic
process with index set T �
In general� there is no mathematical reason for restrict

ing index set T to numerical sets� In this article� however�
the index set T is identical with IN� and the indices t � T
will be interpreted as points of time�
A stochastic process �Xt � t � T � with index set T �
IN� is called a stochastic process with discrete time� The
sequence X����� X����� � � � is termed a sample sequence for
each �xed � � �� The image space E of �Xt � t � T � is

called the state space of the process�
Let �Xt � t � �� be a stochastic process with discrete
time on a probability space ���F �P� with values in E of a
measurable space �E�A�� If for � � t� � t� � � � � � tk � t
with some k � IN and A � A

PfXt � A jXt� � Xt� � � � � � Xtk g � PfXt � A jXtk g �	�

with probability 	� then �Xt � t � �� is called a Markov
chain� If PfXt�k � A jXs�k g � PfXt � A jXs g for
arbitrary s� t� k � IN� with s � t� then the Markov chain is
termed homogeneous� otherwise inhomogeneous�
Let �Xt � t � �� be a homogeneous Markov chain on a
probability space ���F �P� with image space �E�A�� The
map K � E � A � � �� 	� is termed a Markovian kernel
or a transition probability function for Markov chain �Xt �
t � �� if K��� A� is measurable for any �xed set A � A and
K�x� �� is a probabilitymeasure on �E�A� for any �xed state
x � E� In particular� K�xt� A� � PfXt�� � A j Xt � xt g�
The t�th iteration of the Markovian kernel given by

K
�t��x�A� �

�
K�x�A� � t � 	R

E
K
�t����y�A�K�x� dy� � t � 	

describes the probability to transition to some set A 	 E
within t steps when starting from the state x � E� Let p���
be the initial distribution over subsets A of A� Then the
probability that the Markov chain is in set A at step t � �
is determined by

PfXt � A g �

�
p�A� � t � �R

E
K
�t��x�A� p�dx� � t � �

where integration is with respect to an appropriate measure
on �E�A�� For example� if E � IRn then integration is with
respect to the Lebesgue measure� If E is �nite then the
counting measure is appropriate and the integrals reduce
to sums� Then the Markovian kernel can be described by a
�nite number of transition probabilities pxy � K�x� fyg� �
� that can be gathered in a square matrix P � �pxy� with
x� y � E�
We are now in the position to build the Markov model of
the EA� An EA consists of a population of N individuals
represented by the N�tuple �x�� � � � � xN � with xi � M for
i � 	� � � � � N � Thus� the state space is E � MN � The
initial population at step t � � is chosen according to
some initial distribution p��� yielding the random popu

lation X� � �X���� � � � � X��N �� A population at step t � �
is modi�ed by so�called genetic operators that generate a



new population at step t � 	� The outcome only depends
on the previous population and the probabilistic modi�

cations caused by the genetic operators are described by
the stochastic kernel K��� ��� Consequently� the stochastic
sequence �Xt � t � �� is a Markov chain�
In the next section we shall investigate whether the EA
is able to converge in some sense to a speci�c set A that is
related to the globally optimal solutions of our optimization
problem� It is clear that we must study the iterates of the
stochastic kernel� But at �rst it must be made precise what
we shall understand under the term convergence�
Since random sequences are de�ned on probability spaces
the main di
erence between all modes of stochastic con

vergence and the convergence concept of classical analysis
relies on the fact that the �rst must take into account the
existence of a probability measure� These various modes of
stochastic convergence distinguish among each other in the
way in which the probability measure enters the de�nition�
Here� only two concepts will be of interest�
Let �Dt� be a sequence of random variables de�ned on a
probability space ���F �P�� Then �Dt� is said to converge

completely to �� denoted as Dt
c
� �� if for any � � �

lim
t��

tX
i��

Pf jDi j � � g �� ���

and to converge in probability to �� denoted as Dt
P
� �� if

for any � � �

lim
t��

Pf jDt j � � g � �� ���

Let b�Xt� � minff�Xt�k� � k � 	� � � � � Ng denote the best
objective function value that is represented by some indi

vidual Xt�k of population Xt at step t � �� Provided that
the random sequence b�Xt� converges in some mode to the
global optimum f� � minff�x� � x � Mg� we can be
sure that the population Xt will contain better and better
solutions of our optimization problem for increasing t�
Therefore we de�ne� An EA converges to the global
optimum if the random sequence �Dt � t � �� with
Dt � d�Xt� � b�Xt� � f� converges completely to zero�
Since ��� is a necessary condition for ��� we shall �rst
prove convergence in probability� Then we shall show that
the convergence in ��� is fast enough such that the series
in ��� is �nite�

