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Abstract— Music classification is a complex problem which
has gained high relevance for organizing large music collections.
Different parameters concerning feature extraction, selection,
processing and classification have a strong impact on the
categorization quality. Since it is very difficult to design a
deterministic approach which provides the efficient parameter
tuning, we haven chosen a heuristic approach. In our work
we apply and compare different evolution strategies for the
optimization of feature selection and consolidation using three
pre-defined personal user categories. Concepts of local search
operators with domain-specific knowledge and self-adaptation
are examined. Several suggestions based on an empirical study
are discussed and ideas for future work are given.

I. INTRODUCTION

Portable devices have emerged as one of the preferred

platforms for music listening during the past years. Most

of the music is available in digital formats and the memory

capacity is doubling every year. This leads to the situation

that a user can now carry his or her complete music collection

in a mobile device. The audio quality even in very small

devices can be excellent. But the user interaction poses severe

challenges due to the small physical size of mobile terminals:

The display size is constrained and the input posibilities via

keypads or touchscreens are limited.

In large music collections of 10000 or more music tracks

it is very time consuming and suboptimal to manage textual
menu lists such as artist or track lists with thousands of

entries on a device the size of your palm. This is one

motivation for our work to organize large music collections

more intuitively. Another observation is that users have a very

personal taste of music. The pre-defined music categories

such as genres or sub-genres might help, but do not take per-

sonal listening preferences into account. We argue that music

listeners should be able to define their personal categories
of music by giving examples and let an intelligent music

classification system rank the complete database according to

these user preferences. In our approach we investigate how

far the music taste of a person can be approximated from

the audio content of a small number of music examples,

prototypes that perfectly match a personal category and also

counter-examples that are the complete ”opposite” of this

personal music category.

In the following section we introduce the music classif-

cation problem in more detail and define the performance

criteria for optimal classifiers.
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The training of the classifier depends on many parameters

that cannot be computed analytically. In order to achieve

an optimal classifier performance we introduce evolutionary

algorithms in section III. The parameters of the feature ex-

traction, processing and classification are adjusted based on

a fitness function that optimizes the classifier performance.

In the first two subsections the evolution strategy is outlined

and our modifications are described. In the third subsection

the experiments are sketched.

In section IV the empirical results of our optimization

algorithm are presented. The numeric results of the evolution

strategy are shown and general findings are discussed. The

paper ends with a concluding section and gives an outlook.

II. MUSIC CLASSIFICATION OVERVIEW

A. Music Feature Extraction

A set of musical features is extracted from all music tracks.

The N raw features fi, i ∈ [1, N ] describe different charac-

teristics of music, i.e., timbre, harmony, melody, rhythm, time

and structural properties of music [19]. We used a set of up

to 33 features defined in [17]. Since some of the features are

represented by multidimensional vectors, the total number of

used scalar values is 97. They are extracted in a sequence

of M time windows for one track of music. The set of

computed features for one time window forms a feature

vector f = (f1, f2, ...fN )T . Concatenation of the feature

vectors for each time window creates a N x M feature matrix

F, where the number of columns is equal to the number of

time windows (see Eq. 1):

F =

⎛
⎜⎜⎜⎝

f1(t1) f1(t2) . . . f1(tM )
f2(t1) f2(t2) . . . f2(tM )

...
...

. . .
...

fN (t1) fN (t2) . . . fN (tM )

⎞
⎟⎟⎟⎠ (1)

The timbre features and some harmony features are com-

puted for 23 ms time windows (512 samples at a sampling

rate of 22.05 kHz) with no overlap. But there are also

more complex features that require longer time windows

for the computation, like e.g. the fundamental frequency /

pitch estimation or the melody analysis. Rhythm features

are analyzed in time windows of several seconds providing

sufficient signal statistics for a reliable estimate. Structural

features of music are not yet taken into account, but typically

are computed in even longer time intervals (in the order of

30 s) [9]. For details about the mathematical definitions of

features refer to [10], [15], [18], [16].
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B. Reduction and Transformation of Features

The feature matrix F must be converted to one or more

classifier input vectors. Methods operating on rows of the

feature matrix normally seek to reduce the number of fea-

tures. Principal component analysis [2] and linear discrim-

inant analysis [7] are statistical methods to reduce the data

dimensionality. In correlation-based feature selection highly

correlated features are not submitted to the classifier. One

can start with an empty group of features adding one-by-

one a new feature which is least correlated with the existing

feature set. Another possibility is to start with the full set

of features and to take away the mostly correlated feature

one-by-one until the desired number of features is reached

[6], [5]. Sequential forward selection starts with an empty

group of features identifying new features best improving

classification performance in each iteration step.

