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Abstract. The task of finding minimal elements of a partially ordered set is a
generalization of the task of finding the global minimum of a real-valued func-
tion or of finding Pareto-optimal points of a multicriteria optimization problem.
It is shown that evolutionary algorithms are able to converge to the set of mini-
mal elements in finite time with probability one, provided that the search space
is finite, the time-invariant variation operator is associated with a positive transi-
tion probability function and that the selection operator obeys the so-called ‘elite
preservation strategy.’

1 Introduction

Traditionally, evolutionary algorithms (EAs) were used to find or approximate the global
minimum of a real-valued objective function f � S � IR defined on some non-empty
set S. The development of EAs that can cope with more than a single objective function
began in the mid-1980s but for a long time this field of application did not receive the
resonance that it deserved. The situation changed during the last five years: As can be
learned from recent surveys [1–3] there are now numerous suggestions of how to design
multi-objective EAs. But these activities were not accompanied by the development of a
theoretical foundation. A similar time lag between practice and theory can be observed
in case of single-objective EAs. It is therefore the goal of this paper to seed a starting
point regarding a theory of multi-objective EAs that may initiate further research on
that subject.

The main difference between single- and multi-objective optimization rests on the
fact that two elements are not guaranteed to be comparable in the latter case. To un-
derstand the problem to full extent it is important to keep in mind that the values
f��x�� � � � � fm�x� of the m � � objective functions represent incommensurable quan-
tities that cannot be minimized simultaneously: While f � may measure costs, f� may
measure the level of pollution, f� the pressure of some boiler, and so forth. As a conse-
quence, the notion of the “optimality” of some solution needs a more general formula-
tion as in the single-criterion case. It seems reasonable to regard those elements as being
optimal which cannot be improved with respect to one criterion without getting a worse
value in another criterion. Elements with this property are said to be Pareto-optimal in
this context.

From a more general point of view, single- as well as multi-objective optimization
can be seen as special cases of the task to find minimal elements of partially ordered
sets. The meaning of these terms will be made rigorous in Section 2. After these prepa-
rations it is shown in Section 3 that EAs with finite search space and partially ordered



fitness values do stochastically converge to minimal elements provided that the selec-
tion mechanism employs some kind of elitism and that the time-invariant variation op-
erator’s support is identical to the search space. This result includes earlier established
convergence results regarding single-objective EAs with finite search space (e.g. [4–7])
as special cases. Moreover, it also includes a new convergence result for multi-objective
EAs. Section 4 is devoted to transcribe the general result into the terminology of these
special cases. Finally, some directions towards an extension of the presented theory are
discussed in Section 5.

2 Partially Ordered Sets

A prerequisite to introduce ‘partially ordered sets’ is the notion of the ‘relation.’ The
definitions presented in this section are extracted from [8] and [9].

Definition 1. Let X be some set. The subset R � X � X is called a binary relation in
X . Let x� y � X . If �x� y� � R, also denoted xRy, then x is said to be in relation R to
y. A relationR inX is said to be

(a) reflexive if xRx is true for all x � X ,
(b) antireflexive if xRy � x �� y is true for all x� y � X ,
(c) symmetric if xRy � yRx is true for all x� y � X ,
(d) antisymmetric if xRy 	 yRx� x � y is true for all x� y � X ,
(e) asymmetric if xRy � yRx is true for all x� y � X ,
(f) transitive if xRy 	 yRz � xRz is true for all x� y� z � X . ut

Some relations that possess several of the properties above simultaneously bear their
own names. For example, if R is a reflexive, symmetric, and transitive relation then R
is called an equivalence relation. In this case it is common to use the symbol “
” in lieu
of R. A reflexive, antisymmetric, and transitive relation “�” is termed a partial order
relation whereas a strict partial order relation “�” must be antireflexive, asymmetric,
and transitive. The result below shows how to obtain a strict partial order relation from
a partial order relation.

Lemma 1. Let X be some set and let “�” denote a reflexive, antisymmetric and tran-
sitive relation on X . Then the relation “�” defined by

x � y  �x � y� 	 �x �� y� (1)

is antireflexive, asymmetric and transitive on X .

Proof.

(a) x � y � x �� y (antireflexive):
Follows directly from the definition of relation�.

(b) x � y � y � x (asymmetric):
Let x � y be valid and assume y � x. By definition of� it follows that x � y 	 y � x
is true. Since � is antisymmetric we obtain x � y which contradicts the validity of
x � y.



