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Abstract

The search for minimal elements in partially ordered sets
is a generalization of the task of finding Pareto-optimal
elements in multi-criteria optimization problems. Since
there are usually many minimal elements within a par-
tially ordered set, a population-based evolutionary search
is, as a matter of principle, capable of finding several
minimal elements in a single run and gains therefore
a steadily increase of popularity. Here, we present an
evolutionary algorithm which population converges with
probability one to the set of minimal elements within a
finite number of iterations.

1 Introduction

The search for minimal elements in partially ordered sets
is a generalization of the task of finding Pareto-optimal
elements in multi-criteria optimization problems. Since
there are usually many minimal elements within a par-
tially ordered set, a population-based evolutionary search
is, as a matter of principle, capable of finding several
minimal elements simultaneously and gains therefore a
steadily increase of popularity. This increase of popular-
ity is witnessed by numerous proposals of multi-criteria
evolutionary algorithms during the last few years – this
rapid development was, however, not accompanied by a
comparable build-up of a theoretical foundation.
But the first steps towards an elimination of this short-
coming has been made: It was shown in [1] in case of fi-
nite search sets that an evolutionary algorithm (EA) with
‘positive variation kernel’ and ‘elite preservation strat-
egy’ (these notions are explained later) is capable of gen-
erating a sequence of populations such that at least one
individual enters the set of minimal elements of the par-
tially ordered fitness set in finite time with probabilityone
and stays there forever. Moreover, it was proven that the
population of such an EA converges completely to the
set of minimal elements if the population at step t � � is
just the set of minimal elements of the union of the pop-
ulation of parents and the generated offspring at step t.
Evidently, the population size is not fixed in this case; it
grows to the size of the set of minimal elements which
may be prohibitively large. Therefore, it is the goal of
this paper to devise an evolutionary algorithm with fixed
population size which population converges to the set of
minimal elements. Such an EA is described in Section

3 and analyzed in Section 4. Section 5 offers a discus-
sion of the main result. Basic terminology is introduced
in Section 2.

2 Partially Ordered Sets

A prerequisite to introduce ‘partially ordered sets’ is the
notion of the ‘relation.’ The definitions presented in this
section are extracted from Ester [2] and Trotter [3].

Definition 1 Let X be some set. The subsetR � X �X
is called a binary relation in X . Let x� y � X . If �x� y� �
R, also denoted xRy, then x is said to be in relation R
to y. A relationR inX is said to be

(a) reflexive if xRx is true for all x � X ,
(b) antireflexive if xRy � x �� y is true �x� y � X ,
(c) symmetric if xRy � yRx is true �x� y � X ,
(d) antisymmetric if xRy � yRx � x � y is true

�x� y � X ,
(e) asymmetric if xRy � 	�yRx� is true �x� y � X ,
(f) transitive ifxRy�yRz � xRz is true �x� y� z � X .

ut

Some relations that possess several of the properties
above simultaneously bear their own names. For exam-
ple, if R is a reflexive, symmetric, and transitive relation
then R is called an equivalence relation. In this case it
is common to use the symbol “
” in lieu of R. A reflex-
ive, antisymmetric, and transitive relation “�” is termed
a partial order relation whereas a strict partial order re-
lation “�” must be antireflexive, asymmetric, and tran-
sitive. The latter relation may be obtained by the former
one by setting x � y �� �x � y� � �x �� y�. After these
preparations one is in the position to turn to the actual
objects of interest.

Definition 2 Let X be some set. If the partial order re-
lation “�” is valid on X then the pair �X ��� is called
a partially ordered set (or short: poset). If x � y for
some x� y � X then x is said to dominate y. Distinct
points x� y � X are said to be comparable when either
x � y or y � x. Otherwise, x and y are incomparable
which is denoted by x k y. If each pair of distinct points
of a poset �X ��� is comparable then �X ��� is called
a totally ordered set or a chain. Dually, if each pair of
distinct points of a poset �X ��� are incomparable then
�X ��� is termed an antichain. ut



For example, �IRn��� with n  � is a partially ordered
set when x � y means xi � yi for all i � �� � � � � n.
One obtains a strict partial order relation “�” from this
partial order relation if it is additionally required that x ��
y. Notice that the poset �IRn��� is neither a chain nor
an antichain. The situation changes for the poset �IR���
with x � y if and only if x � y. Since each pair of
distinct points in IR is comparable the poset �IR��� is
totally ordered and therefore a chain. An example for
an antichain is the set of “minimal elements” introduced
next.

