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� Introduction

In this work� we develop asymptotic properties� in particular� convergence and upper bounds

of estimation errors for the ��� �� evolution strategy� Both constant and decreasing step size

algorithms are considered� We treat the problem as a recursive algorithm of stochastic ap�

proximation type� and use the methods in stochastic approximation to analyze the algorithms

and obtain weak convergence and with probability one �w�p��� convergence results�

Based upon collective processes with a population of individuals� which are search points

for a given problem� the evolutionary algorithms carry out desired computing tasks by use of

randomized selection� mutation and recombination� These algorithms have been applied to

many problems in parameter optimization and related �elds with great success� Signi�cant

progress has been made in the study of evolutionary algorithms for almost thirty years�

Many interesting and useful results have been obtained� To mention just a few� we cite

the work of Rechenberg ���	
�� Schwefel ������� Fogel� Owens� and Walsh ������� Fogel

������ Holland ������ De Jong ���	�� among others� For an extensive review of the recent

advances� the readers are referred to B�ack and Schwefel ����
�� B�ack� Rudolph� and Schwefel

����
�� Schwefel ����
� and the references therein�

The evolution strategies were �rst developed by Rechenberg and Schwefel in the mid����s

�Rechenberg ����� Schwefel ������ At that time� applications in hydrodynamics such as

optimizing the shape of a bent pipe and a �ashing nozzle were dealt with� Di�erent versions

of the strategy were simulated �Schwefel ������ The research in this subject has become

a rapidly growing one ever since� Nowadays� the ��� �� evolution strategies� introduced by

Schwefel ���		�� Schwefel ������ are the state�of�the�art in evolution strategy research�

By examining the evolutionary algorithms �EAs� closely� there appears to be a natural

connection between EAs and stochastic approximation� However� such a connection has not

been explored until very recently �Yin� Rudolph� and Schwefel ������ In the aforementioned

paper� the authors dealt with the �connection� question in a general setting� whereas in the

current paper� we are aiming at deriving asymptotic properties for a class of evolutionary

algorithms�

Such a study is important� First it will enhance our understanding on the intrinsic

properties of the ��� �� strategy� which in turn will lead to further improvement of the com�

putation procedures� In addition� by formulating the problem as a stochastic approximation





algorithm� many analytical tools can be employed to carry out the theoretical investigation�

In Yin� Rudolph� and Schwefel ������� the hidden step size of the ��� �� strategy was

discussed in an example� Here we take a closer scrutiny� and try to understand the basic

properties of the scale parameter in the randomized sequence� It should be pointed out

that EAs and stochastic approximation do have distinct features� The objective function

f��� under consideration in EAs is available through simulation� whereas the corresponding

counter part in stochastic approximation is only observable and available in the form of

noisy measurements� Nevertheless� such a di�erence should not prevent us with employing

stochastic approximation methods to analyze EA procedures�

Our plan is as follows� We formulate the problem and then convert it into a stochastic

approximation algorithm in the next section� Section 
 deals with weak convergence issues�

We show how the discrete iteration is related to a continuous time dynamical system� By

taking appropriate interpolation� it is shown that an interpolated process converges weakly

to a solution of an ordinary di�erential equation� Then� we proceed with obtaining upper

bounds for the estimation errors in Section �� This step is carried out via the use of the

Liapunov function approach and stability of the dynamic system� Utilizing the upper bound

as a bridge� we seek further development on a suitably scaled sequence for small a and large n�

In the process of getting the asymptotic properties for the constant step size algorithms� our

main technique is the weak convergence methods developed by Kushner �see Kushner ����

and the references therein�� Section � contains the analysis of algorithms with decreasing

step size� W�p�� convergence is derived by means of the ordinary di�erential equation �ODE�

method� Some concluding remarks are issued in Section �� Finally� an appendix containing

the proof of a lemma is provided�

� Problem setup

��� ��� �� Evolution strategy

We wish to minimize a function f � IRd �� IR� The plan is to employ the ��� �� evolution

strategy� for � � � Loosely� the strategy can be described as follows� In each generation�

one parent produces � o�spring� Among the o�spring� choose the best one �with respect to

the evaluation of the objective function� to form the next estimate�

To be more speci�c� generate sequences of random vectors fzn�i�g� for � � i � � that






are independent and identically distributed �i�i�d�� normal random variables with mean

zero and covariance ��Id� where Id denotes the d � d identity matrix such that for each

n� zn���� � � � � zn��� are independent� To carry out the minimization task� choose an initial

estimate x� � IRd� At iteration n� add the random vector zn�i� to the current content� i�e��

xn�zn�i�� for i � �� � � � � �� We evaluate the corresponding values f�xn�zn�i��� Next� choose

the smallest among the � values of f���� That is�

f�xn � zn�j�� � min
���n

f�xn � ��� where �n � fzn�i�� i � �� � � � � �g� ���

Then assign xn � zn�j� to xn��� In short

xn�� � argminff�xn � zn����� � � � � f�xn � zn����g� ��

This problem was studied in Rudolph ������ by using martingale convergence theorem�

Here we take a di�erent approach� Our task now is to convert �� to a recursive algorithm of

stochastic approximation type so that the techniques in analyzing stochastic approximation

type of algorithms can be applied�

Remark� In Eq� ��� above� without loss of generality� we have assumed that there is only

one j satisfying ���� If there are more than one indices satisfying ���� choose j to be the

smallest one among them� i�e��

j � minf� � l � �� f�xn � zn�l�� � min
���n

f�xn � ��g�

��� A recursive algorithm

It is well known that the standard deviation � is a scale factor in the problem� Since

zn�i� are i�i�d� random vectors and zn�i� � N��� �Id�� we can re�scale the sequence zn�i�

or equivalently� de�ne another sequence f�zn�i�g by setting zn�i� � ��zn�i� such that �zn�i� �
N��� Id�� That is� �zn�i� follows the standard normal distribution� Now �� can be rewritten

as

xn�� � xn � �
�X
i��

�zn�i�Iff�xn�zn�i��min���n f�xn���g� �
�

where I� is an indicator function�

Again� in the equation above� we have assumed that there is only one i satisfying ����

For the case of multiple indices leading to the minimal� choose i to be smallest of them and
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as a result

xn�� � xn � �
�X
i��

�zn�i�Iff�xn�zn�i��min���n f�xn���	 i�min��l�� f�xn�zn�l���min���n f�xn���g�

For notational simplicity reason� we shall use �
� throughout� As mentioned before� there is

no loss in generality to do so�

In evolution strategy� one often chooses � so that it is proportional to ���d�H�fx�xn���

where fx��� denotes the gradient of f���� d is the dimension of the problem and H��� � IRd ��
���	� is an appropriate real�valued function such that H��� � � and the only root of H��� is

�� With a denoting the proportional constant multiplied by ��d� the recursive formula can

be written as

xn�� � xn � aH�fx�xn��
�X

i��

zn�i�Iff�xn�zn�i���min���n f�xn���g� ���

Eq� ��� in fact� is a constant step size stochastic approximation algorithm with step size a�

Since normally the problems we treat are large dimensional ones� a is relatively small� Our

interest lies in obtaining convergence and rate of convergence results for the limit case a� ��

We wish to emphasize the following point� In the actual computation� we neither change

the evolution algorithm nor modify it in any way� The equivalent expression ��� is simply

a convenient form that allows us to analyze the algorithm by using methods of stochastic

approximation�

��� An assumption

In the sequel� K denotes a generic positive constant� By convention� K � K � K and

KK � K� We make the following assumption throughout of the paper�

�A� The function f��� is convex and is twice continuously di�erentiable such that fxx���
is bounded� i�e�� for all x � IRd� jfxx�x�j � K� where fxx��� denotes the second derivative �or

Hessian� of f���� f�zn���g�� � � � f�zn���g are sequences of i�i�d� normal random vectors such

that �zn�i� � N��� Id� for i � �� � � � � ��

Remark� Since we can generate f�zn�i�g� they are at our disposal so the i�i�d� condition is

not a restriction� From the basic assumption� we know that the components of �zn�i� denoted

by �zn�j�i� for j � �� � � � � � d� are N��� �� and �zn���i�� � � � � �zn�d��� are also independent� Since

fxx��� is continuous� it is bounded on bounded sets� Here we require a slightly stronger
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condition� When we carry out the EA computation� we are normally interested in the solution

on bounded sets only� Furthermore� it is possible to design algorithms with projections

and�or truncations so that the boundedness of the iterates are ful�lled�

� Convergence

Under very natural conditions� we derive the convergence theorem and relate the discrete

iteration to a continuous time ordinary di�erential equation� Note that the iterates xn in

��� should really have been written as xan� We have suppressed the a�dependence to keep the

notation simple� In the sequel� if it is necessary we may retain it as needed�

We recall the de�nition of weak convergence �rst� A sequence of random variables

fwng is said to converge to w weakly� if for any bounded and continuous function g����
Eg�wn� � Eg�w� as n�	� Weak convergence is a substantial generalization of the notion

of convergence in distribution� It implies much more than the simple convergence of multi�

dimensional distributions since the function g��� can be chosen in various ways� Note that

g��� is an arbitrary bounded and continuous function� and is not related to the objective

function f��� in any ways� The concept of weak convergence can be employed not only to

random variables living in an Euclidean space� but also random processes taking values in

function spaces as well�

In the process of getting weak convergence result� one often needs to verify that the

sequence involved is tight� A sequence fwng of IRd�valued process is tight� if for any � � ��

there is a compact set S� in IRd� such that P �wn 
� S�� � � for all n� The de�nition of

tightness carries over to the more general metric space valued sequences� A well�known

theorem due to Prohorov �see Ethier and Kurtz ����� states that� in a complete separable

metric space� tightness is equivalent to sequential compactness� In other words� once the

tightness is veri�ed� one may proceed to extract convergent subsequences�

There are reasons that weak convergence analysis is more preferable in many applications�

First� it requires much weaker conditions than its with probability one convergence counter

part� Second� dealing with the problem of rates of convergence� we often need to obtain weak

limit results� Therefore� one is forced to treat convergence in distribution or convergence in

the weak sense any way� Third� to analyze a constant step size algorithm� we need to use

weak convergence tools since if a constant step size is used� almost sure �w�p��� convergence

results cannot generally be expected� In addition� the constant step size algorithms are
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known to have the ability of tracking small parameter variations and are rather robust with

respect to the noise processes�

For technical purposes� it is easier to deal with paths than measures� A device known as

Skorokhod representation allows one to �change� the weak convergence to w�p�� convergence

on a larger space� For the detailed account on the concept of weak convergence as well as

many related materials� we refer the readers to the book Ethier and Kurtz ������ and the

references therein�

In our weak convergence analysis to follow� we often work with Dd���	�� which is the

space of functions� that are right continuous� have left�hand limit endowed with certain

weak topology �Skorokhod topology�� Our analysis requires that �rst the tightness of the

underlying processes be veri�ed and then the limit process be characterized�

To proceed� with step size parameter a� we de�ne a process xa��� by a piecewise constant

interpolation as follows�

xa�t� � xn for t � �na� na� a��

Thus� in lieu of examining the discrete iterates� we treat the process in continuous time�

which gives us a better description on the dynamic behavior of the system involved�

In what follows� we apply the direct averaging methods �see Kushner ����� Chapter

�� to study the process xa���� Notice that due to the distinct features of the evolutionary

algorithms� the argument in Kushner ������ needs to be modi�ed for our needs�

In the weak convergence approach� normally� one needs to have an averaging condition

of law of large numbers type� Such a condition now holds for our case based on the basic

assumption �A�� The essence of the direct averaging approach is to treat the variable x as

�xed� and only average out the noise processes� Keeping this in mind� we �rst derive a

preparatory result below�

Theorem ���� Let Em denote the conditional expectation with respect to the ��algebra

Fm� generated by fx�� �zj�i�� j 	 m� i � �� � � � � � �g� Under Condition �A��

�� for each x� denote

E
�X
i��

�zn�i�Iff�x�
zn�i���min���n f�x���g � 
�x��

Then for any n � m�

Em

�X
i��

�zn�i�Iff�x�
zn�i���min���n f�x���g � 
�x�� ���

	



�� For each x 
� xmin� �that is� f�xmin� � minx f�x��� 
�x� is in the descent or

	downhill
 direction� i�e�� f �x�x�
�x� 	 �� Moreover� there exists a function �H���
such that for all r with � 	 r 	 �H�fx�x��� we have f�x � r
�x�� 	 f�x��

Remark� We notice that 
��� is a function of x� It also implicitly depends on the function

f���� The second assertion indicates that the algorithm is stable �we will be more precise

about this in the sequel�� In view of the �rst assertion in the above theorem� for each m�

each n� and each x�

�

n

n�m��X
k�m

Em

�X
i��

�zk�i�Iff�x�
zj�i���min���k f�x���g
� 
�x��

which will be needed in the sequel� Thus a law of large numbers type of condition holds for

the underlying sequence�

Proof of Theorem 
��� The veri�cation of the �rst assertion above is almost obvious� We

only note that although
P�

i�� �zn�i�Iff�xn�zn�i���min���n f�xn���g is used� at any given instance�

only one of the random vectors is non�zero� For any n � m� since �zn�i� is independent of

