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Abstract� After an outline of the history of evolutionary algorithms� a
new ��� �� �� �� variant of the evolution strategies is introduced formally	
Though not comprising all degrees of freedom� it is richer in the number
of features than the meanwhile old ��� �� and ����� versions	 Finally� all
important theoretically proven facts about evolution strategies are briey
summarized and some of many open questions concerning evolutionary
algorithms in general are pointed out	

� A Brief History of Evolutionary Computation

Since the spring of ����� when the �rst issue of the international journal on Evol�
utionary Computation 	�
 appeared� more and more people have become aware
of computer algorithms known to insiders since nearly thirty years as Genetic
Algorithms �GAs�� Evolution Strategies �ESs�� and Evolutionary Programming
�EP� As a common denominator the term Evolutionary Algorithms �EAs� has
become rather widespread meanwhile

Likewise common to all three approaches to computational problem solving�
mostly in terms of iterative adaptation or stepwise optimization� is the use of
biological paradigms gleaned from organic evolution Exploring the search space
by means of a population of search points that underlie variation� and exploiting
the information gathered in order to drive the population to ever more promising
regions� are viewed as mimicking mutation� recombination� and selection

Apart from these common features� both the independent origins and the cur�
rently used incarnations of the GA� EP� and ES algorithms di�er from each other
considerably Simulating natural phenomena and processes goes back to the time
when electronic automata became available to academia Arti�cial neural nets�
homeostatic controllers� predictors and optimizers emerged� and if their envir�
onment could not easily be modeled in simple analytical terms� random number
generators became attractive in order to bridge the knowledge gap towards de�
ciding upon the next action within the circuits Ashby�s homeostat 	�
� Brooks�
	�
 and Rastrigin�s 	�
 optimizers are witnesses of those days

The �rst digital computers� however� were not that fast as often called in
papers of that time Thus arti�cial or simulated evolutionary processes to solve
real�world problems 	�� �
 had to give way to quicker problem solving methods
relying upon simple computational models like linear or quadratic input�output
relations Another reason for the dominance of greedy algorithms has been their



strong backing from theory People like to know in advance whether the �exact�
solution of a problem will be found with guarantee and how many cycles of
an iterative scheme are necessary to reach that goal That is why rather often
problems have been �tted to the abilities of solution algorithms by rigorous
simpli�cation

Besides Bremermann�s simulated evolution 	�
� used for solving nonlinear sys�
tems of equations� for example� L Fogel 	�
 devised a �nite state automaton for
prediction tasks by simulating evolutionary mechanisms The current version of
this approach� called Evolutionary Programming �EP�� is due to D Fogel 	�

and is used for continuous parameter optimization Discrete� even combinatorial
search� adaptation� and optimization is the domain of Holland�s 	�
 Genetic Al�
gorithm �GA� which comprises many di�erent versions nowadays Independently
of both these origins� Evolution Strategies �ESs� came to the fore as experimental
optimization techniques 	��� ��
� eg� to drive a �exible pipe bending or change�
able nozzle contour successively into a form with minimal loss of energy Similar
to Evolutionary Operation �EVOP 	��
� the variables were changed in discrete
steps� but stochastically instead of deterministically The earliest ES version op�
erated on the basis of two individuals only� one parent and one descendant per
generation

Theory as well as practice� more and more turning to computer simulation
instead of expensive real experiments� led to multimembered ESs operating on
the basis of continuous decision variables 	�����
 with � � � parents and � � �
children per cycle

The following section introduces an even more general ES version In section �
a short summary will be given to what theory can tell us already about reliability
and e�ciency Finally� a couple of open questions will be pointed out� and EAs
in general will be turned to again

� The ��� �� �� �� Evolution Strategy

Though meanwhile many� sometimes specialized� ES versions exist� we will re�
strict ourselves to a rather canonical set of features here Neither parallel nor
multiobjective� neither discrete nor mixed�integer special forms are considered
in the following � though they exist and have been used already in applications
A recent overview may be found in 	��


In the beginning� there existed two di�erent forms of the multimembered
evolution strategy� namely the ����� and the ��� �� ESs The symbol � denotes
the number of parents appearing at a time in a population of imaginary individu�
als The symbol � stands for the number of all o�spring created by these parents
within one �synchronized� generation The di�erence between both approaches
consists in the way the parents of a new generation are selected