III� Main Result

We �rst show an auxiliary result�

Lemma � Let A� � fx � E � d�x� � �g with some � � �
be the set of ��optimal states� If K�x�A�� � � � � for all
x � Ac

� � E nA� and K�x�A�� � 	 for x � A� then

K
�t��x�A�� � 	� �	� ��t

for t � 	�

Proof� �by induction�
Let t � 	� Then the hypothesis is true because

K
����x�A�� � K�x�A�� � 	 � �	 � ��� � �� Now as

sume that the hypothesis is true for t � 	� First note
that K�t��x�A�� � 	 for all t � 	 if x � A�� This will be
used to obtain ���� Thus�

K
�t����x�A��

�

Z
E

K
�t��y�A��K�x� dy�

�

Z
A�

K
�t��y�A��K�x� dy� �

Z
Ac
�

K
�t��y�A��K�x� dy�

�

Z
A�

K�x� dy� �

Z
Ac
�

K
�t��y�A��K�x� dy� ���

� K�x�A�� �

Z
Ac
�

K
�t��y�A��K�x� dy�

� K�x�A�� � � 	� �	� ��t �

Z
Ac
�

K�x� dy�

� K�x�A�� � � 	� �	� ��t � K�x�Ac
��

� K�x�A�� � K�x�A
c
��� �	 � ��t K�x�Ac

��

� 	� �	� ��t K�x�Ac
��

� 	� �	� ��t �	� K�x�A���

� 	� �	� ��t �	� ��

� 	� �	� ��t���

Consequently� the hypothesis is true for t � 	� �

Now we are in the position to state our main result�

Theorem � An evolutionary algorithm� whose stochastic
kernel satis�es the preconditions of Lemma �� will con�
verge to the global minimum of a real�valued function
f �M � IR with f � �� de�ned on an arbitrary space
M� regardless of the initial distribution�

Proof�

Let �Xt � t � �� be the random sequence of populations
generated by the EA� To prove the theorem we have to
show that the random sequence �d�Xt� � t � �� converges
completely to zero under the preconditions of Lemma 	�
To this end �rst note that for t � 	

PfXt � A� g

�

Z
E

K
�t��x�A�� p�dx�

� � 	� �	� ��t �

Z
E

p�dx� by Lemma 	

� 	� �	� ��t�

Since Pf d�Xt� � � g � PfXt � A� g for all t � � we obtain

Pf d�Xt� � � g � 	� PfXt � A� g � �	� ��t � �

as t�� and hence d�Xt�
P
� �� Finally� note that

�X
t��

Pf d�Xt� � � g �

�X
t��

�	� ��t �
	� �

�
��



satisfying the condition that the random sequence �d�Xt� �
t � �� converges completely to zero� This completes the
proof� �

Thus� owing to Theorem 	 it is su�cient to investigate
the properties of the stochastic kernel associated with the
particular EA instead of its iterates� But which EAs pos

sess a stochastic kernel that satis�es the preconditions of
Lemma 	 � This question will be discussed in the next
section�

IV� Discussion

In general� one iteration of an EA can be split into two
phases� A modi�cation and a selection phase� In the mod

i�cation phase we subsume all those genetic operators that
are used to create o
spring from the parents� The selection
phase represents the operation to choose o
spring that will
serve as parents in the next iteration� Since the selection
phase begins after the modi�cation phase is �nished� both
phases may be described separately by their own Marko

vian kernels� Thus� the Markovian kernel of the entire EA
may be written as the product kernel

K�x�A� � �Km Ks��x�A� �

Z
E

Km�x� dy�Ks�y�A�

of the �modi�cation kernel� Km and the �selection kernel�
Ks� We shall suppose that the selection phase is performed
by an elitist selection operator  a notion that was intro

duced in �	�� and can be realized in various ways� In any
case� the key property of elitist selection rules is that the
best individual of a population at step t � 	 is not worse
than the best individual of a population at step t � ��
Let us start with a very simple EA� The population only
consists of a single individual� Thus� the state space E is
just E �M� Exactly one o
spring is generated from the
parent by mutation� We shall assume that this operation
is representable by the modi�cation �or mutation� kernel
Km� If the o
spring y � E is not worse than its parent
x � E� that is� y � B�x� � fv � E � f�v� � f�x�g� then
the o
spring will serve as new parent� otherwise the parent
will survive� Thus� the algorithm may be written as

