Convergence of Non—Elitist Strategies

Gunter Rudolph

Abstract— This paper offers sufficient conditions to prove
global convergence of non—elitist evolutionary algorithms.
If these conditions can be applied they yield bounds of the
convergence rate as a by—product. This is demonstrated by
an example that can be calculated exactly.
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I. INTRODUCTION

Evolutionary algorithms (EAs) represent a class of sto-
chastic optimization algorithms in which principles of or-
ganic evolution are regarded as rules for optimization. They
are often applied to parameter optimization problems [1]
when specialized techniques are not available or standard
methods fail to give satisfactory answers due to multi-
modality, nondifferentiability or discontinuities of the prob-
lem under consideration.

In general, evolutionary algorithms may be classified as
elitist or non—elitist strategies. The characteristic feature
of elitist strategies is that they always maintain the best
solution (individual) in the population. Examples of such
FEAs are (p+ A)—evolution strategies (ES) [2][3], evolution-
ary programming (EP) methods for parameter optimiza-
tion [4] and elitist genetic algorithms (GA) as introduced
in [5]. Whenever the support of the invariant mutation
distribution covers the feasible region of the optimization
problem, it 1s easy to prove convergence to the global op-
timum [6][7][8][4] for these algorithms.

For non-elitist EAs the conditions for convergence are
more delicate: The standard GA as introduced in [9] does
not converge at all regardless of the objective function and
the choice of the crossover operator [10]. But it can be
shown that a standard GA is able to generate the global
solution so that the policy to keep track of the best so-
lution found so far guarantees global convergence [10][11].
This argument may be used to prove global convergence of
non—elitist (u, A)-ES. In principle, those algorithms may be
regarded as a kind of an elitist algorithm, because the best
individual maintained can be viewed as a super individual
in an extended population.

Therefore, the following question will be addressed here:
Is it possible to prove convergence to the optimum for a
non—elitist strategy that does not make use of the policy
to keep track of the best solution 7
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The answer 1s: Yes — under certain conditions. To make
this statement rigorous, we first introduce some basic defi-
nitions and collect some results from probability theory in
section II, before we derive sufficient conditions for con-
vergence to the global optimum in section III. In section
IV these conditions are applied to an example that can be
calculated exactly. Finally, the strengths and weaknesses
of the conditions are discussed in section V.

I1. BAsic DEFINITIONS AND RESULTS

Let us consider the following conceptual optimization al-
gorithm: s;41 = ALG(s:), where ALG denotes an opera-
tor, depending on the algorithm under consideration, that
describes the transition of the algorithm from state s; at
step ¢ to state s;y1 at step {+1. We suppose that there ex-
ists a real-valued mapping best(s;) that extracts the best
objective function value known to the algorithm in state s;.
For a probabilistic algorithm this value is a random vari-
able, say By := best(s;), and we require that the sequence
(Bi)i>o0 converges in some mode to the global optimum
f* = min{ f(z) : © € M} of the real-valued objective
function f(.) with the feasible region M. Equivalently, we
may define a random variable Dy := B; — f* to investigate
whether the stochastic sequence (Dt)tZO converges to 0.
Here it is useful to distinguish between the different modes
of convergence of random sequences:

DerINITION 1

If {X,X;:t>0} are random variables on a probability
space (€2, A, P), then the random sequence (X¢);>¢ is said
to

(a) converge in probability to X, denoted X, Lt X, if

tlimP{|Xt—X|§e}:1 Ye>0 ;

(b) converge almost surely to X, denoted X, 2 X, if
P{tlith:X}:l ;

(¢) converge in mean to X, denoted X t} X, if
tlim E[|X; - X]|]=0 .
O

According to Definition 1 we say that the algorithm con-
verges in probability, almost surely (a.s.) or in mean to the
global optimum if Dy — D, where D is a degenerate ran-
dom variable with P{D = 0} = 1. The following Lemma
collects some relations between the different concepts and
a sufficient condition for uniform integrability.



LEmMMA 1

(a) X; T X as well as X, £ x imply X, L X. The
converse is not true in general.

(b) X; X iff X, P X and (X3) is uniformly integrable,

le.,

lim sup/ |X:|dP=0.
T 420 | Xy >}

(¢c) If (X¢)¢>0 are random variables bounded in £,, i.e.,

sup{E|X|F : ¢ > 0} < oo forsome p > 1, then the sequence

(]X+]9) is uniformly integrable for 0 < ¢ < p.