In the �� � �� ES the � o�spring and their � parents are united� before
according to a given criterion� the � �ttest individuals are selected from this set
of size ��� Both � and � can be as small as � in this case� in principle Indeed�
the �rst experiments were all performed on the basis of a �� � �� ES In the



��� �� ES� with � � � � �� the � new parents are selected from the � o�spring
only� no matter whether they surpass their parents or not The latter version
is in danger to diverge �especially in connection with self�adapting variances �
see below� if the so far best position is not stored externally or even preserved
within the generation cycle �so�called elitist strategy� We shall come back to
that later on So far� only empirical results have shown that the comma version
has to be preferred when internal strategy parameters have to be learned on�
line collectively For that to work� � � � and intermediary recombination of the
mutation variances seem to be essential preconditions It is not true that ESs
consider recombination as a subsidiary operator

The ��� �� ES implies that each parent can have children only once �duration
of life� one generation � one reproduction cycle�� whereas in the plus version
individuals may live eternally � if no child achieves a better or at least the same
quality The new ��� �� �� �� ES introduces a maximal life span of � � � repro�
duction cycles �iterations� Now� both original strategies are special cases of the
more general strategy� with � � � resembling the comma� and with � � � re�
sembling the plus�strategy� respectively Thus� the advantages and disadvantages
of both extremal cases can be scaled arbitrarily Other new options include�

� free number of parents involved in reproduction �not only �� �� or all�
� tournament selection as alternative to the standard ��� �� selection
� free probabilities of applying recombination and mutation
� further recombination types including crossover

Though in the �rst ES experiments the object variables were restricted to dis�
crete values� computerized ESs have mostly been formulated for the continuous
case An exception may be found in Rudolph 	��
 The ��� �� �� �� evolution
strategy is de�ned here for continuous variables only by the following ���tuple�

��� �� �� ��ES �� �P ���� �� �� �� rec� pr� �� �� ��mut� pm� 	� 	�� 
� �� sel� �� t� � ���

with

P ��� �� �a�� � � � � a����� � I� I �� IN� � IRn� start population
�IRn�

� � 	��� �
n�
� � IN � � � number of parents
� � IN � � � upper limit for life span
� � IN � � � if � � � number of o�spring
rec � I� � I recombination operator
pr � IR�

� � � pr � � recombination probability
� � IN� � � � � � number of ancestors

for each descendant
� � IN� � � � � nx � � number of crossover sites

� � �� � in a string of nx elements
� � f�� �� �� �� � � �g� type of recombination
mut � I � I mutation operator
pm � IR�

� � � pm � � mutation probability



	� 	�� 
 � IR� � � 
 � � step length variabilities
� � IR� � � � � �

� correlation variability
sel � I��� � I� selection operator
� � IN � � � � �� � tournament participators
t � I�� � f�� �g termination criterion
 � IR�

� accuracies required

pr � �� �� �� and pm may be di�erent for object and strategy parameter variation
That is why they are introduced here as arrays of length three Corresponding
indices �x� �� and �� have been omitted for easier reading

The �n� f�m�G� optimization problem for continuous variables at hand may
be de�ned as follows�

Minimize ff�x� j x �M � IRng ���

with

n � IN dimension of the problem
f �M � IR objective function
M � fx � IRnjgj�x� � � 	 j � �� � � � �mg feasible region
m � IN� number of constraints
G � fgj � IRn � IR 	 j � �� � � � �mg set of inequality restrictions

P ��� denotes the initial population �iteration counter T � �� of parents and

consists of arbitrary vectors a���k � I� Each element of the population at repro�
duction cycle T is represented by a vector

a
�T �
k � ���x� �� ���T �k � P �T �� k � IN ���

with

� � IN� remaining life span in iterations �reproduction cycles��
� � � at birth time

x � IRn vector of the object variables� the only part of a
entering the objective function