(c) x � y 	 y � z � x � z (transitive):
Since � is transitive one immediately obtains x � y 	 y � z � x � z. It remains to
prove x �� z. Notice that antireflexivity of � implies x �� y and y �� z. Assume x � z.
It follows that x � y 	 y � x is true. Since � is antisymmetric we obtain x � y which
contradicts x �� y. ut

As a convention, every appearance of “�” in context with a specific partial order
relation “�” tacitly assumes its definition via Eqn. (1). After these preparations one is
in the position to turn to the actual objects of interest.

Definition 2. Let X be some set. If the reflexive, antisymmetric and transitive relation
“�” is valid on X then the pair �X ��� is called a partially ordered set (or short:
poset). Distinct points x� y � X are said to be comparable when either x � y or y � x.
Otherwise, x and y are incomparable which is denoted by x k y. If each pair of distinct
points of a poset �X ��� is comparable then �X ��� is called a totally ordered set or a
chain. Dually, if each pair of distinct points of a poset �X ��� are incomparable then
�X ��� is termed an antichain. ut

For example, �IRn��� with n � � is a partially ordered set when x � y means
xi � yi for all i � �� � � � � n. According to Lemma 1 one obtains a strict partial order
relation “�” from this partial order relation if it is additionally required that x �� y.
Notice that the poset �IRn��� is neither a chain nor an antichain. The situation changes
for the poset �IR��� with x � y if and only if x � y. Since each pair of distinct
points in IR is comparable the poset �IR��� is totally ordered and therefore a chain. An
example for an antichain is the set of “minimal elements” introduced next.

Definition 3. An element x� � X is called a minimal element of the poset �X ��� if
there is no x � X such thatx � x�. The set of all minimal elements, denotedM�X ���,
is said to be complete if for each x � X there is at least one x� � M�X ��� such that
x� � x. ut

Minimal elements are the targets of the evolutionary search studied in the next
section. Since the analysis presented in the next section assumes the completeness of
M�X ��� it is useful to know under which circumstances this assumption is fulfilled.

Lemma 2. ([10], p. 91) If �X ��� is a poset with � � jX j �� then the set of minimal
elements M�X ��� is complete. ut

This result shows that the set of minimal elements may be incomplete only if the
poset is infinitely large. But since many evolutionary algorithms operate in finite search
spaces and in favor of an easy presentation the more general case will not be considered
here. Nevertheless, the next result does not require the finiteness of the poset.

Lemma 3. Let M�X ��� �� � be the set of minimal elements of some partially ordered
set �X ��� and G�x� � fy � X � y � xg with x � X .

(a) x �M�X ��� �� G�x� n fxg � �.

(b) IfM�X ��� is complete and x ��M�X ��� then �G�x�nfxg��M�X��� �� �.



Proof.

(a) By definition, x �M�X ��� �� � y � X � y � x� � � � y � X � y � x 	 y �� x�
are valid equivalences. The rightmost expression is equivalently rewriteable as � � y �
G�x� � y �� x which in turn is equivalent to G�x� n fxg � �.

(b) Let x �� M�X ���. Owing to part (a) we know that G�x� n fxg is not empty. It
remains to show that at least one element of M�X ��� is also in G�x� n fxg. Since
M�X ��� is complete there must exist an x� � M�X ��� with x� �� x such that
x� � x. By definition of G��� it follows that necessarily x � � G�x� n fxg. ut

3 Evolutionary Search in Partially Ordered Sets

Hereinafter it is assumed that the set S �� � is finite and that f � S � F � ff�x� � x �
Sg is a mapping where �F ��� is a poset. Trivially, since S is finite so is F � f�S�.
Owing to Lemma 2 it is guaranteed that the set of minimal elements is complete. This
property plays a key role in the subsequent analysis. At first only a simple individual-
based EA is considered before the result is extended to the population-based case. This
individual-based EA may be seen as a generalized version of the �� � ��-EA. More
specifically, the algorithm runs as follows:

(1) Generate an individual x� � S at random and set k � �.
(2) Apply some variation operator to obtain an offspring y k � S from xk.
(3) If f�yk� � f�xk� then set xk�� � yk otherwise xk�� � xk.
(4) Increase k and goto (2) unless some termination condition is fulfilled.