Fm�

Em

�X
i��

�zn�i�Iff�x�
zj�i���min���n f�x���g � E
�X

i��

�zn�i�Iff�x�
zj�i���min��� f�x���g � 
�x��

As for the second part of the theorem� for simplicity� we suppress the subscript in zn and

write it as z instead in what follows� We note that the ��� ���ES generates � i�i�d� Gaussian

random variables� which can be decomposed as z
D
� ru� where u denotes a random vector

distributed uniformly on the surface of a unit hypersphere and r a nonnegative random

variable stochastically independent from u�

Let xn be the current position with xn 
� xmin� Then the algorithm compares the values

f�xn � z����� f�xn � z���� � � � � f�xn � z���� �

The new position xn�� is the argument xn � z�b�� b � f�� � � � � �g� that o�ers the lowest

objective function value� Owing to Condition �A�� for L � �

f�x � h� � f�x� � f �x�x�h � Lh�h� ���

the algorithm compares the values f�x�� f�x � z�i��� which can be bounded by

f�x�� f�x � z� � �f �x�x� z � Lz�z � �rf �x�x�u� r�L �	�
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with the usage of inequality ���� If we can show that the expectation of the maximum of the

right�hand side of �	� within � trials is larger than zero� then it is clear that the expectation

of the selected step z�b� is a step of descent�

Assume that r is a constant for the moment� inequality �	� may be used to formulate the

condition

max
i
f�f �x�x�ui g � rL �

where f �x�x� denotes the transpose of fx�x�� This leads to

max
i
f jfx�x�j cos�i g � rL �

where we used the relation
�f �x�x�ui
jfx�x�j � cos�i �

Here� �i denotes the random angle between the negative gradient and the random direction

ui� Finally� taking expectations we obtain

M� �� E� max
i
fcos�ig  � rL

jfx�x�j
so that

� � H�fx�x�� �� r � M�

L
jfx�x�j �� �H�fx�x�� � ���

To proceed� we state a lemma� Its proof is contained in the appendix�

Lemma ���� The random variable c � cos� possesses a Beta distribution with parameters

p � q � d� � �� and distribution function

Fc�x� �
�

B��d� ���� �d � ����

Z �x�����

�
y�d�������� y��d����� dy ���

where d denotes the dimensionality of random vector u�

Now come back to the proof of Theorem 
��� Using Lemma 
�� it remains to show

that M� � �� Note that M� �  � E�maxfBi � i � �� � � � � �g � �� where the random

variables Bi possess Beta distribution with parameters as in ��� but with support ��� ��� Let

m� � E�maxfBi � i � �� � � � � �g � Since the probability density function of Bi is unimodal

and symmetric with respect to ��� we may use the inequality �see David ��	�� p� �
�

F �m�� � �

� � �
�

�


�� � �

�



where F ��� denotes the distribution function of Bi� Since F ��� is convex�concave� the inverse

F����� is concave�convex� so that m� � F������� Moreover� F ���� � �� due to symmetry�

Thus� m� � �� for � �  and M� � m��� � �� and the proof of Theorem 
�� is completed�

�

Remark� The second part of Theorem 
�� was shown for the case that r is a deterministic

choice� whereas z
D
� ru was assumed to be a normal random vector� We argue that this

result re�ects the situation in large parameter spaces �d �� ��� Since r � �n���� we have

E�r� � �
q
d� ��� and V ar�r� � ���� Therefore� the realized step size r has only small

variation so that we can regard r � �
q
d � �� � �

p
d as a good approximation� Then

relation ��� becomes

� 	
M�

L
p
d
jfx�x�j�

Now we are in a position to present the weak convergence theorem which links the discrete

iteration with a continuous time dynamic system�

Theorem ���� Suppose that Condition �A� holds and H��� and 
��� are continuous� Then

fxa���g is tight in Dd���	�� such that as a� �� every weakly convergent subsequence has a

limit x��� satisfying the following di�erential equation

!x �
dx

dt
� H�fx�x��
�x�� x��� � x�� ����

provided that the equation has a unique solution for each initial condition x��

Remark� Before going through the proof� let us make the following remarks� The conditions

indicates that H � IRd �� IR is a continuous function� Therefore� the composite function

H�fx���� is continuous� We also require 
 � IRd �� IRd be continuous�

In the theorem above� we assumed that the initial condition x� is the same as that of the

discrete iteration and does not depend on a� More complex situations� i�e�� x� � xa� can be

treated� The analysis is about the same� The only di�erence is that we have to add another

condition xa� converges weakly to x� as a � �� The continuity of 
�x� is not a restriction�

Taking expectation is a smoothing process� Even indicator functions after such a process

become continuous�

Proof of Theorem 
�
� For clarity� we divide the proof into several steps�

Step �� �The use of N �truncation�� Since it is not known a priori� whether the iterates

fxng are bounded� we utilize the N �truncation technique �see Kushner ����� p� �
�� For
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each N 		� de�ne SN � fx� jxj � Ng� that is the ball with radius N � Recall that xa�N�t�

is an N �truncation of xa�t� if xa�N�t� � xa�t� up until �rst exit from SN � and

lim
A��

lim sup
a��

P

�
sup
t�T

jxa�N�t�j � A

�
� � for each T 		� ����

For the discrete algorithm� we use

xNn�� � xNn � aH�fx�x
N
n ��

�X
i��

�z�i�n I
ff�xNn�z

�i�
n ��min���n f�xN���g

qN�xNn �� ���

where qN��� is a truncation function taking the form

qN�x� �

��
�

�� x � SN �
�� x � IRd � SN���
smooth� otherwise�

Step � �Tightness of the truncated process fxa�N���g�� By the de�nition ���� fxNn g is

bounded� Since H��� is a continuous function and f��� is C�� H�fx�xNn �� is bounded� As a

result�

E

�����H�fx�x
N
n ��

�X
i��

�zn�i�Iff�xNn�zn�i���min���n f�xNn ���g

�����
�

� KE
�X
i��

j�zn�i�j� Iff�xNn�zn�i���min���n f�xNn ���g

� K
�X
i��

E
����z�i�n

���� 		�

It follows that �
H�fx�xNn ��

�X
i��

�zn�i�Iff�xNn�zn�i���min���n f�x���g

�

is uniformly integrable� Lemma 	 in Chapter 
 of Kushner ������ then yields that fxa�N���g
is tight and the limit of any convergent subsequence has continuous paths w�p��� Now

extract a convergent subsequence� For notational simplicity� still use a as the index of the

subsequence and denote the limit by xN���� By using the Skorokhod representation� without

loss of generality� we may assume that xa�N��� converges to xN��� w�p��� and the convergence

is uniform on any bounded interval� Our next task is to characterize the limit process�

Step 
� �Characterization of the limit process xN����� Our objective here is to show

that the limit process xN ��� satis�es a truncated version of the equation ����� Introduce the

notion

MN �t� � xN�t�� xN����
Z t

�
H�fx�x

N� ��
�xN� ��qN�xN � ��d�

��



It is easily seen that MN ��� is Lipschitz continuous� If it is a martingale� then it must

be a constant �see Kushner ������ However� MN ��� � �� As a result� MN �t� must be �

identically� or equivalently� xN ��� is a solution of the ordinary di�erential equation �����

Thus the problem reduces to verify the martingale property of MN ���� To prove this� we

need only show that for any bounded and continuous function h���� any integer � and j � ��

with tj � t 	 t� s�

Eh�xN�tj�� j � ���MN �t � s��MN �t� � ��

We begin with the process xa�N���� In what follows� �t � s��a� t�a etc� are all meant to be

integers for notational convenience �if they are not integers� we can always take the integral

parts anyway��

By using the interpolation�

lim
a
Eh�xa�N�tj�� j � ���xa�N�t � s�� xa�t� 

� lim
a
Eh�xa�N�tj�� j � ���xN�t�s��a � xNt�a 

� lim
a
Eh�xa�N�tj�� j � ��

�
	a �t�s��aX

k�t�a

H�fx�x
N
k ��

�
�X
i��

�zk�i�Iff�xN
k
�zk�i���min���k f��x

N
k
���gqN�xNk �



�

��
�

Now choose a sequence of integers fnag satisfying na � 	 as a� � but �a � ana � �

as a� �� Subdivide the interval �t�a� �t� s��a� into intervals with length na� The term on

the right side of the last equality sign of Eq� ��
� then can be rewritten as�

lim
a
Eh�xa�N�tj�� j � ��

�
�
	�t�s��aX

k�t�a

aH�fx�x
N
k ��

�X
i��

�zn�i�Iff�xN�zn�i���min���k f�x
N
k
���gqN�xNk �

�
A

� lim
a
Eh�xa�N�tj�� j � ��

�
�
	�t�s�X
l�a�t

�a
�

na

X
k�La

ElnaH�fx�x
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i��

�zk�i�Iff�xN�zn�i���min���k f�x
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k
���gqN�xNk �

�
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where La denotes the interval lna � k � lna � na � �� and Elna denotes the conditioning on

Flna� the ��algebra generated by fx�� zk�i�� k 	 lna� i � �� � � � � � �g� Since xN�tj� for j � �

are Flna�measurable� this conditioning can be inserted�

De�ne the piecewise constant interpolation of

�

na

X
k�La

ElnaH�fx�x
N
k ��

�X
i��

�zk�i�Iff�xN
k
�zk�i���min���k f�x

N
k
���gqN�xNk �

�



on �l�a� l�a � �a� as �Ha� �� Then

lim
n
Eh�xa�N�tj�� j � ��

�Z t�s

t

�Ha� �du�
t�sX
l���t

�a
�

na

X
k�La

ElnaH�fx�x
N
k ��

�
�X
i��

�zk�i�Iff�xN
k
�zk�i���min���k f�x

N
k
���gqN�xNk �



� ��

In view of the above equation� we need only consider the limit of the function �Ha��� as a� ��

By using the nested conditional expectation� for k � lna�

ElnaH�fx�x
N
k ��

�X
i��

�zk�i�Iff�xN�zk�i���min���k f�x
N
k
���gqN�xNk �

� ElnaH�fx�x
N
k ��

�X
i��

Ek�zk�i�Iff�xN
k
�zk�i���min���k f�x

N
k
���gqN�xNk �

� ElnaH�fx�x
N
k ��
�xNk �qN�xNk � by Theorem 
���

In view of the continuity of the functions H���� f���� 
��� and qN���� we have

�

na

X
k�La

H�fx�x
N
k ��
�xNk �qN�xNk � �

�

na

X
k�La

H�fx�x
N
lna�
�xNlna�qN�xNlna� � o���

� H�fx�xa�N�l�a���
�xa�N�l�a��qN�xNlna� � o����

where o���
a��� in probability� Letting l�a �  � we can further replace

H�fx�x
a�N�l�a���
�xa�N�l�a��qN�xa�N�l�a�� by

H�fx�x
N� ���
�xN� ��qN�xN � ���

The limit for the truncated process is thus proved�

Step �� �The result for the un�truncated process�� The proof is similar to that of Theorem

 of Chapter 
 in Kushner ������� Let Px������ and PN ��� be the measures induced by x���
and xN ���� respectively� Due to the uniqueness of ����� Px������ is unique� For each T 	 	�

Px����B� � PN�B� for each Borel subsets B  B� where

B � fx��� � Dd���	�� x�t� � SN for each t � Tg�

Observe that

Px���fsup
t�T

jx�t�j � Ng N��� as N �	�

The desired result thus follows� The proof of the theorem is completed� �

�




� Further asymptotic results

We derive further asymptotic properties in this section� In the �rst subsection� we derive an

upper bound of the estimation errors and in the second subsection� we study the case a is

small and n is large and obtain limit results�

��� An upper bound on the estimation error

The result is recorded in Theorem ��� below� It indicates how the estimation errors depend

on the step size� and gives us a way to assess the rate of convergence�

Theorem ���� Let the conditions of Theorem ��� be satised� Suppose that � is an asymp�

totically stable point of ����� and suppose that there is a twice continuously di�erentiable

Liapunov function V ��� � IRd �� IR� such that V �x� � � for all x� V �x�
jxj����	� Vxx��� is

bounded� and V �
x�x�H�fx�x��
�x� 	 ��V �x� for all x 
� � and for some � � �� Furthermore�

let jH�x�j � K�� � jxj� and jfx�x�j� � K�� � V �x��� Then the following statements hold�

�� EV �xn� 		 and hence fxng is tight in IRd�

�� There is an Na � � and an a� � � such that for all n � Na� and all a � a��

EV �xn� � O�a��

Remark� It has been shown in our Theorem 
�� that the vector �eld 
��� is always in the

downhill direction� Our analysis is based on the Liapunov stability theory� Although we

assumed the existence of a Liapunov function� its actual form need not be known� As far as

the theoretical development is concerned� there is no loss of generality to assume that � � �

since we can always translate the coordinate axes by subtracting �� Henceforth� we work

with the case � � �� This is rather convenient for notational concern�

Proof of Theorem ���� We shall only prove the second part of the theorem� The proof of the

�rst part is easier�

Using the recursive formula ���� and owing to the fact that xn is Fn�measurable� together

with the continuity of H��� and f����

��



EnV �xn���� V �xn� � aV �
x�xn�H�fx�xn��

�X
i��

�zn�i�Iff�xn�zn�i���min���n f�xn���g

�a�H��fx�xn��
�X
i��

�z�n�i�Iff�xn�zn�i���min���n f�xn���g

�Vxx�x�n �
�X
i��

�zn�i�Iff�xn�zn�i���min���n f�xn���g

� aV �
x�xn�H�fx�xn��
�xn� � Ka�H��fx�xn��Enj�znj�

� ��aV �xn� � Ka��� � V �xn���

����

where x�n is a point on the line segment joining xn and xn���

For su"ciently small a � �� i�e�� there exists an a� � � such that for all � 	 a � a��

Ka� � �a � ���a� and as a result

EnV �xn��� � ��� ��a�V �xn� � Ka��

Taking expectation and iterating on the above inequality leads to

EV �xn��� � ��� �a��nEV �x�� � Ka�
nX
i��

�� � �a��i

� ��� �a��nEV �x�� � Ka�

����

Choose Na such that for all n � Na� �� � �a��n � Ka� Then the desired estimate follows

from ����� This concludes the proof of the theorem� �

To proceed� we note that Theorem 
�
 gives us a convergence result that is on arbitrarily

large but still bounded time interval� One of our interests is to �gure out what happens

when a is small and n is large� This problem is treated in Section ��� As it was� we assume

that � � � throughout�

��� Convergence for a � � and n � �

For all problems� it is important to have a convergence result which is uniform in t� The

way to study the problem is similar to what has been done in Theorem 
�
� However� we

wish to have the time variable tends to in�nity� Introduce another sequence ftag such that

ta � 	 as a � �� The signi�cance of the di�erential equation ���� is that its stationary

points correspond to the points fx�x� � � we are searching for� In lieu of xa��� as de�ned in