� � IRn�
� so�called mean step sizes �standard deviations of the

Gaussian distribution used for simulating mutations�
� � 	��� �
n� inclination angles� eventually de�ning �linearly�

correlated mutations of the object variables x

The latter two vectors are called strategy parameters or the internal model of
the individuals They simply determine the variances and covariances of the n�
dimensional Gaussian mutation probability density that is used for exploring the
space of object variables x

One iteration of the strategy� that is a step from a population P �T � towards
the next reproduction cycle with P �T���� is modeled as follows�

P �T��� �� optES�P
�T �� ���

where optES � I� � I� is de�ned by

optES �� sel 
 �mut 
 rec��� ���



��� The recombination operator rec�pr� �� �� ��

The recombination operator rec � I� � I is de�ned as follows�

rec �� re 
 co ���

with

co � I� � I� chooses � � � � � parent vectors from I�

with uniform probability
re � I� � I creates one o�spring vector

by mixing characters from � parents

���

Depending on �� there are several ways to recombine parents in order to get
an o�spring�

� � � no recombination� this case always holds
for � � �� pr � �� and�or � � �

� � � global intermediary recombination
� � � local intermediary recombination
� � � uniform crossover
� � � � point crossover

Let A � P �T � of size jAj � � be a subset of arbitrary parents chosen by the
operator co� and let �a � I be the o�spring to be generated If A � fa�� a�g�
a� and a� being two out of � parents� holds� recombination is called bisexual If
A � fa�� � � � � a�g and � � �� recombination is called multisexual

Recombination in general is applied with probability pr
Recombination types may �often should� di�er for the vectors x �object vari�

ables� of length n� � �mean step sizes� of length n�� and � �correlation angles�
of length n�� such that � � f�� � � � � �g� and � � f�� � � � � �g� have to be speci�ed

separately for these components In the following� b and �b of lengths nx stand
for the actual parts of a and �a at hand

The components �bi 	 i � �� � � � � nx of �b are de�ned as follows�

�bi ��

����������
���������

bi no recombination
�
�

P�

k	� bk�i global intermediary recombination

uibk��i � �� � ui�bk��i local intermediary recombination�
k�� k� � f�� � � � � �g for each o�spring�
ui � U��� �� or ui � ���

bki�i uniform crossover�
ki � f�� � � � � �g randomly chosen for each i

���

whereU�v� w� denotes the uniformprobability distribution with support �v� w� �
IR For other than uniform crossover forms� � � � � nx � � crossover points are
�rst chosen within the strings bk at random� and then the o�spring gets his ���
parts of vector �b by turns from all of the � � � � � parents involved



��� The mutation operator mut�pm� �� ��� �� ��

The mutation operator mut � I � I is de�ned as follows�

mut �� mux 
 �mu� �mu�� ���

with mux� mu�� and mu� given below� separately
Let �a � ���� �x�� � � � � �xn� ���� � � � � ��n� � ���� � � � � ��n�� with n� n�� n� � IN and n� �

�n� n�
� � �n� ��� be the result of the recombination step The number n denotes

the problem�s dimension� and � � n� � n the number of di�erent step sizes
�standard deviations for mutating the object variables �x� It may be worthwhile
to investigate the new additional degree of freedom by choosing � � pm � � for
mutating the step sizes

� mu� � IRn� � IRn� mutates the recombined ���

mu���a� ��
�
���e

z��z� � � � � � ��n�e
zn��z�

�
��  � ����

with

z� � N��� 	�� �� zi � N��� 	�� 	 i � �� � � � � n�� ����

N��� ��� denotes the normal distribution with mean � and variance �� �standard
deviation �� For maximal rates of convergence in case of the so�called sphere
model �see section ��� 	 and 	� may be chosen according to the relationships�

	� �
Kp
pm


p
n
� 	 �

Kp
pm

p
�� 
�q

np
n�

����

where the constant K should re�ect the convergence velocity of the ES �see
section on theoretical results� So far� only 
 � �p

�
and pm � � have been used�

but other values may be worthwhile to be considered as well

� mu� � IRn� � IRn� mutates the recombined ���

mu���a� �� ���� � z�� � � � � ��n� � zn�� ��  � ����

with

zi � N��� ��� 	 i � �� � � � � n�� ����

Good results have been obtained with �  ������ 	 �� 
� but the question
whether � should be di�erent for each zi is still open