Xt�� � Yt 
 	B�Xt��Yt� �Xt 
 	Bc�Xt��Yt� ���

where 	A�x� denotes the indicator function for some set A
and where Bc�x� � E nB�x�� Evidently� the EA described
in ��� uses an elitist selection rule� Next� we shall derive
the selection kernel Ks for this EA�
Since the selection kernel depends on the previous state

x � E this state is attached to Ks as an additional param

eter� Then the selection kernel is given by

Ks�y�A�x� � 	B�x��y� 
 	A�y� � 	Bc�x��y� 
 	A�x� ���

and may be interpreted as follows� If state y � E is better
equal state x �i�e�� y � B�x�� and also in set A� then y
transitions to set A� and more precisely to set A � B�x��
with probability one� If y is worse than x �i�e�� y � Bc�x��
then y is not accepted� Rather� y will transition to the

old state x with probability one� But if x was in set A
then y will transition to x � A with probability one� All
other cases have probability zero� Evidently� the selection
kernel is purely deterministic here� Putting all together the
product kernel of mutation and selection is

K�x�A� �

Z
E

Km�x� dy� 
Ks�y�A�x�

�

Z
E

Km�x� dy� 
 	A�B�x��y�

�	A�x� 


Z
E

Km�x� dy� 
 	Bc�x��y�

�

Z
A�B�x�

Km�x� dy� � 	A�x� 


Z
Bc�x�

Km�x� dy�

� Km�x�A �B�x�� � 	A�x� 
 Km�x�B
c�x�� �

There is an important observation� The structure of kernel
K would remain valid for a population�based EA with a
special version of elitist selection and if the mutation kernel
Km is replaced by the corresponding modi�cation kernel�
To see this let E �MN with arbitraryM and recall the
de�nition of map b � E � IR that extracts the objective
function value of the best individual from a population�
Then the set of states better equal state x can be re�de�ned
via B�x� � fy � E � b�y� � b�x�g�
What happens with the selection kernel� If y � E is in

B�x��A the population transitions to A� If y 	� B�x� then
the best individual of population y is worse than the best
individual of population x� If the entire population is re

jected then the structure of the population�based kernel is
identical to the individual�based kernel above� But under
usual elitist selection the best individual is re�inserted  
somehow into population y yielding y� � e�x� y� � B�x��
Here the map e � E � E � E encapsulates the method to
re�insert the best individual of x � E into y� Consequently�
the selection kernel becomes

Ks�y�A�x� � 	B�x��A�y� � 	Bc�x��y� 
 	A�x� 
 	A�e�x� y��

leading to

K�x�A� � Km�x�B�x� �A�

�	A�x� 


Z
Bc�x�

Km�x� dy� 
 	A�e�x� y�� � ���

The integral in ��� is unpleasant� But if this Markovian
kernel is restricted to the set A� of ��optimal solutions�
it will shrink to a very simple expression� To this end
consider EAs whose Markovian kernel is represented by ����
If A� � B�x� then x 	� A�� A� �B�x� � A� and K�x�A�� �
Km�x�A��� If B�x� 	 A� then x � A�� A� � B�x� � B�x�
and

K�x�A�� � Km�x�B�x�� �

Z
Bc�x�

Km�x� dy� 
 	A�
�e�x� y��

� Km�x�B�x�� � Km�x�B
c�x�� � 	



since e�x� y� � B�x� 	 A�� Therefore the Markovian kernel
restricted to set A� is

K�x�A�� � Km�x�A�� 
 	Ac
�
�x� � 	A�

�x�

satisfying the preconditions of Theorem 	 if Km�x�A�� �
� � � for all x � Ac

��
As a consequence� we must guarantee that the set A� can
be reached from everywhere out of A� with some minimal
probability � that is strictly bounded from zero and may
depend on � � �� It is clear that this property must be
realized by the genetic operators represented by the mod

i�cation phase� In most cases the modi�cation phase can
be split further into the crossover and mutation operation�
We assume that the mutation operation can be described
by the Markovian kernel Km�x�A� whereas the crossover
operation is represented by the kernel Kc�x�A�� Thus� the
modi�cation kernel is now interpreted as the product ker

nel of the crossover kernel Kc and the mutation kernel Km�
If the mutation kernel is strictly bounded from zero for
each A�� i�e�� Km�x�A�� � ���� � � for each population
x � E and each subset A� 	 A� then the product kernel
�Kc Km��x�A�� describing the joint probabilistic behavior
of the crossover and mutation operation� is also strictly
bounded from zero for A� because

