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Abstract� This paper o�ers su�cient conditions to prove
global convergence of non�elitist evolutionary algorithms�
If these conditions can be applied they yield bounds of the
convergence rate as a by�product� This is demonstrated by
an example that can be calculated exactly�
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I� Introduction

Evolutionary algorithms �EAs� represent a class of sto�
chastic optimization algorithms in which principles of or�
ganic evolution are regarded as rules for optimization� They
are often applied to parameter optimization problems ���
when specialized techniques are not available or standard
methods fail to give satisfactory answers due to multi�
modality	 nondi
erentiability or discontinuities of the prob�
lem under consideration�
In general	 evolutionary algorithms may be classi�ed as

elitist or non�elitist strategies� The characteristic feature
of elitist strategies is that they always maintain the best
solution �individual� in the population� Examples of such
EAs are ��
���evolution strategies �ES� ������	 evolution�
ary programming �EP� methods for parameter optimiza�
tion ��� and elitist genetic algorithms �GA� as introduced
in ���� Whenever the support of the invariant mutation
distribution covers the feasible region of the optimization
problem	 it is easy to prove convergence to the global op�
timum ������������ for these algorithms�
For non�elitist EAs the conditions for convergence are

more delicate� The standard GA as introduced in ��� does
not converge at all regardless of the objective function and
the choice of the crossover operator ����� But it can be
shown that a standard GA is able to generate the global
solution so that the policy to keep track of the best so�
lution found so far guarantees global convergence ���������
This argument may be used to prove global convergence of
non�elitist ��� ���ES� In principle	 those algorithmsmay be
regarded as a kind of an elitist algorithm	 because the best
individual maintained can be viewed as a super individual
in an extended population�
Therefore	 the following question will be addressed here�

Is it possible to prove convergence to the optimum for a
non�elitist strategy that does not make use of the policy
to keep track of the best solution �
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The answer is� Yes � under certain conditions� To make
this statement rigorous	 we �rst introduce some basic de��
nitions and collect some results from probability theory in
section II	 before we derive su�cient conditions for con�
vergence to the global optimum in section III� In section
IV these conditions are applied to an example that can be
calculated exactly� Finally	 the strengths and weaknesses
of the conditions are discussed in section V�

II� Basic Definitions and Results

Let us consider the following conceptual optimization al�
gorithm� st�� � ALG�st�	 where ALG denotes an opera�
tor	 depending on the algorithm under consideration	 that
describes the transition of the algorithm from state st at
step t to state st�� at step t
�� We suppose that there ex�
ists a real�valued mapping best�st� that extracts the best
objective function value known to the algorithm in state st�
For a probabilistic algorithm this value is a random vari�
able	 say Bt �� best�st�	 and we require that the sequence
�Bt�t�
 converges in some mode to the global optimum
f� � minf f�x� � x � M g of the real�valued objective
function f��� with the feasible region M � Equivalently	 we
may de�ne a random variable Dt �� Bt� f� to investigate
whether the stochastic sequence �Dt�t�
 converges to ��
Here it is useful to distinguish between the di
erent modes
of convergence of random sequences�

Definition �
If fX�Xt � t � � g are random variables on a probability
space ���A� P �	 then the random sequence �Xt�t�
 is said
to
�a� converge in probability to X	 denoted Xt

P
� X	 if

lim
t��

Pf jXt �Xj � � g � � �� � � �

�b� converge almost surely to X	 denoted Xt
a�s�
� X	 if

Pf lim
t��

Xt � X g � � �

�c� converge in mean to X	 denoted Xt
L�� X	 if

lim
t��

E� jXt �Xj � � � �

�

According to De�nition � we say that the algorithm con�
verges in probability	 almost surely �a�s�� or in mean to the
global optimum if Dt � D	 where D is a degenerate ran�
dom variable with PfD � �g � �� The following Lemma
collects some relations between the di
erent concepts and
a su�cient condition for uniform integrability�



Lemma �

�a� Xt
a�s�
� X as well as Xt

L�� X imply Xt
P
� X� The

converse is not true in general�

�b� Xt
L�� X i
 Xt

P
� X and �Xt� is uniformly integrable	

i�e�	

lim
c��

sup
t�


Z
fjXtj�cg

jXtj dP � � �

�c� If �Xt�t�
 are random variables bounded in Lp	 i�e�	
supfEjXtjp � t � �g �� for some p � �	 then the sequence
�jXtjq� is uniformly integrable for � � q � p�

Proof� For �a� see ���	 pp� ������	 for �b� and �c� see ����
p� ��� and p� ���	 respectively� �

In the following we use the notation �Xt� to denote the
process �Xt�t�
� The convergence condition to be derived
below relies on martingale theory�

Definition �
Let ���F � P � be a probability space and fFt � t � �g
the natural �ltration Ft � ��X
� X�� � � � � Xt� of F of some
stochastic process �Xt�� A process �Xt� is called a super�
martingale if E� jXtj � �� and E�Xt�� j Ft � � Xt a�s� for
all t � IN
� �

A �ltration fFt � t � �g is an increasing family of sun���
algebras of F � F
 	 F� 	 � � � 	 F � The natural �ltration
Ft � ��X
� X�� � � � � Xt� of a stochastic process �Xt� may be
regarded as its observable history up to time t� De�nition �
states	 roughly speaking	 that a supermartingale decreases
on average� More precisely�

Theorem � ����	 p� ����
Every nonnegative supermartingale �Xt� converges almost
surely to the limitX� �� lim

t��
Xt� Moreover	 X� satis�es

the inequalities

E�X� j Ft � � Xt a�s� ���

for all t � IN
� �

Note that we may not conclude that Xt
L�� X� although

�Xt� is bounded in L�� But it follows from Lemma �
that a nonnegative supermartingale converges in mean to
X� if it is uniformly integrable� Then it remains to show
that E�X�� � � to conclude that the algorithm converges
a�s� and in mean to the global optimum�

III� Convergence Condition

At �rst	 we derive a su�cient condition that a nonneg�
ative supermartingale converges a�s� and in mean to a ran�
dom variable X��

Theorem �
Let �Xt� denote a nonnegative supermartingale� If E�X�

t � �

� and E�X�
t�� j Ft� � X�

t for all t � �	 then Xt
a�s�
� X�

and Xt
L�� X��

Proof� Note that �X�
t � is a nonnegative supermartingale�

It follows that �Xt� is bounded in L�	 since inequality ���
implies E�X�

t � � E�X�

 � � �� With Lemma ��c� we may

conclude that �Xt� is uniformly integrable	 so that we have

established convergence in mean� Almost surely conver�
gence follows directly from Theorem �� �

Finally	 we need a condition to guarantee that the ex�
pectation of X� is zero�

Theorem �
Let �Xt� denote a uniformly integrable nonnegative super�
martingale� If E�Xt�� j Ft� � ���ct�
Xt a�s�with ct � ��� ��
and

�X
t��

ct �� ���

then Xt
L�� � and Xt

a�s�
� ��

Proof� Since �Xt� is a uniformly integrable nonnegative
supermartingale it follows from Theorem � and Lemma �
that Xt converges in mean and a�s� to a random variable
X�� Therefore	 we may take the expectation on both sides
of the equation

E�Xt�� j Ft� � ��� ct� 
Xt ���

to obtain E�Xt��� � �� � ct� 
 E�Xt�� Iterated application
of the expectation operator yields

E�Xt��� � E�X
�
tY

���

��� c� � �

Since
�Y
t��

��� ct� � exp

�
�

�X
t��

ct

�
� �

by ��� and E�X
� �� by De�nition � we have established
E�X�� � �� Consequently	 Xt converges a�s� and in mean
to � as t��� �

IV� Example

Consider the following non�elitist ��� ���ES� In each it�
eration sample � o
spring by mutation and select the best
among them to be the parent of the next generation� Note
that the new parent may be worse than the old one� In
particular�

Initialize x
� l
� set t � �
repeat

for i � � to � do
yt�i � xt 
 lt 
 u

endfor
xt�� � yt�b with f�yt�b� � minff�yt�i� � i � �� � � � � �g
adjust lt��
increment t

until termination criterion satis�ed

Here	 u is a random vector uniformly distributed on a unit
hypersphere surface of dimension n and lt is the step length
or the radius of the mutation hypersphere� The adjust�
ment of lt plays a crucial role and depends on the prob�
lem� Here	 we consider the minimization of the function
f�x� �

Pn
i�� x

�
i � kxk�� This is not a challenging prob�

lem	 because there is only one local�global optimum	 but
it allows an easy mathematical treatment�



This example was analyzed in ���� for an algorithm in
the spirit of a ��
 ���ES	 so that we follow their approach
until equation ����
Suppose that the algorithm has reached a point xt �M

with f�xt� � R� at step t� A new point is sampled on
the surface of a hypersphere with radius lt� Since both
the isolines of the problem and the mutation hypersphere
are invariant under rotation it is feasible to analyze the
projection into the plane as illustrated in Fig� �� The large
circle with radius R sketches an isoline of the problem with
f�x� � R�	 whose center is the location of the optimum�
The small circle with radius l is the surface of the hyper�
sphere representing all possible locations accessible by mu�
tation� For symmetry reasons we may restrict the analysis
to the case with 	 � ��� 
�� The di
erence R� � r� deter�
mines whether the mutated point is worse or better than
the old point� The value of r� depends on the angle 	 and
the step length l� Simple trigonometric considerations lead
to r� � R���lR cos	
 l�	 so that R��r� � �lR cos	� l��
For the remainder of the analysis it is useful to de�ne the
relative improvement V by

V �
R� � r�

R�
� �a cos	 � a� � ���

where a � l�R� Using the notation of section II we may
write Vt � �Dt �Dt����Dt with Dt � R� and Dt�� � r��
It follows that

Dt�� � Dt 
 ��� Vt� ���

and a�s� E�Dt��jFt� � ���E�Vt�� 
Dt� If E�Vt� � ��� �� then
the process �Dt� quali�es a nonnegative supermartingale	
provided that E�Dt� �� for all t � ��

Rr
h

l

ω

Fig� �� A cross section of the parameter space�

The distribution of the angle 	 has the density ����

p�	� �
sinn�� 	

B��
�
� n��

�
�

 ��
����	� � ���

where B��� �� denotes the Beta function and �A�x� the in�
dicator function of set A	 which is the support of the dis�
tribution� To obtain the distribution of the relative im�
provement V � �a cos 	�a� the density ��� is transformed
to

p�v� �

h
�� �v�a

�

�a �
�i�n�����

�aB��
�
� n��

�
�


 �Sa�v� ���

with support Sa � ��a�� 
 a�� a�� � a��� Straightforward
calculations reveal that V possesses a Beta distribution�

P �V � x� �

ha�x�Z



�� � v�
n��

� v
n��

�

B�n��� � n��� �
dv � ���

where ha�x� � �x
 a��
 a�����a�� For n � � the distribu�
tion reduces to a special case	 namely a uniform distribu�
tion with density

p�v� �
�

�a

 �Sa�v� � ���

The ��� ���ES as described here samples � times with the
same distribution and selects the best sample� Therefore	
we are interested in the distribution of the maximum of �
independent samples of random variable V � Let V ��� be
this random variable� According to ���� its density is given
by

pV ����x� � � 
 p�x� 
 P����V � x� 
 �Sa�x� � ����

Using ��� with n � � and ��� in ���� the kth moment of
V ��� is

E�V k���� � � 


a���a�Z
�a���a�

xk

�a

�
x
 a�� 
 a�

�a

����

dx � ����

so that for k � � one obtains

E�V ���� � � a 

�� �

�
 �
� a� � ����

Di
erentiation of ���� with respect to a leads to

a� �
�� �

�
 �
����

resulting in a maximal relative improvement

E�V ���� �

�
�� �

�
 �

��
� ��� �� for � � � � ����

The optimal step length is l� � a� 
 R � a� 
 krf�xt�k��	
which requires the availability of the gradients rf�x�� Ap�
proximations of the gradients	 however	 should be su��
cient � at the expense of the convergence rate� For � � �
the ��� ���ES is a random walk and ���� reveals that it is
optimal to stay at the current position by setting l � ��
Since the expectation ���� is �nite and within the required
range ��� �� we have shown that �Dt� is a nonnegative su�
permartingale converging a�s� to a random variable D� as



t��� In order to apply Theorem � we must consider the
squared process �D�

t �� From ��� we obtain the relation

D�
t�� � D�

t ��� Vt����
� � D�

t ��� ��Vt��� � V �
t ����� �

The squared process �D�
t � is a nonnegative supermartingale

if E��V ����V ����� is �nite and in the range ��� ��� Setting
k � � in ���� and using the optimal step length ratio ����
we obtain

E�V ����� �

�
�� �

�
 �

��



�� 
 ���
 �

��
 ����� 
 ��
�

Since E� �V ��� � V ����� � � 
E�V ����� E�V ����� �

�
�� �

�
 �

��




�
��

�� 
 ���
 �

�� 
 �����
 ��

�
� ��� ��

for � � �	 the condition of Theorem � is satis�ed and
we may conclude that �Dt� also converges in mean to the
random variable D� as t���
Finally	 we apply Theorem � to show that E�D�� � �

so that the ��� ���ES converges a�s� and in mean to the
optimum� From ���� we obtain ct � E�Vt� � const� for all
t � �	 so that the sum ��� diverges for � � �� Moreover	 we
may conclude from ���� that the expected distance to the
optimal objective function value converges geometrically
fast�

V� Discussion

We have derived su�cient conditions for global conver�
gence of non�elitist strategies� They are tailored for prob�
lems with feasible regions M 	 IRn and where the objec�
tive function is strictly convex at least in a neighborhood
N	�x�� � fx � M � kx � x�k � �g around the globally
optimal point x� � M for some � � �� It should be noted
that former analyses of this kind summarized in ���� were
incomplete �but remain true�	 because the uniform integra�
bility condition was not checked� But for elitist �� 
 ���
ES uniform integrability is guaranteed by the construction
of the algorithm provided that the expectations are �nite�
The best point is replaced only if a better point is found	
so that the worst solution is D
� This is not the case for
non�elitist strategies� Therefore	 we developed Theorem
� to ensure uniform integrability� This condition is only
su�cient and might not be applicable in all cases�
Theorem � guarantees global convergence a�s� and in

mean� This is a relatively strong property which might not
be attainable for some algorithms� Moreover	 this Theorem
must be modi�ed to cover those cases where the globally
optimal points are sets of nonzero measure�
The advantage of this approach is twofold� First	 if The�

orem � can be applied to prove global convergence one also
obtains the expected convergence rate� Second	 it appears
to be a possible route to analyze the self�adaptability prop�
erties of ES ���	 i�e�	 on�line learning of the norm of the
gradient� The latter remains for future research�
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