� mux� ��  �� � IR
n � IRn mutates the recombined object variables �x� using the

recombined and already mutated  ��  � �for e�ciency reasons only� otherwise
the sequence of all variation steps and even of the cyclical selection and
variation processes does not matter��



mux� ��  ����a� �� ��x� � cor�� ��  ��� � � � � �xn � corn� ��  ��� ��  x ����

where cor �� �cor�� � � � � corn� is a random vector with normally distributed�
eventually correlated components� using  � and  � The components of cor can
be calculated as follows 	��
�

cor � Tz ����

where z � �z�� � � � � zn�� with zi � N���  ��i � 	 i � �� � � � � n� and

T �
n���Y
p	�

n�Y
q	p��

Tpq� �j� ����

with j � �
� ��n� � p��p � ��� �n� � q and

Tpq���j� ��

�
BBBBBBBBBBBBBBBBBBBB�

� 
 � � � 


 �

	 	 	

�
cos ��j �sin ��j

�
			

	 	 	
			

�
sin ��j cos ��j

�
	 	 	

� 


 � � � 
 �

	
CCCCCCCCCCCCCCCCCCCCA

����

with the terms cos  �j and � sin  �j in columns p and q and lines p and q�
respectively An e�cient way of calculating ���� is the multiplication from right
to left  � is set to  � � � for all o�spring when they are created by means of
recombination and mutation Finally we have�

 ak � � ��  x�  ��  �� 	 k � �� � � � � �� ����

For constrained optimization the processes of recombination and mutation
must be repeated as often as necessary to create � non�lethal o�spring such that

gj� xk� � � 	 j � �� � � � �m and 	 k � �� � � � � �� ����

This vitality check may already be part of the selection process� however



��� The selection operator sel�	�

Natural selection is a term that tries to describe the �nal result of several di�erent
real world processes� ie� from the test of new born individuals against natural
laws �if not met� the trial is lethal� and other environmental conditions up to
what is called mating selection According to Darwin� selection mainly helps to
avoid the Malthusian trap of food shortage due to overpopulation� the result of
a normal surplus of births over deaths �this is neither re�ected in GAs nor in
EP� Others emphasize the reproduction success of stronger or more intelligent
individuals� perhaps induced by Darwin�s unlucky term !struggle for life�

Altogether� there are several ways of implementing selection mechanisms
Two typical selection operators will be presented here They mainly di�er in
the selection pressure they exert on a population Due to the strong impact of
selection on the behavior of the evolutionary process� it is worthwhile to provide
both schemes

The traditional deterministic ES selection operator can be de�ned as�

sel � I��� � I�� ����

Let P �T � denote some parent population in reproduction cycle T �  P �T � their
o�spring produced by recombination and mutation� and Q�T � � P �T � t  P �T � �
I��� where the operator t denotes the union operation on multisets Then

P �T��� �� sel�Q�T ��� ����

The next reproduction cycle contains the � best individuals� ie� the following
relation is valid�

	 a � P �T��� � �a � � � �� b � Q�T � n P �T��� � b
	
� a ����

where the relation
	
� �read� better than� introduces a maximum duration of

life� �� that de�nes an individual to be worse than an other one if its age is
greater than the allowed maximum��� or if its �tness �measured by the objective
function� is worse

The de�nition of the
	
� � relation is given by�

ak
	
�  a
 �� �k � � � f�xk� � f� x
�� ����

In practical applications� where constraints can be evaluated quickly �eg� in
the case of simple bounds to the object variables�� it may be advantageous to
evaluate the constraints �rst Thus� only if a search point lies within the feasible
region �non�lethal individual�� the time consuming objective function has to be
evaluated However� things may turn out to be just the other way round� ie�
the time consuming part of the evaluation lies in the check for feasibility �eg�
if a FEM is used to calculate the stresses and deformations of a mechanical
structure� the result of which must be compared with given upper bounds�
Then the selection process must be interwoven with the process of generating
o�spring by recombination and mutation



At the end of the selection process� the remaining maximum life durations
have to be decremented by one for each survivor�

�
�T���
k ��  ��T �k � � 	 k � �� � � � � �� ����

The tournament selection is well suited for parallelization of the selection
process This method selects � times the best individual from a random sub�
set Bk of size jBkj � �� � � � � � � � 	 k � �� � � � � � and transfers it to the
next reproduction cycle �note that there may appear duplicates"� The best in�

dividual within each subset Bk is selected according to the
	
� relation which was

introduced in ���� A formal de�nition of the ��� �� �� �� tournament selection
follows�
Let

Bk � Q�T � 	 k � �� � � � � � ����

be random subsets of Q�T �� each of size jBkj � � For each k � f�� � � � � �g choose
ak � Bk such that

	 b � Bk � ak
	
� b � ����

Finally�

P �T��� ��

�G
k	�

f a�T���k g� ����

��� The termination criterion t�
�

The termination of the new evolution strategy should be handled in the same
way as has been done within the older versions 	��
�

All digital computers handle data only in the form of a �nite number of
units of information �bits� The number of signi�cant �gures and the range of
numbers is thereby limited If a quantity is repeatedly divided by a factor greater
than one� the stored value of the quantity eventually becomes zero after a �nite
number of divisions Every subsequent multiplication leaves the value as zero
If this happens to one of the standard deviations �i� the a�ected variable xi
remains constant thereafter The optimization continues only in a subspace of
IRn To guard against this it must be required that �i � � 	 i � �� � � � � n� The
random changes should furthermore be su�ciently large that at least the last
stored digit of a variable is altered There are therefore two requirements�

Lower limits for the #step lengths$�

�
�T �
i � � 	 i � �� � � � � n� ����

and
�
�T �
i � �




x�T �i




 	 i � �� � � � � n� ����

where
� � �

� � � � �

�
according to the computational accuracy ����



It is thereby ensured that the random variations are always active and the region
of the search stays spanned in all dimensions Proper values for � and � may
be obtained automatically by means of a small subroutine in order to suit to the
computer used

From the population of � parents with xk 	 k � �� � � � � �� let fb be the best
objective function value�

fb � min
k
ff�x�T �k � 	 k � �� � � � � �g ����

and fw the worst�

fw � max
k
ff�x�T �k � 	 k � �� � � � � �g ����

Then for ending the search we require that either

fw � fb � � ����

or

�

�
�fw � fb� �

�X
k	�




f�x�T �k �



 �� fm ����

where � and � are to be de�ned such that �compare with � and � above�

� � �
� � � � �

�
according to the computational accuracy ����

Either absolutely or relatively� the objective function values of the parents ex�
isting at a time must fall closely together before termination is stated

An other possibility to decide upon termination is to look for the whole
progress of the population during a certain number of iterations This can be
based on the current best �fb� or �fm� value of the objective function� eg�

Stop the optimum seeking process if

f �T��T �
y � f �T �y � � ����

or
�

�
�f �T��T �
y � f �T �y � �




f �T��T �
y




 � 


f �T �y




 ����

where fy denotes either fb or fm as de�ned in �� The threshold �T could
depend on n� the number of variables

��	 The start conditions P ���

For reasons of comparability with GAs on the one hand and more classical
optimization techniques on the other� there should be two distinct ways of setting
up the initial population



Case a
 With given lower and upper bounds for all object variables �a pre�
requisite for all GAs� but not for ESs�

xi � xi � %xi 	 i � �� � � � � n ����

all � parents at cycle T � � are arbitrarily distributed within the bounded
region

Case b
 With a given start position x��� for the optimum seeking process that
is assigned to one individual a�� the other � � � parents for the �rst iteration
cycle are found by applying some kind of mutation process with enlarged step
sizes c ����� c � �� for example c � ��� by�

x
���
k�i � x

���
��i � c�

���
i zi with zi � N��� �� 	 i � �� � � � � n and 	 k � �� � � � � �� ����

One may increase c during this setup process if no constraints are violated and
the objective function has been improved during the last step� otherwise c should
be decreased

��� The handling of constraints

During the optimum seeking process of ESs� inequality constraints so far have
been handled as barriers� ie� o�spring that violate at least one of the restrictions
are lethal mutations Before the selection operator can be activated� exactly �
non�lethal o�spring must have been generated