�Kc Km��x�A�� �

Z
E

Kc�x� dy�Km�y�A��

� �

Z
E

Kc�x� dy�

� � 
 Kc�x�E� � � � �

for each x � E where � � ����� Evidently� this guarantees
that arbitrary sets A� with � � � are reachable in one step
from any x � E at least with probability � � �� Conse

quently� the Markovian kernel of the entire EA meets the
requirements of Theorem 	 and we may state the following
su�cient condition�

Theorem � An evolutionary algorithm with elitist se�
lection and a mutation kernel Km�x�A� that is strictly
bounded from zero for each x � E and A� � A will
converge to the global minimum of a real�valued function
f �M � IR with f � �� de�ned on an arbitrary space
M� �

This result reveals that it can be su�cient to look at the
mutation and selection operators separately� Since the se

lection operator is independent from the search space M
and elitism is easy to check� we only have to investigate
the mutation operator to detect potential di�culties in en

suring the bounded positiveness of the mutation kernel for
sets A��
We shall postulate that the mutation operator has the
following working scheme� Each individual is modi�ed at
random independently�
Let M� � fx � M � f�x��f� � �g for � � � be the set of

��optimal solutions� If the probability that an individual
is mutated to an individual in the set M� 	 M is larger
equal 
 � 
��� � �� then the probability that a population

of N individuals enters the set A� � A is at least � � 	 �
�	� 
�N � �� In this case we may restrict our attention to
mutation at the individuals! level� This works well for �nite
sample spaces E� For example� takeM � IB� � f�� �g� so
that E � IB��N � For this search space M an individual
x � IB� is mutated almost always by inverting each entry
xi independently with some probability q � ��� 	�� It is easy
to see that the probability to mutate x to x� is larger equal
minfq�� �	 � q��g � 
 � � independent from the choices
for x� x� � IB� �here 
 does not depend on ��� Since 
 � �
implies � � �� Theorem � guarantees global convergence of
EAs with elitist selection and usual mutation for pseudo�
boolean optimization problems� This result subsumes the
specialized results given in ��� �� ���
Now consider problems with search space M � IR��
Here� the mutation of some individual x � IR� is real

ized by adding a random vector z � � S z� with � � ��
where z� is a ��dimensional random vector with support
IR� and expectation E� z� � � �� and where S is a matrix
with det�S� � 	 such that STS is positive de�nite with
full rank� To ensure that the probability that individual x
mutates to x� z � x� �M� is larger than zero we have to
exclude functions f with isolated global solutions x� � IR��
But this is not enough to obtain a lower bound for the
probability to mutate to A�� Additional restrictions are
necessary�
Suppose that Kc�x�A� � 	A�x� is the identity kernel�
i�e�� the EA only employs mutation� Moreover� assume
that the best individual at step t � � is mutated with
probability one and thatM� is bounded for each � � �� We
now restrict our attention to the best individual� because
whenever the best individual enters M� with probability

 � � then the population will also enter A� at least with
probability 
 � � � ��
Let the best individual of the initial population be inM�

for some 
 � � � �� Since M� is bounded and cannot be
left by the best individuals of subsequent generations there
exists a lower bound


 � minfPfX � Z � X� �M� jX � x g � x �M�g � �

for the probability that the best individual will enter M�

and convergence to the global optimum is guaranteed� This
result was given in �	� �� �� for N � 	 while ��� �� o
ered a
slight generalization that is postponed for while�
Now suppose that Kc�x�A� is not the identity kernel�
Then the construction above does not work� because the
crossover operation may push all individuals out of M�

and it is not obvious how to specify the set M� with some
� � 
 that cannot be left in general� The situation changes
if the crossover operation is applied with some probability
pc � ��� 	�� because the best individual may pass through
the crossover operation without being a
ected with some
�xed probability� Although this decreases the bound 

derived in case of the identity kernel� the argumentation
given there remains valid�
Next� let pc � 	� If there is some minimum probability
that the crossover operator leaves the best individual un

altered then the argumentation also remains valid� In fact�



many crossover operators possess this property�
Summing up� In general� it is not su�cient to check the
mutation kernel for positiveness and the selection kernel for
elitism to ful�ll the preconditions of Lemma	 and Theorem
	 in general search spaces� But it seems possible to derive
conditions for further genetic operators and problem classes
leading to more powerful results than Theorem ��

V� Outlook

A slight generalization of Lemma	 is possible� Similar to
��� �� �� we could replace the constant � � � by a sequence
of constants �t � � that must have certain properties�
Our general goal� however� is to derive conditions on
kernels for speci�c operators that imply global convergence�
are easy to check and are general enough to be useful for
a broad class of evolutionary algorithms� This approach
appears promising since it is much easier to analyze the
behavior of single genetic operators than the complicated
interactions between them�
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