ProoOF: For (a) see [12, pp. 33-37], for (b) and (c) see [13]

p- 131 and p. 127, respectively. a

In the following we use the notation (X;) to denote the
process (Xt)t20~ The convergence condition to be derived
below relies on martingale theory:

DEFINITION 2

Let (Q2,F,P) be a probability space and {F; : t > 0}
the natural filtration F; = 0(Xo, X1,..., X)) of F of some
stochastic process (X;). A process (X3) is called a super-
martingale if E[|X¢]] < 0o and E[ X¢41 | F¢] < X; a.s. for
all t € INg. 0O

A filtration {F; : ¢t > 0} is an increasing family of sun-o—
algebras of F: Fy C F; C ... C F. The natural filtration
Fi = 0(Xo, X1,...,X¢) of astochastic process (X;) may be
regarded as its observable history up to time ¢. Definition 2
states, roughly speaking, that a supermartingale decreases
on average. More precisely:

THEOREM 1 ([14, p. 26])

Every nonnegative supermartingale (X;) converges almost

surely to the limit X, := tlim X;. Moreover, X, satisfies
— 00

the inequalities

E[Xoo |ft] S Xt a.s. (1)

for all t € INy. 0O

Note that we may not conclude that X; il X although
(X:) is bounded in £;. But it follows from Lemma 1
that a nonnegative supermartingale converges in mean to
X if it 1s uniformly integrable. Then it remains to show
that E[X] = 0 to conclude that the algorithm converges
a.s. and in mean to the global optimum.

III. CONVERGENCE CONDITION

At first, we derive a sufficient condition that a nonneg-
ative supermartingale converges a.s. and in mean to a ran-
dom variable X, .

THEOREM 2

Let (X¢) denote a nonnegative supermartingale. If E[X?] <
oo and E[X?, | 7] < X7 for all ¢ > 0, then X; © X
and X; il Noo.

PrOOF: Note that (X?) is a nonnegative supermartingale.
It follows that (X) is bounded in L4, since inequality (1)
implies E[X?] < E[X?] < co. With Lemma 1(c) we may
conclude that (X;) is uniformly integrable, so that we have

established convergence in mean. Almost surely conver-
gence follows directly from Theorem 1. ad

Finally, we need a condition to guarantee that the ex-
pectation of X, is zero.

THEOREM 3

Let (X;) denote a uniformly integrable nonnegative super-
martingale. f E[X;41 | F] = (1—c¢¢)- X a.s. with ¢; € (0, 1]

and -
Z ¢y = 00 (2)
t=1

then X, £y 0 and X, “2 0.

PRrROOF: Since (X3) is a uniformly integrable nonnegative
supermartingale it follows from Theorem 1 and Lemma 1
that X; converges in mean and a.s. to a random variable
X . Therefore, we may take the expectation on both sides
of the equation

EXup [Fl=(1—c) Xy (3)

to obtain E[X¢41] = (1 — ¢;) - E[X¢]. Tterated application
of the expectation operator yields

E[X.1] = B[Xo] [T(1—er) .

7=1

Since

H(l —¢;) < exp (— th) =0
t=1 t=1

by (2) and E[X] < oo by Definition 2 we have established
E[X.] = 0. Consequently, X; converges a.s. and in mean
to 0 as t — oo. a

IV. EXAMPLE

Consider the following non—elitist (1, A\)-ES: In each it-
eration sample A offspring by mutation and select the best
among them to be the parent of the next generation. Note
that the new parent may be worse than the old one. In
particular:

Initialize zg, ly; set t =0
repeat
for i =1to A do
yt,z’:l‘t'lt'u
endfor
Try1 = Yrp With fyep) = min{f(y:i):i=1,...
adjust ;41
increment ¢
until termination criterion satisfied

’A}

Here, u is a random vector uniformly distributed on a unit
hypersphere surface of dimension n and [; is the step length
or the radius of the mutation hypersphere. The adjust-
ment of [; plays a crucial role and depends on the prob-
lem. Here, we consider the minimization of the function
f(z) = 37, 22 = ||z||*. This is not a challenging prob-
lem, because there is only one local/global optimum, but
it allows an easy mathematical treatment.



This example was analyzed in [15] for an algorithm in
the spirit of a (14 1)-ES, so that we follow their approach
until equation (4).

Suppose that the algorithm has reached a point z, € M
with f(xz¢) = R? at step . A new point is sampled on
the surface of a hypersphere with radius [;. Since both
the isolines of the problem and the mutation hypersphere
are invariant under rotation it is feasible to analyze the
projection into the plane as illustrated in Fig. 1. The large
circle with radius R sketches an isoline of the problem with
f(z) = R? whose center is the location of the optimum.
The small circle with radius [ is the surface of the hyper-
sphere representing all possible locations accessible by mu-
tation. For symmetry reasons we may restrict the analysis
to the case with w € [0,7]. The difference R? — r? deter-
mines whether the mutated point is worse or better than
the old point. The value of #? depends on the angle w and
the step length [: Simple trigonometric considerations lead
tor? = R?—2IRcosw+(?, so that R? —r? = 2[R cosw —{°.
For the remainder of the analysis it is useful to define the
relative improvement V by

2 2
R —r 9

V:TZQacosw—a , (4)

where a = [/R. Using the notation of section IT we may
write ‘/t = (Dt - Dt+1)/Dt with Dt = R2 and Dt+1 = 7”2.
It follows that

Diy1 =Dy - (1-V4) (5)

and a.s. E[Dy11|F] = (1=E[V4]) - D;. If E[V}] € (0, 1] then
the process (D;) qualifies a nonnegative supermartingale,
provided that E[D;] < oo for all ¢ > 0.