In case of a non�feasible start position x���� a feasible solution must be found
at �rst This can be achieved by means of an auxiliary objective function

 f �x� �
mX
j	�

gj�x� 
j�x� ����

with 
j�x� � �� if gj�x� � � and zero otherwise Each decrease of the value of
 f�x� represents an approach to the feasible region As soon as  f�x� � � can be
stated� then x satis�es all the constraints and can serve as a starting vector for
the optimization proper

� Theoretical Results

All theoretical results heavily rely upon simpli�cations of the situation investig�
ated� here with respect to the objective functions taken into consideration� as well
as with respect to the optimum seeking algorithm The gap between practical
results in very di�cult situations � so far these happen to be the sole justi�cation
for EAs � and theoretically proven results in rather simple situations � in which
normally other solution techniques are preferable � remains huge Nevertheless�
an algorithm that is worth consideration for complex tasks should ful�ll some
minimal requirements in easy situations as well



Global convergence in case of nearly arbitrary response surface landscapes
�called e�ectivity or robustness� and high e�ciency� ie� a low number of function
evaluations until achieving a speci�ed approximation to the exact solution are
maximal requirements that will remain in con�ict with one another� forever
EAs have often been apostrophed as universal search methods since they do
not try to gain advantage from higher order information like derivatives of the
objective function and do not interpret intermediate results on the basis of a
speci�c �eg� linear or quadratic� internal model of the �tness landscape As
minimal requirements to them one must demand that they should never fail in
simple cases and that they should provide some means to scale their behavior
towards maintaining usefulness in more di�cult situations� eg� by choosing
an appropriate population size and selection pressure As long as no superior
method is available� an EA arriving at one of the better local� though not global�
optima is a useful search method

Up until now� no all�embracing theory for the ��� �� �� �� ES exists However�
some special cases like � � � or � � �� � � � or � � �� and � � � have been
investigated thoroughly The results will be summarized brie�y in the following

A very early global convergence proof for a �� � �� ES with one parent and
one descendant per generation� elitist selection� no recombination and normally
distributed mutations without correlation has been given by Born 	��
 No con�
tinuity� di�erentiability� or unimodality assumptions must be made Except for
singular solutions� global convergence with probability one in the limit of in�n�
itely many mutations is guaranteed as long as the mutation variance is greater
than zero in all directions The same holds for the more general ��� �� ES 	��

More delicate is the non�elitist case of a ��� �� ES for which Rudolph 	��
 has
developed su�cient conditions under which convergence is maintained Like the
canonical GA� the ��� �� ES with �xed mutation variances �nally stagnates at
a distance from the optimum that depends on � �actually� it �uctuates around
that position�

More interesting than all that is an answer to the question of the approxima�
tion velocityWhereas this question is still open for GAs� except for a very special
case �see 	��
�� the situation is somewhat better for ESs now Linear convergence
order� that is a constant increase of accurate �gures of the object parameter or
objective function values over the number of mutations or generations� has been
proved by Rappl 	��
 for the ����� ES when applied to a strongly convex �tness
function like

f��x� � c� �
nX
i	�

ci�xi � x�i �
� ����

which has been called spherical model if ci � � 	i � �� � � � � n Most of the follow�
ing results are valid not only for this spherical situation� but also for functions
like f��x� � �e�f��x� �a nightmare for quasi�Newton methods� which diverge
everywhere in this case� and� approximately at least� also in case of higher even
exponents than two in function f� 	��


One basic assumption for the proof has been the maintenance of the corres�
ponding optimalmutation variances For the ����� ES this can be approximately



achieved by applying the so�called ��� success rule Following Rechenberg 	��

the mutation variance should be increased as soon as the observed success rate
is greater than ��� and decreased if it turns out to be less than ��� �for a cri�
tique� see 	��
� This result was achieved for the spherical function above and for
an endless inclined ridge model with rectangular cross�section of constant width
perpendicular to the steepest descent direction� which is the main diagonal in
case of

f��x� � c� �
nX
i	�

cixi ����

if again ci � � 	i � �� � � � � n
This is not the place to go into more details� but proportional control ac�

cording to that rule has proven to lead to oscillatory behavior with some factor
loss in convergence velocity against the optimal case Linear convergence order�
however� is maintained

