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Abstract

Simulated annealing and and single trial versions of evolution strategies

possess a close relationship when they are designed for optimization over

continuous variables� Analytical investigations of their di�erences and

similarities lead to a cross�fertilization of both approaches� resulting in

new theoretical results� new parallel population based algorithms� and

a better understanding of the interrelationships�
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� Introduction

Simulated annealing �SA	 �Kirkpatrick
 Gelatt
 and Vecchi ���	 is a widely used
method for combinatorial optimization problems� If this method is designed for op�
timization over continuous variables
 i�e�
 minff�x	 jx � M � IRng
 there is a close
relationship between simulated annealing and evolution strategies �ES	 �Rechenberg
���� Schwefel ����� Schwefel ����	 and also evolutionary programming �EP	 �Fogel
����� also see B�ack and Schwefel ���	� The investigation of these interrelationships
will lead to a cross�fertilization of both approaches
 resulting in new theoretical results

new parallel population based algorithms
 and a better understanding of the importance
of some algorithmic features of SA and ES�
In Section � SA is related to single trial versions of ES by a general Markov process
model� From this model it is easy to see that potential di�erences between SA and
ES only can arise by the choice of the sampling and acceptance distributions� There�
fore
 some SA algorithms given in the literature are investigated with respect to these



distributions with the result
 that the sampling distributions used in SA algorithms
may be divided into �xed and non��xed distributions� Results originally derived for
single trial ES indicate that �xed sampling distributions are causing early stagnation
in convergence speed
 so that the massively parallel SA algorithm to be developed in
Section � should use a non��xed sampling distribution as it is used in ES�
The choice of the acceptance distribution a�ects the convergence properties� Therefore

some theoretical results are compiled and it is shown that it is not possible to achieve
geometric convergence rates with SA algorithms that use acceptance distributions guar�
anteeing global convergence�
It is instructive to investigate multiple trial versions in the spirit of ��� p	�ES
 where
p denotes the number of trials that can be performed in parallel� This analysis given
in Section  reveals that is now possible to achieve geometric convergence rates for SA
with p � �
 when using appropriate non��xed sampling distributions� This is possi�
ble because the competition between at least two new samples to be selected for the
acceptance test mostly overrules the original acceptance rule� Although the gain in
convergence speed when increasing the number of trials is shown to grow logarithmicly
only
 multiple trial versions have the potential to improve their properties� It is possible
to supply ��� p	�type algorithms with the ability to self�adapt their sampling distribu�
tions as it was introduced by Schwefel �����	 in ES� This mechanism is transferred to
��� p	�SA and related algorithms�
In Section � this feature appears again in the massively parallel neighborhood algorithm
in disguised form� The neighborhood algorithm �NA	 is the �rst population based
algorithm considered here� The close relationship between SA and ES makes it possible
to develop an algorithmic frame so that the NA may be instantiated with ES
 SA or
other acceptance rules and sampling distributions�
Computational results presented in Section � indicate that this family of massively
parallel optimization algorithms are powerful tools in global optimization�

� Markovian optimization algorithms

Single trial variants of SA and ES algorithms can be studied in the general framework
of Markovian processes� The general algorithmic frame can be formulated as�

choose X� �M � IRn and set t � �
repeat

Yt�� � Xt � Zt

Xt��� Yt�� � a�Xt� Yt��� �	 �Xt � ��� a�Xt� Yt��� �		
increment t

until termination criterion satis�ed

Here
 a�x� y� �	 denotes the acceptance function which may depend on additional pa�

rameters� The distribution of random vector Zt is chosen to be symmetric
 i�e� z
d
� B z

for every orthogonal matrix B� In this case z may be expressed in its stochastic rep�

�



resentation z
d
� r u
 where r is a nonnegative random variable and u a random vector

uniformly distributed on a hypersphere surface of dimension n �Fang
 Kotz
 and Ng
����	� This reveals that the trial point generation mechanism of the above algorithm
is equivalent to that of a random direction method with some chosen distribution for
the step size r �Rappl ����� Rappl ����	�
Depending on the choice of the acceptance function a�x� y� �	 and of the generating
distribution of z one obtains a family of Markovian optimization algorithms which can
be identi�ed by a sequence of transition probabilities �Pt	t�IN �see Appendix	�

Pt�x�A	 �
Z
A

Qt�x� d�	 qt�x� �	 d� � �A�x	
Z
M

Qt�x� d�	 �� � qt�x� �		 d� ��	

with A � M 
 x � M and where Qt��	 denotes the generating distribution
 �A��	 the
indicator function of set A and qt��	 the acceptance probability function which is related
to the acceptance function at��	 via

at�x� y� �	 � ����qt�x�y������	 � ��	

where � is a random variable uniformly distributed on ��� ��� Typical examples are�

q�x� y� �	 � �IR�
�
�f�x	� f�y	 � T 	 or �	

q�x� y� �	 � �IR��f�x	� f�y		 or ��	

q�x� y� �	 � �IR�
�
�f�x	� f�y		 � �IR��f�x	� f�y		 � exp

�
f�x	� f�y	

T

�
� ��	

where �	 is used by threshold accepting methods proposed by Dueck and Scheuer
�����	 for combinatorial problems and tested by Bertocchi and Di Odoardo �����	 for
continuous variables
 whereas ��	 is applied by evolution strategies and ��	 by simulated
annealing�
Usually
 the sampling distribution is chosen to be a uniform distribution on bounded
regions
 e�g�
 �xed �Wille and Vennik ����� Khachaturyan ����� Wille ����	 or adapted
hypercubes �Vanderbilt and Louie ����� Haines ����� Corana
 Marchesi
 Martini
 and
Ridella ����	
 and �xed �Bohachevsky
 Johnson
 and Stein ����	 or adapted hyper�
sphere surfaces �Bertocchi and Sergi ����	� As it is not possible with those distribu�
tions to reach each state in M when trapped in a local minimum a mechanism must
be provided that allows the possibility of transitioning to regions with worse objective
function values� This is realized by using ��	 in ��	� However
 in order to establish
any convergence at all
 the probability of accepting a worse point has to be decreased
towards zero over time� Investigations into the global convergence properties of SA
has mainly concentrated on the case of a �nite or countable state space �see e�g� the
review of Romeo and Sangiovelli�Vincentelli ����	� For continuous state spaces there
are results in form of stochastic di�erential equations �Alu��Pentini
 Parisi
 and Zirilli
����� Gelfand and Mitter ����a� Gelfand and Mitter ����b	
 whereas a global conver�
gence proof of the original SA optimizing over general state spaces is given by Haario
and Saksman �����	� Their result indicates that in case of SA the rate of decrease of
parameter T in ��	 has to be logarithmic as in the �nite case� Tt � T�� log�t� �	�





Table �� Typical cooling schedules used in practical applications

cooling type schedule references
logarithmic Tt � T�� log�t� �	 Haario and Saksman �����	
geometric Tt � ct T� with c � ��� �	 Vanderbilt and Louie �����	

Wille and Vennik �����	
Wille �����	
Corana et al� �����	
Bertocchi and Sergi �����	

subtractive Tt � maxf�� T� � t�Tg Haines �����	
linear Tt � T���t� �	 Szu and Hartley �����a	

Szu and Hartley �����b	
function value Tt � � f�Xt	 � � Bohachevsky et al� �����	

Empirical results with this so�called cooling schedule Tt indicate that the time until
convergence is of exponential order� Thus
 other schedules are used in practical ap�
plications �see table �	 which provide faster but possibly nonglobal convergence� This
problem can be circumvented by an appropriate choice of the generating distribution�
Indeed
 if M is bounded one might use the uniform distribution over M and global
convergence for continuous functions follows from standard arguments �Devroye ����	
with Tt � � for all t � �� Szu and Hartley �����a	 claim that global convergence
can be established by employing a multidimensional Cauchy distribution with density

g�x	 � Kn Tt �T 	
t � jjxjj		

��n����	

 which concentrates trials around � according to the

schedule Tt � T���t��	� The advantage achieved over the use of sampling distributions
with bounded support is due to the fact that for each trial there exists a �small	 prob�
ability to reach any state� Actually
 under some conditions no cooling is necessary at
all such that ��	 becomes equivalent to ��	 and global convergence can be guaranteed�

Theorem � �Solis and Wets ����� Pint�er ����	
Let f� �� minff�x	 jx � Mg 	 �� and for the Lebesgue measure of the level sets
Lf��� �� fx �M j f�x	 	 f� � 
g holds ��Lf���	 	 � for all 
 	 �� If

�X
t
�

Q�xt� Lf���	 �� 

 	 � ��	

then f�Xt	� f� with probability one� �

For instance
 letQt�xt� A	 �
R
A gt�y�xt	 dy withA � IRn be the generating distribution


where g��	 denotes the density of a n�dimensional normal random vector with zero
mean and covariance matrix Ct � �	

t I� If minf�t j t 	 �g � � 	 � and f�x	 � �
for jjxjj � �
 the lower level sets are bounded and there exists a minimum positive
probability to hit the level set Lf��� regardless of xt� Thus
 lim inf

t��
Q�xt� Lf���	 	 � and

the sum in ��	 diverges� A related result is given in B�elisle �����	�
Although global convergence of the above type should be the minimum requirement of
a probabilistic optimization algorithm it is more interesting to inquire into the �nite
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time behavior
 i�e�
 the rate of convergence� For �nite state spaces it is known that the
convergence rate of the probability to reach the optimal state is of order ��O�t�a	 with
a 	 � depending on the problem �Chiang and Chow ����	� This is slow asymptotic
convergence compared to the rate of convergence of pure random search which is of
order ��O��t	 with � � ��� �	� The latter expression converges much faster as t��

but empirical results indicate that SA is a much better optimization algorithm than
pure random search� Therefore
 this measure is of limited utility�
Another convergence measure is the expected error de�ned by t �� E�f�Xt	 � f���
The following examples will reveal that the convergence rate of the sequence �t	 has
di�erent orders depending on whether a �xed 
 i�e�
 Qt��	 � Qs��	 for all s� t � �
 or a
non��xed generating distribution Qt��	 is chosen�

Example �

Let f�x	 � kxk	
 M � Sn�r	
def
� fx � IRn � kxk 	 rg with � � r � �� Moreover
 let

Yt have uniform distribution on M and use acceptance criterion ��	� Then the c�d�f� of
the objective function value per sample is

F �v	 �

���
��

� � v 	 �
vn�	�rn � v � ��� r		
� � v � r	 �

��	

Withmt �� minff�X�	� f�X		� ���� f�Xt	g and using results from extreme value statistics
�Resnick ����	 one obtains Pfmt 	 vg � � � ��� F �v		t� With appropriate norming
constants at� bt there is weak convergence to a Weibull distribution�

Fmt
�v�at � bt	 � �� ��� F �v�at � bt		

t w� H����v	 � �� � exp��v�		 ��	

with � 	 � and v 	 �� A necessary and su�cient condition to apply ��	 is that
vL �� inffv � IR jF �v	 	 �g 	 �� and that

lim
h���

F �vL � v h	

F �vL � h	
� v� ��	

for v 	 � and � 	 �� Then
 a possible choice of at� bt for the weak convergence is given
by at � ����t � vL	
 bt � vL and �t � F�����t	�
Here
 vL � � and the limit ��	 becomes vn�	 such that at � t	�n�r	 and bt � �� It
follows that t converges to

t � E�f�Xt	� f�� � E�mt�� a��t E�W � � r	 ��� �
�

n
	 t�	�n � O�t�	�n	 � ���	

where W has Weibull distribution H��� with � � n���
The above algorithm is nothing more than a pure random search algorithm� To recog�
nize that there is not much gain from using a sampling distribution with �xed support

suppose that M � IRn and Yt�� � Xt � Zt with Zt � U�Sn�r		� r � ����	 �xed� After
t� steps this algorithm reaches a point xt� with kxt�k � r��� The algorithm subse�
quently resembles pure random search on the region Sn�r	 and the convergence rate of
t declines to O�t�	�n	 for t � t�� �

More generally�

�



Theorem � �Rappl ����	
Let f be �m�M	�strongly convex
 i�e�
 f is continuously di�erentiable and with some
constants m 	 ��M � � there holds

m kx� yk	 	 �rf�x	�rf�y		��x� y	 	 m �M kx� yk	

for all x� y � M � If the generating distribution Q��	 is �xed
 the expected error t
decreases with O�t�	�n	 for any starting point x� �M � �

The next example will demonstrate that the convergence rate of t can be accelerated
substantially when using an appropriate non��xed generating distribution�

Example �

Again
 consider the ��� �	�strongly convex problem with f�x	 � kxk	 and M � IRn�
The sampling vector Zt is chosen to be multinormally distributed with zero mean and
covariance matrixCt � �	 I� Consequently
 for the distribution of the objective function
values we have f�xt�Zt	 � �	�	

n��	
 where �
	
n��	 denotes a noncentral �

	�distribution
with n degrees of freedom and noncentrality parameter � � kxtk	��	� Using the fact
that as n��


�	
n��	� �n� �	q
��n� ��	

� N � N��� �	 �

�Johnson and Kotz ����
 p� ��	 the limit distribution of the relative variation of

objective function values de�ned as V
def
� �f�xt	� f�Xt��		�f�xt	 becomes

V � �� �	

kxt k	
�	
n��	 � �s

	

n
� s	

n

s
�

n
�
�

s	
N  �s

	

n
� �s

n
N �n 		 �	

with �t � s kxt k�n� As the algorithm only accepts improvements
 we are interested in
the expectation of the random variable V � � maxf�� V g
 which is given by

E�V �� �
�

n

��
�s
s
�

�
exp

�
�s

	

�

�
� s	

�
��  

	
s

�


��
�

where  ��	 denotes the c�d�f� of a standard normal random variable� The expectation
becomes maximal for s� � ����� �see �g� �	 such that E�V �� � ������n and

�� �
�����

n
kxk �

�����

n
krf�x	k �

This value is also given in Rechenberg ����	� The dependence on the problem dimen�
sion n is of importance� Geometric convergence can still be guaranteed if this factor is
omitted but it will be very slow compared to the optimal setting �see �g� �	� �

�



Figure �� Normalized improvement versus normalized standard deviation

More generally�

Theorem  �Rappl ����� Rappl ����	
Let f be �m�M	�strongly convex� If the generating distribution is non��xed such that

Zt
d
� Rt �U 
 where U is a random vector uniformly distributed on a hypersphere surface

of dimension n and Rt � krf�xt	k � R with some positive random variable R with
nonvoid support on ��� a	
 a � �
 then the expected error t decreases with O��t	

� � ��� �	� �

It is clearly not possible to get convergence rates of order O��t	 for t when using a log�
arithmic cooling schedule� Let �ft � f�Xt	�f�xt��	� This random variable can be de�
composed into �ft � �f

�
t ��f�t with �f�t � maxf�ft� �g and �f�t � maxf��ft� �g�

The expected variation of the objective function value E��ft	 is the di�erence between
expected improvement and expected deterioration� E��ft	 � E��f�t 	�E��f�t 	� From
Example � we get E��f�t � � ����� �f�xt	�f�	�n and E��ft� � ������	 �f�xt	�f�	�n
so that E��f�t � � ���� �f�xt	� f�	�n� If the process would converge geometricly then

�



the probability of accepting a worse point tends to one when using a logarithmic cooling
Tt � T�� log�t� �	�

exp���f�t �Tt	 � exp
�
�
	
����

n


t
log�t� �	 �f�x�	� f�	�T�

�
� � as t�� �

This might explain why several authors have used a geometric cooling schedule in their
versions of simulated annealing
 even though the guarantee of global convergence no
longer holds� The con!icting goals of global convergence and fast convergence speed
could be satis�ed if it were possible to adapt and concentrate the support of the generat�
ing distribution to the lower level sets at each step t� In this case geometric convergence
of t can be shown even for Lipschitz�continuous functions with several local minima
�Zabinsky and Smith ����	� This idea will be reconsidered when discussing massively
parallel Markovian algorithms�

� Parallel simulated annealing

The Markovian algorithms considered so far are not well�suited for parallelization�
For �nite state space variants some proposals are surveyed in Greening �����	� A
straightforward method to take advantage of parallel hardware is to perform
 say p

trials in parallel on p processors and to select the best� This is the idea of the so�called
��� p	�evolution strategies �Schwefel ����	 and it can be used for SA as well �Bertocchi
and Sergi ����	� However
 a simple example reveals that the speedup is less than O�p	
even for strongly convex functions�

Example 
For the same problem as in Example � consider the following algorithm� instead of
performing only one trial
 perform p 	 � trials and accept the best trial among these
according to some acceptance probability qt��	� Then the expected improvement given
for parallel ES in B�ack
 Rudolph
 and Schwefel ����	 can be generalized to

E�Vp� �
�

�

�Z
��

u � g
�
u� �

�
� p

�
qt�u� �	 du

with � � ���	n�krf�xt	k	
 � � ���krf�xt	k
 and where

qt�u� �	 �

����
���
�IR��u	 
 for �� � p	�ES
�IR��u	 � �IR�

�
�u	 � exp�u�Tt	 
 for SAp

�IR��u	 � �IR�
�
�u	 
 for ��� p	�ES

���	

and

g�x� p	 ��
d p�x	

dx
�

pp
��

exp��x	��	 �x	p�� �

Obviously

E�V �

p � � E�V SA
p � � E�Vp� ���	

�



where acceptance probabilities in ���	 are used from top to bottom� E�V �
p �
 E�V

SA
p � and

E�Vp� denote the expected improvement for a ���p	�ES
 SA with p trials and a ���p	�
ES
 respectively� Inequality ���	 indicates
 that the expected improvement for SA with
p trials is somewhere between the expected improvement of a ���p	�ES and a ���p	�
ES� For increasing p the gap between the inequalities ���	 becomes successively closer
leading to equality for p � �� Therefore
 the di�erence between evolution strategies
and simulated annealing decreases as more trials are performed in parallel� Moreover

as pointed out in B�ack et al� ����	
 the optimal expected improvement �i�e�
 using
optimal �� �

p
� log p krf�x	k��n	 increases asymptotically as E�Vp�  � log p�n
 so

that the speedup is only of order O�log p	 if p processors are used� �

Although the expected speedup may appear quite low
 these variants can be supplied
with the property to self�adapt their generating distributions� This idea was �rst
realized by Schwefel �����	 in the following manner�
Using biological terminology
 let �xt� �t	 � IRn � IR� represent an individual at step t

where the components of vector xt are phenotypic traits and �t is regarded as a gene�
In example � a new trial point was generated via Xt�� � xt � Zt
 where Zt was a
random vector normally distributed with zero mean and covariance matrix Ct � �	

t � I

�t � c � krf�xt	k for some constant c 	 �� This operation may be regarded as a
pleiotropic mutation of the original vector xt � Here
 the generating distribution was
controlled deterministically by exploitation of the gradient information� Whenever the
gradient information is not available another method can be employed� Before mutating
vector xt the distribution control parameter �t is mutated by multiplication with a
lognormal random variable St � exp�Nt	
 where Nt is a normal random variable with
zero mean and standard deviation � � c � n���	 with some constant c 	 ��
With this mechanism the algorithm self�adapts its generating distribution� Assume
that �t 	 � and that the optimal new value for �t�� is ��� Now �t is multiplied
with a lognormally distributed random variable with support ����	� Therefore
 the
probability to sample a new �t�� in an 
�neighborhood of �� is P �j�t�����j � 
	 � p�

say� If we perform k independent trials
 the probability to sample a new � "close# to
�� is � � ��� p�	k � � as k �� for all 
 	 ��

Example �
Let f�x	 � kxk	 with n � � and consider a ��� p	�ES with p � ��� The following
experiment demonstrates the self�adapting capabilities of evolution strategies� Using
the starting point x� � ����� ���� � � � � ���	�
 the optimal control parameter value would
be �� � ������� In the experiment
 this value was set to �� � ���
 which o�ers only
small expected progress� As shown in Figure � a near�optimal value was obtained after
about ��� generations� From then on the self�adapted control parameter �t was close
to the optimal value
 so that the convergence speed was accelerated substantially� Note
that two quantities are optimized simultaneously� The objective function as well as the
generating distribution� The feedback for adapting the generating distribution stems
from the quality of the realized random vectors
 i�e�
 the feedback is not direct� This is
sometimes called second level learning �Ho�meister and B�ack ����	� �

�



Figure �� Best objective function value f�x	 over time

Figure � Self�adaptation of generating distribution� �opt denotes the optimal distribu�
tion control parameter whereas �r denotes the control parameter which was realized by
the algorithm

��



� Massively parallel simulated annealing

Another straightforward parallelization scheme is to run the sequential algorithm on p
processors independently �Bertocchi and Sergi ����	 as a parallel version of the well�
known multistart technique� This is well suited for SIMD parallel computers which
perform the same instruction on p processors in parallel but on di�erent data streams�
A more sophisticated parallel algorithm should use the information gathered by the
other processors� But in general it is an open question as to which information should
be exchanged between the processors in order to accelerate the search on the one hand
and to increase the global convergence reliability on the other� Again
 natural evolution
can be regarded as a guide for some design decisions�

��� Parallel neighborhood models

The essential idea of neighborhood models is to supply the population with a spatial
structure which may be de�ned as any connected graph� On each node there is an
individual which communicates with its nearest neighbors in the graph� These near�
est neighbors are regarded to be the neighborhood of the individual� This model was
used by M�uhlenbein
 Gorges�Schleuter
 and Kr�amer �����	 and appeared later under
terms like plant pollination model �Goldberg ����	
 parallel individual model �Ho�meis�
ter ����	 or di�usion model� The �rst implementations of the model onto a parallel
machine has been conducted by Gorges�Schleuter �����	
 Sprave �����	
 Palmer and
Smith �����	 and Spiessens and Manderick �����	
 whereas Manderick and Spiessens
�����	 tested a simulation on a uniprocessor machine� All these implementations have
been developed for genetic algorithms in order to solve combinatorial or pseudoboolean
optimization problems� The �rst usage of this model in the context of optimization
over continuous variables appeared in Rudolph �����	�
In most cases the spatial structure of the population was adapted to the processor com�
munication network of the underlying parallel machine� As demonstrated in Sprave
�����	 it is useful to design algorithms of the above type for SIMD�type parallel com�
puters
 because these algorithm can be mapped onto MIMD�type computers easily�
Therefore
 the most usual spatial population structures are meshes or toroids�

��� Design of the neighborhood algorithm

Here
 the neighborhood algorithm �NA	 was designed to run on a torus topology
 where
each node of the torus has a label �i� j	 with i � �� �� � � � �K� and j � �� �� � � � �K	� In
particular�

��



On each node �i� j	�
initialize x� �M � IRn and �� 	 �
set t � �
repeat

if recombination � true then
let �xt��� �t��	 be a recombination of �xt� �t	 and a neighbor

else
�xt��� �t��	 � �xt� �t	

endif
�t�� �� �t�� � St
xt�� �� xt�� � �t�� � Zt

get neighbors �xt��� �t��	� �xt�	� �t�		� � � � � �xt�m� �t�m	
select xt�b with f�xt�b	 � minff�xt��	� f�xt��	� � � � � f�xt�m	g
if a�xt� xt�b� �	 � � then

�xt��� �t��	 � �xt�b� �t�b	
else

�xt��� �t��	 � �xt� �t	
endif
increment t

until termination criterion ful�lled

In the above algorithm �xt� �t	 denotes the sequence of accepted points� The pair
�xt��� �t��	 contains the new generated �not yet accepted	 individual on the node� The
random vector Zt is normally distributed with zero mean and the unit matrix as its
covariance matrix
 whereas St is a lognormally distributed random variable with pa�
rameter � � n���	� The size m of the neighborhood is assumed to be constant for all
nodes which seems most natural due to the regularity of the processor communication
network� The experiments have been performed with several neighborhood sizes and
structures
 which will be discussed in section �� The acceptance function a��	 already
described in ��	 can be chosen� It remains to clarify how to choose a neighbor when re�
combination is desired� In this implementation two variants have been tried� Choose a
neighbor at random or choose the best one of the neighborhood� Other variants can be
imagined �Gorges�Schleuter ����	� Similarly
 many recombination operators are possi�
ble� Here
 the following variant �hypercube recombination	 has been used� Let x� y � IRn

be the parent and v � IRn be the result of recombination� Then v � x � �y � x	 � �

where � is a random vector uniformly distributed in ��� ��n� Consequently
 the o�spring
v is always located within the hypercube de�ned by the parent x and y�
The self�adaptation mechanism described in Section  does also work for the neighbor�
hood algorithm� The initialization routine produces individuals with diverse generating
distributions so that the search has global character in the �rst phase� After some
generations there emerge several clusters of "similar# neighboring individuals� The
neighborhood of individuals not located at the border of a cluster consists of nearly
identical individuals and each of them generates an o�spring with nearly the same gen�
erating distribution
 so that we may view the generation scheme of individuals in the
inner part of the cluster as a ���m� �	�type scheme�
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Convergence to the global optimum can be guaranteed under the conditions of Theorem
�� But the main advantage of NA is its property that local solutions
 which are the
best solutions known at step t
 spread over the population quite slowly preventing the
extinction of individuals
 which may lead to the global solution� This behavior can
be demonstrated by considering the evolution of the mixture density induced by the
generating densities of all individuals within the population�

��� Evolution of the mixture distribution

Let fi�v� �i	 denote probability density functions with parameter vectors �i� Then

f�v	 �
pX

i
�

ci � fi�v� �i	 ��	

with mixing weights ci 	 �

Pp

i
� � � and �nite p is called a �nite mixture density
function �Titterington
 Smith
 and Makov ����	�
Regarding f�� � � � fp to be the generating densities of the individuals �xi� �i	 and setting
ci � ��p �i � �� � � � � p	
 then the mixture density ��	 may be viewed as the generating
density of the entire population� Here
 parameter vector �i gathers the mean xi �the
object variable vector	 and the covariance matrix Ci � �	

i I of the generating normal
density N�xi� Ci	 of each individual �xi� �i	� Using ��	 it is possible to visualize the
evolution and the motion of the mixture density of the population for problems of
dimension n � ��

Example �
Let the feasible region be M � ���� ��	 for the following objective function�

f�x	 �

�����
����
�x� � �		 � �x	 � �		 
 if x� � �� x	 � �
�x� � �		 � �x	 � �		 � 
 
 if x� � �� x	 	 �
�x� � �		 � �x	 � �		 � 
 
 if x� � �� x	 	 �
�x� � �		 � �x	 � �		 � 
 
 if x� � �� x	 � �

���	

with 
 � ������ The global minimum is f� � � at point ��� �	� and there are  local
minimal points ������	�
 ���� �	 and �����	 with f � 
 	 �� The NA used recombi�
nation and acceptance criterion ��	 on a torus of size ������ Figures � and � illustrate
the evolution of the mixture distribution� �

If there is only one global optimum point x� and the NA converges to the global mini�
mum
 it is necessary that the means xi tend to x�
 i�e�
 the mixing density concentrates
its probability mass around the global optimum point� Theorem � guarantees that the
NA converges to the global optimum if � � const over time� Therefore
 it is not neces�
sary that the mixing distribution converges weakly to the Dirac delta distribution with
expectation x� and zero covariance matrix� But Theorem � indicates that the conver�
gence rate will be of the same order as the rate for pure random search� Zabinsky and
Smith �����	 proved that a geometric rate
 as in Theorem 
 could be achieved even
for multimodal Lipschitzian functions
 if it was be possible to adapt the support of the
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generating distributions to the lower level sets� Of course
 this is possible only for spe�
cial problems and with additional knowledge about the objective function
 because the
support will split into disconnected sets
 which are unknown in general� As every distri�
bution can be described as a mixture of an in�nite number of normal densities
 it might
be possible to approximate such a distribution if the population size were su�ciently
large and if the individuals$ generating distributions were adapted appropriately� In
this case the covariance matrix should tend to a zero matrix
 i�e�
 � � �� This happens
in Example �� It is
 however
 an open question as to which problem classes the proba�
bilistic mechanism for adapting the generating distribution provides global convergence
as well as fast convergence� Therefore
 we only can refer to empirical results indicating
that this mechanism works well in most cases�
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Figure �� Evolution of the density of the joint generating distribution� At the �rst
generation there is nearly a uniform distribution over the feasible region� Note that
the scaling of the z�values are di�erent for all plots� At the second generation the
probability mass is moved towards the four local minimal points� The global minimal
point ��� �	� attracts only little probability mass compared to the other three local
minimal points� This changes at the third generation� Now the global minimal point
attracts more and more probability mass at the expense of the local solutions
 whose
regions however are still explored�
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Figure �� Evolution of the density of the joint generating distribution� The distribution
becomes more and more peaky around the global optimum point� At the ���th genera�
tion the distribution has lost its multimodality and converges to the Dirac distribution
at the global minimal point ��� �	��
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� Computational results

Although convergence to the global minimumcan be guaranteed under some conditions

nothing is known about the time complexity� Therefore
 the NA was tested for several
global optimization problems to achieve a preliminary assessment of its behavior�

��� Test problems

Test problem f� is a strictly convex problem and should not pose a problem for the
NA� It was included into the testbed to check its convergence rate if the population is
attracted by a local minimum point
 whereas test problem f	 was included to check the
algorithm$s ability to conquer plateaus� Test problems f� and f� taken from Scha�er
et al� �����	 possess local minimal points which are arranged in sets with a spherical
structure� Test problems f�f� are known as the Shekel problems
 which have �
 �
and �� local minima
 respectively� For test problems f� and f� the number of local
minima increases exponentially with the problem dimension� In both problems the
local minimum points are arranged regularly in the feasible region� Test problems
f�f� are taken from T�orn and Zilinskas �����	�

Test problem n M f�

f��x	 �
Pn

i
� x
	
i � kxk	 � ������ ����n �

f	�x	 �
Pn

i
�bxi � ���c	 � ������ ����n �
f��x	 � ��� � �sin

	 kxk � ���	��� � �����kxk			 � ������ ����n �
f��x	 � kxk��	 �sin	���kxk��	 � �� � ������ ����n �
f�x	 � �P

i
���x�Ai	�x�Ai	
� � ci�

�� � ��� ���n �������
f��x	 � �P�

i
���x�Ai	�x�Ai	� � ci��� � ��� ���n ��������
f��x	 � �P��

i
���x�Ai	�x�Ai	� � ci��� � ��� ���n �������
f��x	 � kxk	����� �Qn

i
� cos�xi�
p
i	 � � �� ������ ����n �

f��x	 � kxk	 � ��Pn
i
���� cos���xi	� � ���� ��n �

The coe�cients of the Shekel functions are summarized below�

i Ai ci
� � � � � ���
� � � � � ���
 � � � � ���
� � � � � ���
�  �  � ���
� � � � � ���
� � �   ��
� � � � � ���
� � � � � ���
�� � �� � �� ���

��



��� Parametrization of the neighborhood algorithm

The NA was tested on a �� � ����torus
 so that ���� individuals were evolved in
parallel� To check whether the potential success of the algorithm is caused by the large
number of individuals �search trajectories	
 the algorithm was applied to each problem
without any communication� In other words
 the simple sequential algorithm was run
���� times in parallel with di�erent random generator seeds �multistart technique	� All
other runs used either a von Neumann or a Moore neighborhood for communication�
Figure � illustrates the di�erence�

Figure �� An individual �black	 has four neighbors �grey	 in a von Neumann neighbor�
hood �left side	 and eight neighbors in a Moore neighborhood �right side	�

Two mating strategies were tested� Either choose the best individual from the neigh�
borhood for recombination or choose it at random from the neighborhood�
A geometricly temperature schedule Tt � �t was chosen with � � ����
 � � ���� and
� � �� Note that the variant � � � is an evolution strategy variant� An o�spring is
selected if and only if it is better than its parent on the speci�c grid element� The
maximal number of generations was limited to �� for problems f� and f	
 ��� for f�
and f�
 ��� for f�f� and ��� for f� and f��

��� Test summary

The NA was applied ten times for each parameter setting� Each problem was regarded
as solved when the algorithms hit the level set L� � fx � M � f�x	 � f� � 
g with

 � ���� These �rst hitting times were averaged over the �� runs� The following tables
summarize the results obtained� The mating strategy is labeled as no� random and best
in the column Reco� The neighborhood structure �NBH	 is abbreviated with no
 vN
�von Neumann	 and Mo �Moore	� Column Hits denotes the number of events where
the level set was hit at all
 which was the basis for the mean �rst hitting times �Mean	
and the empirical standard deviation �Dev	�
None of the �� � ���� "sequential# runs approximated the solution of problem f� up
to the desired accuracy within �� steps� Although there was actual convergence
 the
rate was very low because the self�adaptation of the sampling distribution only works
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if competition is present� As the neighborhood increases
 fewer iterations are required�
A further source of acceleration is o�ered by recombination� It only takes half the
time to hit the desired level set� The choice of the acceptance function does not seem
to have a signi�cant e�ect� This trend is continued for problem f	� Competition is
necessary to self�adapt the sampling distribution and recombination accelerates the
search substantially�
The situation changes for the the multimodal test problems f� � f�� Now competition
is the major source of improvement� Note that the results for f� and f� without re�
combination�mating are better than those for random mating and only slightly worse
than those for best mating� But these problems are of low dimension
 so it may be that
mutation alone is su�cient to search the feasible region e�ectively� Seemingly
 random
mating is not a good advice� The results for best mating are better than those for
random mating regardless of the test problem under consideration�
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Table �� Test results for problems f��f��
f� � � ���� � � ���� � � ����

Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no � % % � % % � % %

vN � ������ ���� � ����� ��� �� ������ ���
Mo �� ������ ��� �� ������ � �� ������ ����

random vN �� ������ ���� �� ������ ���� �� ����� ����
Mo �� ������ ���� �� ������ ���� �� ������ ����

best vN �� ������ ���� �� ������ ���� �� ����� ����
Mo �� ������ ���� �� ������ ���� �� ������ ����

f	 � � ���� � � ���� � � ����
Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no � % % � % % � % %

vN �� ������ ��� �� ������ ���� �� ������ ����
Mo �� ������ ��� �� ������ ���� �� ������ ����

random vN �� ����� ���� �� ����� ���� �� ����� ����
Mo �� ����� ���� �� ����� ���� �� ����� ����

best vN �� ���� ���� �� ����� ���� �� ����� ����
Mo �� ����� ��� �� ����� ���� �� ����� ����

f� � � ���� � � ���� � � ����
Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no  ������ ����� � ������ ���� � ������ �����

vN �� ���� ����� � ����� ���� �� ��� �����
Mo �� ���� ���� �� ����� ���� �� ����� ����

random vN �� ����� ��� �� ���� ��� �� ����� ����
Mo �� ���� ��� �� ����� ��� �� ���� ��

best vN �� ���� ���� �� ����� ��� �� ���� ����
Mo �� ����� ��� �� ����� ���� �� ����� ����

f� � � ���� � � ���� � � ����
Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no � % % � % % � % %

vN �� ����� ���� �� ����� ���� �� ����� ���
Mo �� ����� ���� �� ����� ���� �� ����� ��

random vN �� ����� ���� �� ����� ���� �� ����� ����
Mo �� ����� ���� �� ����� ���� �� ����� ����

best vN �� ���� ���� �� ���� ���� �� ����� ����
Mo �� ����� ���� �� ����� ��� �� ����� ����
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Table � Test results for problems f�f�
f � � ���� � � ���� � � ����

Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no � % % � % % � % %

vN �� ����� ���� �� ����� ���� �� ����� ����
Mo �� ��� ���� �� ���� ���� �� ���� ����

random vN �� ����� ���� �� ����� ��� �� ��� ����
Mo �� ����� ���� �� ���� ���� �� ����� ���

best vN �� ����� ���� �� ���� ���� �� ����� ����
Mo �� ����� ���� �� ���� ���� �� ����� ����

f� � � ���� � � ���� � � ����
Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no � % % � % % � ����� ����

vN �� ����� ���� �� ����� ��� �� ����� ���
Mo �� ����� ��� �� ��� ���� �� ����� ����

random vN �� ����� ���� �� ����� ���� �� ����� ����
Mo �� ���� ���� �� ����� ���� �� ���� ����

best vN �� ��� ���� �� ����� ���� �� ���� ����
Mo �� ����� ���� �� ����� ���� �� ����� ����

f� � � ���� � � ���� � � ����
Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no � % % � % % � % %

vN �� ����� ���� �� ����� ���� �� ����� ����
Mo �� ���� ���� �� ���� ���� �� ���� ����

random vN �� ���� ���� �� ����� ���� �� ���� ����
Mo �� ����� ��� �� ���� ���� �� ����� ����

best vN �� ���� ���� �� ����� ���� �� ����� ����
Mo �� ����� ���� �� ���� ��� �� ����� ����

f� � � ���� � � ���� � � ����
Reco NBH Hits Mean Dev Hits Mean Dev Hits Mean Dev
no no � % % � % % � % %