Another group of methods operates on the columns of

the feature matrix. The information of tatum and beat times

in a music piece can be used for subsampling the feature

matrix. Tatum times measure the perceived duration of the

shortest note [16]. If tatum reduction is applied, only the

features from time windows at tatum times or exactly in the

middle between adjacent tatum times are saved for further

classification since notes are changing on that time scale.

Longer partitions are built by dividing a track in parts of

equal length (e.g. 5 seconds). Each partition provides a single

classifier input vector.

Finally, the pruned feature matrix is converted to one or

several classifier input vectors. Each feature vector is mapped

to the corresponding ground truth. The ground truth is a user-

specified rating how similar a music track is to the current

music category and ranges between 0 (no similarity at all)

and 1 (matches perfectly with the music category). In our

experiments we use a first-order Gaussian model, saving

mean value and standard deviation over time from each

feature. Alternatively more complex Gaussian models using

larger number of Gaussian bell-shaped curves or methods

which calculate the optimum number of Gaussians can be

applied [13].

C. Classification of Music Categories

The ultimate target of our system is that the music clas-

sifier learns the user’s musical taste and assigns the same

similarity values to music tracks as the human user. In order

to train the classifier and test the performance different users

are asked to rank L = 1139 music tracks by similarities to

their personal music category (reference input) si,ref (n) ∈
[0, 1], for i-th song and n-th category. Each user has to

identify 10 music tracks as prototypes for one personal music

category n (si,ref (n) = 1) and 10 tracks as counter-examples

of the music category (si,ref (n) = 0). These 20 songs are

used for training. It is not realistic to assume that users rate

much more music tracks to define a music category since this

is a high effort. Only for evaluation purposes our test users

also rank the remaining 1119 tracks of music by assigning

one of four discrete similarity values to them: si,ref (n) = 1

- music fits perfectly to music category (but is not used as

positive example for training), si,ref (n) = 2
3 - good, but

not perfect fit with music category, si,ref (n) = 1
3 - weak

similarity with category, si,ref (n) = 0 - music does not fit

at all to personal music category (but is not used as counter-

example for training). We used an even number of similarity

values in order to not allow users to choose an average rating

thus forcing them to make a decision. Providing finer or even

continuous ranking values easily leads to confusion: People

most likely do not remember their previous choice for similar

songs.

The output of the classifier si(n) is compared to si,ref (n).
An optimal classifier would perfectly approximate the refer-

ence similarities and the deviations between si,ref (n) and

si(n) would be zero for each music track. In reality there

are differences and as measure for the classifier performance

the normalized mean squared error is chosen:

E2 =
1

E2
max

1
L

L∑
i=1

(si(n) − si,ref (n))2 (2)

with E2
max =

1
L

L∑
i=1

e2
i,max(n) and

ei,max(n) =
{

1 : si,ref (n) = 0 ∨ si,ref (n) = 1
2
3 : si,ref (n) = 1

3 ∨ si,ref (n) = 2
3

The normalization of the error by the divisor E2
max is needed

since the maximum possible error with regard to a value

si,ref (n) is max(si,ref (n), 1 − si,ref (n)).
The purpose of classification algorithms is to relate music

songs to given categories, allowing each song to be member

of several categories. In our work we use supervised learning

techniques for music classification, which learn from given

labeled data (ground truth). For details and an overview of

classifiers, see [3], [2].

The divide-and-conquer algorithm builds decision trees

which consider only one most important feature in each node.

The importance of every feature is estimated on the basis

of an entropy measure. Several enhancements of divide-and-

conquer lead to an algorithm named C4.5 [12]. It typically

constructs very compact decision trees.

The experiments described later deploy C4.5 decision

trees. We decided to use this classifier for several reasons.

At first it is a complex method with integrated feature

selection technique with sufficient performance for differ-

ent data mining tasks. The runtime is more efficient in

comparison to support vector machines which are often a

first choice but require longer times for the transformation

into a higher-dimensional space. The fact that the feature

dimensions are not changing during the classification helps

to interpret the meaning and impact of the low-level features.

The parametrization of C4.5 itself is very simple and no

tuning of the classifier itself is required. Besides, feature

design and processing are essential for a classification task

(as underlined in [8] for music categorization), and the

optimization of a classifier itself is a very hard problem
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which can be successful only if the input feature data has

been prepared very thoroughly.