Fig. 1: A cross section of the parameter space.

The distribution of the angle w has the density [15]

@.
=
€

B(L =Ly Lio,m(w) (6)

where B(.,.) denotes the Beta function and 14(#) the in-
dicator function of set A, which is the support of the dis-
tribution. To obtain the distribution of the relative im-
provement V = 2a cosw —a” the density (6) is transformed
to

5 27(n=3)/2
1- (%)
oy | QGB(%’,J%) s )

with support S, = [—a(2 + a),a(2 — a)]. Straightforward
calculations reveal that V' possesses a Beta distribution:

ha(z)
PV<e)=

1 — )™
(1-v) 2oz

B(rzhr)

(8)

where hy(2) = (£ 4+ a(24a))/(4a). For n = 3 the distribu-
tion reduces to a special case, namely a uniform distribu-
tion with density

po) = 1215, (0) )

The (1, A)-ES as described here samples A times with the
same distribution and selects the best sample. Therefore,
we are interested in the distribution of the maximum of A
independent samples of random variable V. Let V() be
this random variable. According to [16] its density is given

by
pvoy(@) = A-p(x) - PPHV <) - 15,(2) . (10)

Using (8) with n = 3 and (9) in (10) the kth moment of
V() is

a(2—a)
k
+a(2+4a)
ElVEO] = ). rfrraera
ron=a- [ n (P
—a(2+a)

)de, (11)

so that for & = 1 one obtains

A1
E[VIN)]=2a - —— —d?
VO =201 —a

Differentiation of (12) with respect to a leads to

. oA-1

resulting in a maximal relative improvement

A—1

2
— 1) for A>2. 14
1) e Pz a9

vl = (
The optimal step length is I* = a* - R = a* - |V f(x:)||/2,
which requires the availability of the gradients V f(x). Ap-
proximations of the gradients, however, should be suffi-
cient — at the expense of the convergence rate. For A =1
the (1,1)-ES is a random walk and (13) reveals that it is
optimal to stay at the current position by setting [ = 0.
Since the expectation (14) is finite and within the required
range (0,1) we have shown that (D;) is a nonnegative su-
permartingale converging a.s. to a random variable D, as



t — co. In order to apply Theorem 2 we must consider the
squared process (D3). From (5) we obtain the relation

Dipy = Di (1= Vi(N)? = DY [1 = (2Va(A) = VP (A))] -

The squared process (D?) is a nonnegative supermartingale
if E[2V(X)—V2())] is finite and in the range (0, 1]. Setting
k =2 in (11) and using the optimal step length ratio (13)
we obtain

s (A=1Y A H13M 42
BVl = (A—i—l) A F D2 +2)

Since E[2V(A) — V2(\)] = 2 - E[V(A)] - E[VZ(\)] =

2 3
(u) . [2_ A%+ 130+ 2 ] € (0,1)
A+1 A+ 1)2(A+2)
for A > 2, the condition of Theorem 2 is satisfied and
we may conclude that (D) also converges in mean to the
random variable D., as { — oo.

Finally, we apply Theorem 3 to show that E[D.] = 0
so that the (1,A)-ES converges a.s. and in mean to the
optimum: From (14) we obtain ¢; = E[V}] = const. for all
t > 0, so that the sum (2) diverges for A > 2. Moreover, we
may conclude from (14) that the expected distance to the

optimal objective function value converges geometrically
fast.

V. DiscussioN

We have derived sufficient conditions for global conver-
gence of non—elitist strategies. They are tailored for prob-
lems with feasible regions M C IR" and where the objec-
tive function is strictly convex at least in a neighborhood
Ne(z*) = {z € M : |]x — 2*|| < €} around the globally
optimal point z* € M for some € > 0. It should be noted
that former analyses of this kind summarized in [17] were
incomplete (but remain true), because the uniform integra-
bility condition was not checked. But for elitist (4 + A)-
ES uniform integrability is guaranteed by the construction
of the algorithm provided that the expectations are finite:
The best point is replaced only if a better point is found,
so that the worst solution is Dgy. This i1s not the case for
non—elitist strategies. Therefore, we developed Theorem
2 to ensure uniform integrability. This condition is only
sufficient and might not be applicable in all cases.

Theorem 3 guarantees global convergence a.s. and in
mean. This is a relatively strong property which might not
be attainable for some algorithms. Moreover, this Theorem
must be modified to cover those cases where the globally
optimal points are sets of nonzero measure.

The advantage of this approach is twofold: First, if The-
orem 3 can be applied to prove global convergence one also
obtains the expected convergence rate. Second, it appears
to be a possible route to analyze the self-adaptability prop-
erties of ES [3], i.e., on-line learning of the norm of the
gradient. The latter remains for future research.

[10]

[11]
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