Section 
� consider xa��� ta�� Note that the weak convergence result alone does not imply

that xa���ta� converges weakly to a stationary solution to ����� In what follows� we establish

the convergence of this sequence�

��



Theorem ���� Under the conditions of Theorem ���� xa��� ta� converges to � � � weakly�

Proof� The proof is quite similar to that of Theorem 
�
 and to a corresponding result

in Kushner and Yin ����	�� so we will be very brief� For each T 	 	� consider the pair

�xa��� ta�� xa�� �T � ta��� The tightness can be obtained as in the previous case� Therefore�

we can extract a convergent subsequence� still use a as the index and denote the limit by

�x���� xT ����� It is clear that x��� � xT �T � due to the construction� The value of xT ��� may

be not known� However� in accordance with Theorem ���� the values of it belongs to a set

that is tight� As a result� by the stability argument� for any �� � �� there is a T�� such that

for all T � T��� P �jxT �T �j � ��� � ��� This completes the proof of the theorem� �

� Algorithms with decreasing step size

There are times that we may wish to use decreasing step size algorithms� This section is

concentrated on the study of such algorithms related to the ��� �� strategy� Consider

xn�� � xn � anH�fx�xn��
�X
i��

�zn�i�Iff�xn�zn�i���min���n f�xn���g� ����

where fang is a sequence of nonnegative real numbers such that

an
n����

�X
n��

an � 	�
�X
n��

a�n 		�

A typical choice of fang is an � O���n� �� with �� 	 � � �� In what follows� we derive the

w�p�� convergence result and then establish an upper bound on the estimation errors�

��� W�p�� convergence

In this section� we obtain a w�p�� convergence result by using the ordinary di�erential equa�

tion method �see Benveniste� M#etivier� and Priouret ����� Kushner and Clark ��	�� Ljung

��		� and the references therein�� For future use de�ne

�S � fx� H�fx�x��
�x� � �g�

�n�x� �
�X

i��

�zn�i�Iff�x�zn�i���min���n f�x���g�

Theorem ���� Let �A� hold� Suppose that there is a twice continuously di�erentiable Lia�

punov function V ��� � IRd �� IR� such that V �x� � � for all x� V �x�
jxj���� 	� Vxx��� is bounded�

��



and V �
x�x�H�fx�x��
�x� 	 ��� for all x and for some �� � �� and jV �

x�x�H�fx�x��
�x�j �
K�� �V �x��� Furthermore� jH�x�j � K�� � jxj� and jfx�x�j� � K�� � jV �

x�x�H�fx�x��
�x�j��
Then fxng is bounded w�p��� In addition� xn converges to �S w�p��� i�e��

P


lim
n��

��xn� �S� � �
�

� ��

where ���� denotes the usual distance function such that ��x� �S� � infy� �S ��x� y�� In partic�

ular� if �S � f�g� a singleton set� then xn
n��� w�p���

Proof� We �rst note owing to the assumptions of the theorem

H��fx�x�� � K�� � jV �
x�x�H�fx�x��
�x�j��

Direct computation yields that

EnV �xn���� V �xn� � anV
�
x�xn�H�fx�xn��En�n�xn�

�a�nH
��fx�xn��En�

�
n�xn�Vxx�x

�
n ��n�xn�

� an�� � an��n�V �
x�xn�H�fx�xn��
�xn� � a�n�n

� �Kan�� � a�n�n 	 ��

��	�

for some N� and all n � N�� where x�n is point with all of its components sitting between xn

and xn��� f��ng and f�ng are sequences of uniformly bounded random variables�

In view of ��	�� for n � N�� V �xn� is a supermartingale� Since V �xn� � �� the limit

of V �xn� exists w�p��� Since V �x�
jxj���� 	� the boundedness of fxng �in the sense of w�p���

follows�

To complete the proof of the theorem� we apply a result from Kushner and Clark ���	���

First rewrite the recursion as

xn�� � xn � anH�fx�xn��
�xn� � anH�fx�xn����n�xn�� 
�xn� � ����

In accordance with Theorem ��� of Kushner and Clark ���	��� we need only verify that

mn �
nX
i��

aiH�fx�xi����i�xi�� 
�xi� converges w�p��� ����

It is readily seen that mn is a martingale� Since fxng is bounded w�p��� H�fx�xn�� is also

bounded w�p�� by the continuity of H��� and fx���� Consequently� since xi is Fi�measurable�

�X
i��

a�iH
��fx�xi��Ei j�i�xi�� 
�xi�j�

� K
�X
i��

a�i �Ej�zn�i�j� � Ej
�xi�j� 		�

�	



since fxig is bounded w�p�� and 
��� is continuous� Owing to the local martingale convergence

theorem in Chow ������� ���� holds� Now apply Theorem ��� of Kushner and Clark� the

desired results follow� �

��� EV �xn� 	 O���n�� for an 	 ��n�

Next we obtain an upper bound for the estimation errors� Since the techniques and details

are similar to that of Theorem ���� we shall omit the proof�

Theorem ���� Let the conditions of Theorem ��� be satised� and an � ��n� for some �� 	

� � �� Suppose that � is an asymptotically stable point of ����� and suppose that in addition

to the conditions of Theorem ���� the Liapunov function V ��� satises V �
x�x�H�fx�x��
�x� 	

��V �x� for all x 
� � and for some � � �� Then there is an N � � such that for all n � N �

EV �xn� � O�n���� �

� Concluding remarks

In this work� asymptotic properties of the ��� �� evolution strategy was developed by use of

stochastic approximation methods� The evolutionary algorithm was rewritten in a recursive

form and then the analytic tools in stochastic approximation were employed to carry out the

investigation� We considered both constant step size and decreasing step size algorithms�

Under suitable conditions� we have obtained the convergence and the error bounds of the

underlying algorithm� Our current e�ort lies in studying more complex situations� and

extend the results to evolution strategies with noisy evolution�

This paper is our �rst e�ort in using stochastic approximation method to analyze the

evolution strategies� One of the immediate questions is can we extend the results to non�

smooth functions f���$ We believe the answer is a"rmative� It seems that we can deal with

non�smooth functions by use of the non�smooth analysis techniques in conjunction with

stochastic approximation methods� The analysis for the corresponding recursive procedures

then becomes that of set�valued� and the di�erential equations become di�erential inclusions�

Much more details need to be given serious thoughts� and deserve further study and in depth

investigation�

Recently� several modi�cations on the standard stochastic approximation procedures were

proposed by Polyak� Ruppert and Bather �see Yin and Yin ������ or Yin �to appear� for more

��



details and references�� which result in asymptotical optimality� Such attempts have soon

attracted much attention� One of the ingredients of their approach is the use of arithmetic

averaging� It is conceivable such an idea may well be suited for studying the evolutionary

algorithms�

A further promising observation is that stochastic approximation methods provide a route

to convert discrete time EAs to equivalent continuous time evolutionary processes so that we

can apply the well developed mathematical apparatus to analyze continuous time stochastic

processes to the investigation of evolutionary algorithms that are more complex than the

��� �� EA considered here�

Appendix� Distribution of cos�

Proof of Lemma 
�� Let X � N��� Id�� Then U � X�jXj is uniformly distributed on

a hypersphere surface of dimension d and X and jXj are stochastically independent �see

Fang� Kotz� and Ng ������ We wish to answer the question� what is the distribution of

cos �� where � is an angle between a vector y and u$ Without loss of generality� choose

y � e� � ��� �� � � � � ���� Then

cos��� � e�� u �
e�X

jXj �
X�

jXj
and

Z � cos� � �
X�

�Pd
i��X

�
i

�
X�

�

X�
� �

Pd
i��X

�
i

�

Thus� X�
� � ��

� and
Pd

i��X
�
i � ��

d��� so that Z � Beta ��
�
� d��

�
� with probability density

function �p�d�f��

f�z� �
z���� �� � z��d�����

B���� �d � ����
� I�����z� �

Transformation of the above density with C � Z��� leads to

f�c� �


B���� �d � ����
��� c��d������� � c��d����� � I ��� ��c� �

which is the p�d�f� of j cos� j� Due to symmetry of the cosine we may modify the above

p�d�f� to obtain

f�c� �
�

B���� �d � ����
��� c��d������� � c��d����� � I���� ��c�

��



so that the distribution function of cos � is

Fc�x� �
�

B���� �d � ����

Z x

��
��� c��d������� � c��d����� dc �

As a result� direct substitutions yield

Fc�x� �
d��

B���� �d � ����

Z �x�����

�
y�d�������� y��d����� dy

�
�

B��d� ���� �d � ����

Z �x�����

�
y�d�������� y��d����� dy

���

where we used the relation B���� �d � ���� � d��B��d � ���� �d � ����� Thus� cos�

possesses a Beta distribution on ���� � � �
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