III. ALGORITHM DESIGN AND TEST PLAN

A. ES Design

We apply a (1+1)-ES for the feature selection and the

choice of partition size, which defines an interval from a

music piece for feature consolidation. The individual repre-

sentation I for ES consists of a binary vector m with mi = 1
for all selected features and an integer Tp for the partition

size in ms:

I = {m, Tp} (3)

with m = m1m2...mN , mi ∈ {0, 1}
and Tp ∈ [500, 30000] ∩ Z

The optimization problem can be described as:

minimize E2(m, Tp) with Tp ∈ [500, 30000] (4)

Since we take 33 features into account, the number of all

possible individual representations is 233 · 25501 and would

require a very large amount of time for the analysis of all

possible configurations.

For the first ES designed in [20] we implemented two

mutation operators. The first one flipped each bit in m with a

probabilty 1/N . The second one changed Tp according to the

integer mutation operator introduced in [14]. The expected

mean mutation step size was adjusted by an exponential

function Sg which started with an expected step size equal

to 15000 and ended in the 100th generation with an expected

step size equal to 1 (g ∈ [1, 100] is the current generation

number):

Sg = 15000 · 0.96g +
1 − 15000 · 0.96g

100
· g (5)

Another possibility to adjust the expected mutation step

size is to use self-adaptation according to the 1/5-rule [1].

Here the number of successful mutations Ns is counted

during five generations and the new expected mean mutation

step size Sg is calculated from the previous step size Sg−5:

if g = 5k, k ∈ N : Sg =

⎧⎨
⎩

α · Sg−5 : Ns > 1
Sg−5 : Ns = 1

1
α · Sg−5 : Ns = 0

else : Sg = Sg−1 (6)

We used a recommended value α = 1.224. In comparison

to the ES with a mutation adjustment by the exponential

function here the new expected mean mutation step size was

changed only after each 5th generation.

For the comparison of algorithms below we use the

abbreviations FA-ES (functionally adjusted ES) and SA-ES

(self-adaptation ES).

B. Hybrid ES Design

A hybrid ES evaluates a local neighborhood during the

evolutionary loop. At first the operator(s) for a local search

should be designed. We considered to utilize the correlation

between features. It is obvious, that some subsets of the

computed music features may correlate more strongly than

other subsets, so that some of features may be removed from

the classifier input. A correlation coefficient between feature

vectors fi and fj is at first averaged over the complete song,

where fi(k) is a vector of values of feature i for all time

windows of song k:

ρ(fi, fj) =
1
L

L∑
k=1

Cov (fi(k), fj(k))√
Cov (fi(k), fi(k)) Cov (fj(k), fj(k))

(7)

Now we distinguish between the features fμ, which are

marked for selection in the current individual (∀μ : mμ = 1)

and the features fλ, which are marked as not selected for

music classification (∀λ : mλ = 0). A correlation rank R(fi)
describes the averaged correlation of feature i to the features

which are currently selected (M is the number of currently

selected features):

R(fi) =
1
M

M∑
μ=1

ρ(fi, fμ) (8)

The first local search operator LS+ sorts the not selected

features according to R(fλ) and adds a feature with the

smallest rank to the set of selected features. In other words,

we add a feature which at least correlates with the features

which have been already used for music classification. The

second local search operator LS− reduces the number of

the selected features sorting them according to R(fμ) and

disables the selection of a feature with the highest rank, i.e.

the feature which is mostly correlated with the others.

The Variable Neighborhood Search (VNS) procedure is

described as following:

01 // Choose randomly current LS operator
02 LSadd = true;
03 LSsub = true;
04 while (LSadd OR LSsub) {
05 // Apply current LS operator
06 if (application successful) {
07 // Save the new individual
08 // Activate another LS operator
09 } else {
10 // Deactivate current LS operator
11 // Switch current LS operator
12 }
13 }

The goal is to switch between the two different LS operators

as long as they provide better fitness values. In the line 01

it is chosen randomly if LS+ or LS− will be applied at

first. Lines 02 and 03 activate the application of the both

operators. The VNS loop continues as long as at least one

operator is permitted for application. If both operators have

176 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



not been successful, the stop criterion becomes active. In

the while loop the current operator is applied. If it has been

successful (line 06), the new individual is saved and the other

LS operator is activated. If the current operator has not been

successful (line 09), it is deactivated (the local optimum is

reached) and the other LS operator is switched to be the

current operator. If the both local optima are reached one

after another, the loop terminates.

Another consideration about the design of a hybrid ES is

the VNS application frequency. One possibility is to apply

VNS for each generation, creating a child individual with

mutation operators and then performing the VNS procedure.

However if a mutation creates a worse individual, several

evaluations may be necessary during VNS to achieve the

better fitness than the parent individual, if it is possible at

all. Therefore another hybrid strategy applies VNS only after

a successful mutation. We call the ES algorithm with the first

hybridization paradigm AEG Hybrid (after each generation)

and the second one ASM Hybrid (after successful mutation).