Rechenberg 	��
 claims linear convergence order for the ��� �� ES on the
sphere model in case of optimal mutation variances His law

� � Ef�rg � C� � n

�r
�� ����

for the expected di�erence �r � r�g��� � r�g� between the Euclidean distances
r � r�g��� before and r�g� after one generation is an approximation to the very
high�dimensional case �n � ��� as Beyer 	��
 has elaborated In terms of the
dimensionless quantities &� � n

r
� and &� � n

r
� the law reads

&� � C&� � �

�
&��� ����

The maximal convergence rate �� � &�max � �
�C

� corresponds to the optimal
standard deviation �� � &�opt � C� a constant that of course still depends on
�� �� �� and �� at least

An approximation with respect to �� when �� �� and � equal one� has been
found to be as simple as 	��
�

C 
p
� ln �� ����

Beyer 	��
 has investigated both uniform crossover and global intermediary
multi�recombination with � � � Though the laws �again approximations� look
di�erent

&� � C&� � �

��
&�� �global intermediary� ����

&� �
p
� C&� � �

�
&�� �uniform crossover� ����

they yield the same maximum�� � �
� C� for �� � � C in the former� �� �

p
� C

in the latter case If one interprets � as an approximation to the di�erential
'r � dr�dt �literally� the velocity of approaching the optimum x� of the sphere



model function 	��
� one arrives at concluding K � �� for the still open con�
stant in relation ���� Based upon the observation that in the linear theory the
convergence rate mainly depends on the ratio �

�
if the population size is not too

small� one might speculate about putting together what we know so far to the
rather simple formula �for large n and �� as well as not too small ���

�� � � ln
�

�
����

the �rst factor ��� being due to the diversity of the population and exploited by
recombination �so�called genetic repair 	��
�� the latter ��

�
� due to the selection

pressure � two processes that compete with one another A proof is still missing�
however The same holds for the in�uence of other strategy parameters like �� pr�
and pm� which were assumed to equal one in the considerations above

Of great practical interest is the answer to the question how to achieve and
maintain the optimal mutation variance ��� The algorithm presented in section
� tries to do it in a way called self�adaptation It even allows for on�line learning of
up to n di�erent �i and

n
� �n��� di�erent �j� thus presenting the ultimate degree

of freedom for normally distributed mutations No theory is available for that
process� only a few experiments 	��
 have demonstrated that self�adaptation is
possible under certain conditions If these conditions are not observed the process
fails and the resulting ES may not converge� even diverge in case of small values
for �

The necessity of individually scaled �i can easily be derived from function
f� in case of non�identical coe�cients ci Nobody should be astonished that su�
per�uous degrees of freedom� eg� individual �i for the spherical model� where
�i � �� 	 i � �� � � � � n would be the best choice� come at an extra cost Intro�
ducing correlated mutations ��j �� ��� however� does not slow down the progress
further in this case Correlations� properly learned� would help a lot in case of a
hyperelliptical scene with main axes di�erent from the coordinate axes like

f��x� �
nX
i	�

�
� iX

j	�

xj

	
A

�

� ����

This still simple quadratic function poses heavy di�culties to all optimization
algorithms that rely upon decomposability Both the so�called coordinate �or
Gauss�Seidel� or one�variable�at�a�time� search technique and many GA variants
come into trouble with f� Major improvements require simultaneous changes
of many if not all xi Correlated mutations help� but discrete recombination
of the object variables turns out to be disastrous in this case Why( Without
correlation and independent �i� the population of an ES tends to concentrate at
one out of two positions where the curvature radii are smallest With individual
�i and correlation it spreads more or less to the whole temporal hypersurface
f�x�T �� � const� Discrete recombination then often fails to produce descendants
which keep to the vicinity of that hypersurface Intermediary recombination of
the object variables� even merely switching o� recombination� heals that That



is why the recombination type and frequency should be incorporated into the
set of internal strategy parameters� too In nature there is no higher instance
for controlling internal parameters in the way which has been proposed with
the so�called nested or meta�evolution approach 	��
 More natural seem to be
simulations with several subpopulations� a concept that has been used for EA
incarnations on parallel computers 	��
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