Definition 3 An element x� � X is called a minimal
element of the poset �X ��� if there is no x � X such
that x � x�. The set of all minimal elements, denoted
M�X ���, is said to be complete if for each x � X there
is at least one x� � M�X ��� such that x� � x. ut

Minimal elements are the targets of the evolutionary
search studied here. Since the analysis presented shortly
requires the completeness of M�X ��� it is useful to
know under which circumstances this assumption is ful-
filled. If the poset �X ��� is finite then the completeness
of M�X ��� is guaranteed ([4], p. 91). This result shows
that the set of minimal elements may be incomplete only
if the poset is infinitely large. Sufficient conditions for
the completeness of M�X ��� in case of infinitely large
posets �X ��� may be found, for example, in [5]. This
general case is beyond the scope of this paper – here-
inafter it is assumed that the posets are always finite and
hence endowed with a complete set of minimal elements.

3 Evolutionary Algorithm

Let S be some finite search set and f � S � F �
ff�x� � x � Sg the fitness function with partially or-
dered fitness values, i.e., �F ��� is a poset. An individual
of the evolutionary algorithm is represented by the pair
�x� �� � S � � where � is a compact subset of IRm.
Here, � represents the values of m parameters that may
affect, for example, the mutation distributionor any other
procedure that is involved in the production of offspring.
The mapping f � S � F induces also a partial order re-
lation “�f ” on the search set S (and similarly on the set
of individuals) via the definitions

x� �f x� �� f�x�� � f�x��
x� 
f x� �� f�x�� � f�x��
x� �f x� �� x� �f x� � x� 
f x��

For the sake of notational convenience, the subscript f
will be omitted hereinafter, i.e., the statement x� � x�
will actually mean x� �f x�, and an analogous conven-
tion applies to the remaining relations.
The targets of the evolutionary search are the elements
of M�F ���. Clearly, whenever the fitness value f�x�

of an individual �x� �� is a minimal element of the poset
�F ��� then x is a minimal element of the poset �S��f �
and vice versa.
The pseudo code of the evolutionary algorithm consid-
ered here is presented in Fig. 1. At the beginning, � in-
dividuals are initialized arbitrarily from the set S � �.
This yields the population P�. After setting the genera-
tion counter to t � 	 the EA enters the loop in which each
iteration represents the production and selection process
of one generation. Each iteration can be divided into three
phases.

Phase 1: At first, � parents of the current populationPt

produce � offspring in some probabilistic manner (� 
�  �). The offspring are collected in the multi-set Q
(duplicate members are not discarded). Those offspring
which are minimal among all offspring are moved to Q�

and the auxiliary multi-sets P � and Q� are emptied.
At the end of phase 1, the offspring are partitioned into
the multi-setsQ and Q� with jQ�j  � and jQj� jQ�j �
�. Every offspring in Q is worse than some offspring in
Q�.

Phase 2: For each offspring q fromQ� letD�q� contain
all parents from Pt that are dominated by offspring q. If
such parents exist then they are discarded from Pt and
the offspring q is moved from Q� to P �. If no parent was
dominated but offspring q is incomparable to all parents
then q is moved from Q� to Q�.
At the end of phase 2, set P � contains offspring that are
better than some parent, set Q� contains those offspring
that are either better than some parent or incomparable
to all parents, and Q� now contains offspring being not
better than some parent. Those parents which are left
over in Pt are incomparable to each offspring in P ��Q�.
Clearly, every offspring in Q is worse than any offspring
in P � �Q� �Q�.