Needless to say, the purpose of this EA is to generate a sequence �xk � k � �� such
that the sequence �f�xk� � k � �� enters the set of minimal elements M�F ��� in
a finite number of steps and then stays there forever. Indeed, this EA can accomplish
this task if it is assumed that the variation operator is characterized by the property that
its associated transition probability function (called variation kernel hereinafter) fulfills
the inequality Pv�x� y� � � � � for all x� y � S. Before proving this claim one needs
the following result.

Lemma 4. Let S �� � be a finite set and f � S � F � ff�x� � x � Sg be a mapping
where �F ��� is a partially ordered set. Then the following statements are valid:

(a) T �f�x�� � G�f�x�� �M�F��� �� � for all x � S .

(b) I�f�x�� � fy � S � f�y� � T �f�x��g �� � for all x � S .

Proof.

Since M�F��� is complete Lemma 3(b) ensures that the set T �f�x�� is not empty
for each x � S. As a consequence, the inverse image set I�f�x�� of T �f�x�� must be
non-empty as well. ut

Since the variation kernel is strictly bounded from zero, the probabilityof generating
a specific offspring y � S with f�y� � M�F ��� by a variation of an arbitrary parent
x � S is at least � � �. Thus, every minimal element can be visited within one step
from every x � S. Assume that this event has happened, i.e., there was a transition from



x � S to y � S with f�y� � M�F ���. There is, however, no guarantee of acceptance
for it can be seen from the third step of the EA that an offspring y is accepted if and only
if f�y� � G�f�x��. Thus, it may happen that the offspring y � S is rejected although
f�y� is a minimal element. But Lemma 4(a) ensures the existence of minimal elements
that are also contained in G�f�x�� for every specific x � S. These minimal elements
are collected in the set T �f�x�� for every x � S whereas the set I�f�x�� �� � contains
all offspring which will be accepted and whose image is minimal in F . Therefore, the
probability that the EA generates and accepts an offspring whose image is minimal in
F within a single iteration can be bounded via

P �x� I�f�x��� � � � jI��f�x��j � � � � (2)

for each x � S . Next it is investigated what happens as soon as the sequence �f�xk� �
k � �� has entered the set of minimal elements for the first time. Let f�xk�� �
M�F��� for some k� � �. Owing to Lemma 3(a) it is guaranteed that f�xk� �
M�F��� for all k � k�, because the set of acceptable elements is G�f�xk� �� �
ff�xk��g. This in turn implies f�xk� � f�xk� � for all k � k�. As a consequence,
the probability to leave the set of minimal elements once it was entered is zero. Taking
into account this result and the result summarized in inequality (2) it follows from a
theorem in [11] that

Pf f�xk� �M�F ��� g � �� ��� ��k (3)

for k � �. To proceed—and in anticipation of potential generalizations of these results
to arbitrary metrizable spaces—the set F is equipped with a metric. Notice that every
non-empty set F may be endowed with the discrete metric

d�a� b� �

�
� if a � b
� if a �� b

with a� b � F . Using this metric the distance d�a�A� � minfd�a� b� � b � Ag from
a point a � F to a subset A � F is well-defined. With the definition of the nonneg-
ative random variable Dk � d�f�xk��M�F ���� inequality (3) may be equivalently
expressed by

PfDk � � g � �� ��� ��k (4)

for every � � �. Since the r.h.s of inequality (3) converges to one as k �� it has been
shown that the sequence �Dk � k � �� converges in probability to zero. Since the rate of
approach in inequality (4) is geometrically fast it follows that �D k � k � �� converges
even completely to zero (implying convergence with probability 1). Moreover, conver-
gence in mean is ensured by the boundedness of Dk and convergence in probability.
Thus it was proven:

Theorem 1. Let S �� � be a finite set and f � S � F � ff�x� � x � Sg be
a mapping where �F ��� is a partially ordered set that is additionally endowed with
the discrete metric d��� ��. Let �xk � k � �� with xk � S be the random sequence
generated by the generalized �� � ��-EA whose time-invariant variation kernel has the
property Pv�x� y� � � � � for all x� y � S . Then the sequence d�f�xk��M�F���� of
random distances between f�xk� and the set of minimal elements M�F ���� converges
completely and in mean to zero as k ��. ut