vN �� ������ ���� � ���� �� � ������ ����
Mo � ����� ���� �� ����� ���� �� ����� ����

random vN �� ����� ���� �� ����� ���� �� ����� ���
Mo �� ����� ���� �� ����� ���� �� ����� ����

best vN �� ����� ���� �� ����� ��� �� ����� ����
Mo �� ����� ���� �� ����� ���� �� ����� ���
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Table �� Test result for problem f� with discrete recombination

f� � � ����
Reco NBH Hits Mean Dev
random vN �� ��� ����

Mo �� ���� ����
best vN �� ���� �����

Mo �� ���� ����

Similar conclusions may be drawn for test problems f � f�� Random mating is as good
as no mating and best mating produces only slightly better results� Moreover
 a larger
neighborhood seems to accelerate the search
 whereas the choice of a speci�c acceptance
criterion does not o�er a signi�cant advantage�
Test problem f� is ���dimensional and possesses many local minima� Now recombina�
tion helps in searching the feasible region more e�ectively and produces better results
than mutation alone� Again
 best mating is better than random mating and mating in
a Moore neighborhood is better than mating in a von Neumann neighborhood�
Test problem f� was not solved by any variant� Although recombination helped to
obtain better local solutions
 the best discovered solutions always had a �tness value
larger than ��� These results seem to indicate that recombination is not very useful for
multimodal optimization� But this question turns out to be more complicated� When
using discrete recombination
 i�e�
 vi � xi � �yi � xi	 � �i for all i � �� �� � � � � n with
Pf� � �g � Pf� � �g � ���
 the results for f� are much better �see table �	� The
success of this recombination scheme for problem f� has a simple explanation �Rudolph
����	� During the �rst iterations most individuals approximate a local optimal point�
As all local optimum points are arranged regularly on a lattice
 discrete recombination
always assembles a local optimum� In other words
 for this problem the search space is
restricted to the space of local minimum points� In general
 this problem is NP�hard
but in this case it is much easier because as the distance to the global optimum point
decreases the objective function values of the local optima are lower�
Recently
 M�uhlenbein and Schlierkamp�Voosen ����	 also used problems f� and f� to
test their breeder genetic algorithm �BGA	� The success of the BGA for these problems
relies on its mutation operator
 because more than one third of all mutations occur
on a line that is parallel to a coordinate axis� Indeed
 the probability to generate a
point in a subspace of dimension k is of order ���e � k&	
 where e � exp��	� As soon
as the objective function possesses nonlinearities of higher order with several variables

the BGA would face the same problems as any other coordinate strategy that searches
preferably in low dimensional subspaces�
As the local minima of problems f� and f� are arranged on a regular lattice
 mutations
on a line parallel to a coordinate axis very often result in an improvement provided that
a local minimum was approximated previously� Therefore
 the BGA is a specialist for
solving such problems and a fair comparison with more general methods hardly seems
possible� But one should keep in mind that every recombination�crossover scheme
specializes an algorithm in solving a certain class of problems� The usage of many
di�erent interacting specialized methods can therefore be a fruitful alternative�
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� Conclusions

Although simulated annealing and evolution strategies are inspired from rather di�erent
disciplines
 their Markov chain formulation reveals their close relationship� The �rst
essential di�erence concerns the acceptance criterion� But as soon as parallel versions
of both approaches are implemented
 this di�erence becomes less essential because
competition plays the major role in accepting a new trial point �individual	� In addition

competition was identi�ed as the necessary condition for self�adaptability�
The second essential di�erence between SA and ES relies on the usage of multiple
search trajectories in ES� It was demonstrated that the ideas of parallel ES can be used
to design a massively parallel SA algorithm in a straightforward manner� Even the
recombination mechanism can be incorporated�
The recombination mechanism used in this computational study �hypercube recombina�
tion	 does not seem to be very useful for the test suite� It accelerates the search for more
or less unimodal problems and o�ers slight advantages when tackling high dimensional
multimodal problems� Other recombination mechanisms �discrete recombination	 can
operate on this test suite with greater success� This observation supports the author$s
belief that a useful general purpose recombination operator does not exist� Positive
e�ects of speci�c recombination operators depend on the problem under consideration�
Therefore
 it might be useful to employ di�erent recombination operators within the
massively parallel NA�
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Appendix� Derivation of Equation 	�


Let x �� A �M � The probability to transition from x �� A to an element in A is

P �x�A	 �
Z
A
Q�x� d�	 q�x� �	 d� � ���	

where Q�x� d�	 is the probability to generate a point within the cylinder set d� � A
and q�x� �	 is the probability to accept the point �� If x � A
 then the transition
probability is

P �x�A	 � � �
Z
MnA

Q�x� d�	 q�x� �	 d�

� � �
Z
M
Q�x� d�	 q�x� �	 d� �

Z
A
Q�x� d�	 q�x� �	 d�

�



�
Z
M
Q�x� d�	�

Z
M
Q�x� d�	 q�x� �	 d� �

Z
A
Q�x� d�	 q�x� �	 d�

�
Z
M
Q�x� d�	 ��� q�x� �		 d� �

Z
A
Q�x� d�	 q�x� �	 d� � ���	

Combining ���	 and ���	 into one formula gives

P �x�A	 �
Z
A
Q�x� d�	 q�x� �	 d� � �A�x	 �

Z
M
Q�x� d�	 ��� q�x� �		 d� �
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