Phase 3: The multi-setPt�� of parents of the next iter-
ation consists of the union of P � and the residual multi-
set Pt. By construction, it is guaranteed1 that jPt��j �
jPt�P �j � jPtj� jP �j � �. If jPt��j � � then members
of Q� are moved to Pt��. If Q� contains more members
than necessary to fill Pt�� an arbitrary rule may be ap-
plied to choose the members to be moved to Pt��. If Q�

contains too few members to fillPt�� the same procedure
is applied to Q� and, if necessary, to Q. Since �  � it is
guaranteed that the new population can be completed to
� members in this manner. If � is less than � then Pt��
might be filled with randomly generated individuals.

1If some q � Q� enters P � in phase 2 then at least one member of
Pt is deleted.



At the end of phase 3, each member of the original popu-
lationPt (at the beginning of phase 1) which is not domi-
nated by some offspring has been passed to the new pop-
ulationPt�� whereas each dominated parent has been re-
placed by some better offspring.

initialize P�; set t � 	
repeat

(* PHASE 1 *)
Q � offspring�Pt�
Q� �M�Q���
Q � Q nQ�

P � � Q� � �
(* PHASE 2 *)
for each q � Q�:
D�q� � fp � Pt � q � pg
if D�q� �� � then
Pt � Pt nD�q�
P � � P � � fqg
Q� � Q� n fqg

endif
if D�q� � � � q k p for all p � Pt then
Q� � Q� � fqg
Q� � Q� n fqg

endif
endfor
(* PHASE 3 *)
Pt�� � Pt � P �

if jPt��j � � then
fill Pt�� with elements from:

1. Q�

2. Q�

3. Q
untilPt�� � �

endif
t � t� �

until stopping criterion fulfilled

Figure 1: Pseudo code of the evolutionary algorithm with
partially ordered fitness.

4 Analysis

By construction of the algorithm just presented one can
easily deduce some auxiliary results that facilitate the
proof of the main result. For example, if an optimal in-
dividual is already a member of the populationPt then it
will be also a member of the next population Pt��. This
fact may be formulated as follows:

Lemma 1
Let x �M�S���. If x � Pt then x � Pt�� for t  	. ut

Suppose that an optimal offspring has been produced
which is not contained in the parent population P t. Two

things may happen. First, the offspring dominates a par-
ent in the current populationP t. In this case it will move
to P � and finally to the new population P t��. Second,
there is no parent in the current populationP t that is dom-
inated by the optimal offspring. In this case the offspring
will move to Q� and it is not guaranteed that it will also
enter the new population Pt��. Thus, an optimal off-
spring may get lost although there exist (incomparable)
parents that are not optimal! This situation is summa-
rized below.

Lemma 2
Let x � M�S���. If x � Q but x �� Pt for some t  	
then either x � P � or x � Q�. Moreover, if x � P � then
x � Pt��. ut

If all parents are optimal we are done. Suppose there exist
parents which are not optimal. Since the set of minimal
elements is complete it is guaranteed that there exists a
minimal element that dominates a non-optimal parent. In
symbols:

Lemma 3
� y � Pt � y ��M�S��� � �x �M�S��� � x � y. ut

Evidently, one needs a mechanism that guarantees the
creation of such elements (offspring) since such an event
would ensure the assignment of x to P � in Lemma 2. A
sufficient criterion for this purpose is a ‘positive variation
kernel.’

Definition 4
Let 	 with � � 	 � � denote the number of parents that
participate in the process of producing a single offspring
�y� �� � S �� where S is the search set and � is a fixed
compact subset of IRm. A transition probability function
K � �S ���� � �S ���� 
	� �� with the property

K�x�� ��� x�� ��� � � � � x�� ��� y� ��  
 � 	

for all y� x�� � � � � x� � S and �� ��� � � � � �� � � is
termed a positive variation kernel. ut

The positiveness of a variation kernel can be achieved
easily. For example, suppose that the search set is the
set of binary strings of length � and that a new offspring
is produced by (one point or uniform) crossover with
crossover probability �� and the usual bit-flipping mu-
tation, i.e., each bit is inverted independently with muta-
tion probability ��. Even if �� and �� are controlled by
some exogenous schedule or some self-adapting mecha-
nism, the positiveness of the variation kernel (represent-
ing the joint transition probabilities of crossover and mu-
tation) is guaranteed as long as �� � 
 a� b � � IR with
	 � a � b � �. A proof for this claim and further exam-
ples may be found in [6, 7].