The generalization of this theorem to the population-based case is almost trivial. Let
the population of the EA consist of an n-tuple of individuals where n � �. The input
of the variation operator is now the entire population whereas its output is an N -tuple
of offspring with � � N � �. Suppose that the associated variation kernel has the
property Pv�p� q� � � � � for all p � Sn and q � SN . Then it is guaranteed that
the image of at least one offspring enters the set of minimal elements with minimum
probability � � � in one iteration, regardless of the actual population of parents. The
mechanism to compile the new population of parents may be arbitrary provided that the
procedure obeys the elite preservation strategy:

Let �x���k � x
���
k � � � � � x

�n�
k � be the population of parents andOk � fy���k � y

���
k � � � � � y

�N�
k g

be the collection of offspring at generation k � �. Without loss of generality let parent
x
���
k be the elitist parent. If Bk � fy � Ok � f�y� � G�f�x���k

�� n ff�x���k
�gg is empty

then set x���k�� � x
���
k . Otherwise, choose an arbitrary y�k � Bk whose image is minimal

in the poset �f�Bk���� and set x���k�� � y�k.

Evidently, the sequence �x���k � k � �� behaves like the generalized �� � ��-EA
considered previously and without much effort it was proven:

Theorem 2. Let S �� � be a finite set and f � S � F � ff�x� � x � Sg be a mapping
where �F ��� is a partially ordered set that is additionally endowed with the discrete
metric d��� ��. An evolutionary algorithm with n �� parents and N �� offspring in
S and fitness function f��� is guaranteed to generate at least one sequence �xk � k � ��
of parents such that the sequence d�f�xk��M�F���� converges completely and in
mean to zero, provided that the time-invariant variation kernel is positive on S n � SN

and that the selection operator obeys the elite preservation strategy. ut

An early example of a probabilistic algorithm resembling an evolutionary algorithm
that obeys the elite preservation strategy was proposed by Peschel & Riedel in 1977
[12]. Originally, their method was designed for multi-objective optimization over S �
IR� but it can be easily formulated in the framework presented here. For this purpose
let Pk be the collection of nk parents and Ok be the collection of N individuals at
generation k � �. Then the algorithm runs as follows:

1. Generate a collection P� of n� � N parents at random and set O� � P�.
2. Select those offspring whose images are minimal in the poset �f�O�����. This

yields n� distinct parents after deletion of potential duplicates. Set k � �.
3. Generate a collection Ok of N offspring from the collection Pk of nk parents by

variation.
4. Select those individuals from Pk � Ok whose images are minimal in the poset

�f�Pk � Ok����. This yields nk�� distinct parents after deletion of potential du-
plicates.

5. Increase k and goto (3) unless some termination criterion is fulfilled.



Notice that the number of offspring N � � was fixed whereas the number of
parents nk may vary for each generation k � �. Actually, the number of parents is a
random variable. But since S is finite and the population consists of distinct individuals
one immediately obtains nk � jSj � � and hence Pfmaxfnk � k � �g � �g �
�. If the variation kernel is positive on S n � SN for arbitrary n � f�� �� � � � � jSjg
then the argumentation in the proof of Theorem 2 remains valid. The elite preservation
strategy is fulfilled since a parent x � Pk is not contained in Pk�� if and only if
there exists a y � Pk�� with f�y� � f�x�. Therefore Theorem 2 ensures that the
generalized Peschel/Riedel-method generates at least one sequence that converges to
the set of minimal elements. But an even stronger result than Theorem 2 can be proven
for this method.

Theorem 3. Let S �� � be a finite set and f � S � F � ff�x� � x � Sg be a mapping
where �F ��� is a partially ordered set. The set-valued sequence �f�Pk� � k � �� gen-
erated by the generalized Peschel/Riedel-method with positive time-invariant variation
kernel converges completely and in mean to the set of minimal elements M�F ��� as
k��, i.e., jf�Pk� �M�F ���j � jM�F ���j completely and in mean as k ��.

Proof.