Lemma 4
If T denotes the random number of trials necessary to
generate a specific offspring from an arbitrary collection
of parents with a positive variation kernel then

PfT ��g � ��

Proof:
Since the variation kernel is positive the probability that a
specific offspring is not generated from an arbitrary col-
lection of parents within t trial is PfT � t g � ��� 
� t.
As a consequence, one immediately obtains

PfT ��g � �� lim
t��

PfT � t g

 �� lim
t��

��� 
�t � �� ut

Now one is in the position to prove the main result:

Theorem 1
Let the variation kernel of the evolutionary algorithm de-
scribed in Figure 1 be positive. Then the population en-
tirely consists of minimal elements after a finite number
of iterations with probability one.

Proof:
Suppose that no member of the population at some step
t  	 is optimal. Lemma 3 ensures that there exist a
minimal element that dominates at least one of the par-
ents. Owing to Lemma 4 this minimal element can be
produced by the variation operators in a finite number of
steps with probability 1. It follows from Lemma 2 that
this optimal offspring will move toP � and finally toPt��.
Lemma 1 guarantees that this optimal individual will stay
in the population forever. A �-fold repetition of this ar-
gumentation leads to the conclusion that the entire popu-
lation of the evolutionary algorithm consists of minimal
elements after a finite number of steps with probability
one. ut

5 Discussion

It should be mentioned that the evolutionary algorithm
considered here realizes a stronger version of the ‘elite
preservation strategy’ than introduced in [1]: Unless
there is an offspring that dominates a specific parent, this
parent will also be a parent of the next iteration. This
stronger version is apparently necessary for proving the
convergence of the entire population to the set of mini-
mal elements.
An example of an evolutionary algorithm that violates
elite preservation is as follows: Suppose that � parents
produce � offspring with a positive variation kernel. Let
M be the set of minimal elements relative to the union
of parents and offspring. In the algorithm of Peschel &
Riedel [8], the set M is exactly the population of par-
ents of the next iteration. Needless to say, in this case the

size of the population is not constant over time and it will
finally grow to the cardinality of the set of minimal ele-
ments [1]. This kind of selection was later re-invented by
several authors—with the difference that the population
size was kept fixed. This property is usually achieved by
adding some individuals if the size of M is less than �
and by deleting some individuals from M at random if
the size of M is larger than �.
This method does not lead to convergence: Suppose that
all � parents at iteration t  	 represent minimal ele-
ments and that the cardinality of the set of minimal el-
ements is at least larger than ��. Moreover, � � �.
Since the variation kernel is positive there exists a pos-
itive minimum probability that the � offspring are not
minimal elements and that parents as well as offspring
are mutually incomparable. If jM j �  � � � �, three
members of M are deleted at random. With probability
���� � � � �� � ���	 all optimal parents will be removed
from M such that the population of parents of the next
iteration will not contain any minimal element. Thus, op-
timal individuals will be found and lost, found and lost
and so forth with some minimum probability. Clearly,
such a behavior precludes the property of convergence.
But there is a simple remedy: If the cardinality of M
is larger than � then one should delete only those mem-
bers of M at random which were not parents. In this case
the ‘strong elite preservation property’ is not violated and
one obtains convergence of the entire population to the set
of minimal elements.

6 Conclusions

An evolutionary algorithm which population is guaran-
teed to converge to the set of minimal elements in a finite
number of iterations has been proposed. The more impor-
tant contribution of this work, however, is the observation
which properties of the evolutionary algorithm are suffi-
cient to prove the convergence. These properties are (i) a
positive variation kernel and (ii) the strong elite preserva-
tion strategy. Future work should therefore be engaged in
examining other evolutionary algorithms with respect to
these properties. Since these (sufficient) conditions were
only proved for finite search sets a generalization to infi-
nite search sets is desirable. Some work on such search
sets is available [9, 10] albeit specialized to multi-criteria
problems. It would be instructive to generalize these re-
sults to the problem of finding minimal elements of arbi-
trary partially ordered sets.
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