Let m � jM�F���j and Mk � jf�Pk� �M�F ���j for k � �. Since the variation
kernel is positive the transition probability of the stochastic process �M k � k � �� can
be bounded via pi�i�� � PfMk�� � i � � jMk � ig � � �m � i� for � � i � m
and some � � �. Notice that pij � � if � � j � i � m by construction of the
algorithm, i.e., Mk increases monotonically. Although there are also transitions with
pi�i�j � � for j � �, these short cuts will be ignored. Thus, it is assumed that Mk

attains all values from � tom consecutively. It is clear that this modified process requires
more time to reach the value m than the original one. Larger values than m cannot be
attained because the completeness of M�F ��� guarantees that jf�Pk��M�F ���j �
jM�F���j for every k � �. As a consequence, pii � � if and only if i � m. By
setting pi�i�� � � �m � i� for � � i � m and pii � � � pi�i�� for i � m one obtains
a finite absorbing Markov chain that requires more time to reach its only absorbing
state m than the original stochastic process. The eigenvalues of the associated transition
matrix are f�� � m� � �m� ��� � � � � � �� �g. Owing to a result in [13], p. 391, one obtains
PfMk � m g � O�	k

�
� where 	� � � m is the second largest eigenvalue. This proves

complete convergence of Mk tom; convergence in mean follows from the boundedness
of Mk. ut

4 Transcription of Result into Specialized Terminology

4.1 Real-valued Function Minimization

Let S �� � be a finite set and f � S � F � ff�x� � x � Sg � IR be a real-
valued mapping. In this case the poset �F ��� with the usual order relation � in IR is
totally ordered. As a consequence, the set of minimal elements in F consists of a single
element f�, which is called the global minimum of the objective function f���. The



lower level set G�f�x�� � ff�y� � f�y� � f�x�g contains the unique global minimum
f� for every x � S.

In this case, the elite preservation strategy is simplified as follows: Without loss of
generality let x���k be the elitist parent at generation k � �. If Bk is empty then set

x
���
k�� � x

���
k , i.e., there was no offspring with an objective function value less than

f�x
���
k �. If Bk is not empty then choose an arbitrary offspring y �

k � Bk among those

possessing the least objective function value, and set x���k�� � y�k.

Moreover, since the set F is finite stochastic convergence to zero in the discrete
metric d�f�xk�� f

�� is equivalent to jf�xk� � f�j � � as well as to f�xk� � f�.
Now one is in the position to transcribe the main result of the previous section into the
terminology of real-valued function minimization.

Corollary 1 (to Theorem 2). Let S �� � be a finite set and f � S � F � ff�x� � x �
Sg � IR be the objective function. An evolutionary algorithm with n �� parents and
N � � offspring in S and fitness function f��� is guaranteed to generate at least one
sequence �xk � k � �� of parents such that the sequence �f�xk� � k � �� converges
completely and in mean to the global minimum f �, provided that the time-invariant
variation kernel is positive on Sn � SN and that the selection operator obeys the elite
preservation strategy. ut

4.2 Multicritera Optimization

Let S �� � be a finite set and f � S � F � ff�x� � x � Sg � IRm with f�x� �
�f��x�� f��x�� � � � � fm�x��� a vector-valued function, where each of the m � � real-
valued objective functions f�� � � � � fm are to be minimized simultaneously. The partial
order relation “�” on F is given by

f�x� � f�y� �� fi�x� � fi�y� for all i � �� � � � �m�

In this particular context, the set of minimal elements M�F ��� is called the Pareto set
while its elements are termed Pareto-optimal or efficient points.

Corollary 2 (to Theorem 2). Let S �� � be a finite set and f � S � F � ff�x� �
x � Sg � IRm where f��� is a vector of m � � real-valued objective functions. An
evolutionary algorithm with n � � parents and N � � offspring in S and objective
function vector f��� is guaranteed to generate at least one sequence �xk � k � �� of
parents such that the sequence of distances (in discrete metric) between f�xk� and the
Pareto set converges completely and in mean to zero, provided that the time-invariant
variation kernel is positive on Sn � SN and that the selection operator obeys the elite
preservation strategy. ut

5 Potential Directions of Further Research

There are several directions in which the main results may be extended. First, the pre-
conditions regarding the variation kernel and the requirement of the elitist preserva-
tion property can be weakened certainly. Second, a generalization to infinitely large



search and image sets should be possible. Metrizable topological spaces ought to be
sufficiently general, although some complications regarding measure theory can be ex-
pected. Third, if the binary relation on F is reflexive and antisymmetric but not neces-
sarily transitive, then one has to cope with quasi-ordered sets in lieu of partially ordered
sets. Last but certainly not least, the finite time behavior of the evolutionary algorithms
is of significant practical importance. This includes the expected first entry times to the
set of minimal elements as well as the expected achievable quality of the solution under
some specific stopping rules.
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