The last proposal is to consider the convergence behavior

of the different ES runs. A non-hybrid ES converges fast at

the beginning since the strong mutation operator allows the

quick detection of promising regions. On the other side, the

application of VNS permits the better search of local optima.

Therefore it may be valuable to start with a non-hybrid ES

and switch to a hybrid ES after some number of generations.

We distinguish between 100%, 50% and 25% hybrid runs.

100% runs apply VNS from the first generation onwards.

50% runs start it after the 50th generation of the non-hybrid

ES (we limit the generation number to 100 for non-hybrid

runs) and 25% runs apply VNS after the 75th generation of

the non-hybrid ES. Since a convergence behavior of FA-ES

and SA-ES was not very different after the first performed

experiments, we have decided to run the 50% and 25% hybrid

runs only after FA-ES runs.

Thus, we have designed eight different ES algorithms to

be compared: FA-ES, SA-ES (non-hybrid) and 100% AEG

Hybrid, 50% AEG Hybrid, 25% AEG Hybrid, 100% ASM

Hybrid, 50% ASM Hybrid and 25% ASM Hybrid.

C. Experimental Setup

The problem instances are three personal music categories

ED, IV and WT from [20]. However we reduced the number

of music songs to 75 in the test set because of the large

evaluation run times. The comparison of experiments with

176 test songs (2 songs from each CD of our collection)

and 75 test songs (one song per artist) showed, that the

change in the problem complexity and optimal parameters

was marginal.

Prior to the optimization we reduced the number of time

windows with a tatum pruning method. Here only the feature

values from the time windows exactly in the middle between

tatum times were processed. We limited the evaluation num-

ber for the eight ES algorithms to 100. Each experiment

setup was run 10 times for the calculation of the median and

standard deviation.

IV. EMPIRICAL RESULTS

A. Experimental Outcome and Interpretation

Table I summarizes the results after 100 evaluations for

each algorithm. Figures 1, 2 and 3 depict the process of

fitness change during the evaluations plotting the median

values over 10 runs for each 10th generation.

TABLE I

OPTIMIZATION RESULTS AFTER 100 EVALUATIONS, NORMALIZED MEAN

SQUARED ERROR E2 · 102 (MEDIAN AND MEAN DEVIATION FROM

MEDIAN)

ED IV WT
FA 17.20 ± 00.69 05.87 ± 00.28 04.65 ± 00.38
SA 17.27 ± 00.71 06.80 ± 00.60 04.63 ± 00.23

AEG 100% 17.79 ± 01.13 08.13 ± 00.48 04.86 ± 00.72
AEG 50% 17.09 ± 00.83 06.03 ± 00.24 04.85 ± 00.39
AEG 25% 17.80 ± 00.87 05.87 ± 00.30 04.79 ± 00.48

ASM 100% 16.46 ± 00.71 05.87 ± 00.48 04.57 ± 00.46
ASM 50% 16.78 ± 00.47 05.89 ± 00.27 04.65 ± 00.36
ASM 25% 17.84 ± 01.00 05.83 ± 00.29 04.74 ± 00.51

The used personal categories are clearly different in their

complexity. The characteristics of the best individuals ever

found during 80 experiments per each problem (8 algorithms

× 10 runs) are given in the Table II. ED seems to be the

toughest classification problem, whereas IV and WT are

easier to classify.

TABLE II

DETAILS OF THE BEST INDIVIDUALS FOUND

ED IV WT

E2 · 102 15.80 05.45 04.04
Tp 1235 1483 23969
N 16 12 13

found by ASM 100 FA FA

Several trends can be observed. At first, ASM Hybrid

outperforms AEG Hybrid in almost all cases. The application

of variable neighborhood search after a mutation with a

worse outcome requires a number of evaluations and cannot

guarantee a better outcome than the parent individual.

If we compare the non-hybrid algorithms, self-adaptation

ES is worse than FA-ES. However it outperforms FA-ES

slightly for WT category.

The 100% ASM Hybrid performs well for all personal

music categories achieving the best results for categories

ED and WT. Since the advantage of 100% ASM Hybrid

for ED category was larger, the choice of a hybrid strategy

for more complex categories may be recommended. For an

easier music classification task a simple non-hybrid ES may

be considerable. More experiments with different categories

of different categories are required.

The runs with hybrid methods started after 50 or 75 FA-ES

generations were not successful for the most configurations.

Although there are some differences between the algorithms

on the right subplots of Figures 1-3, they are rather small.
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For ED, where 100% ASM Hybrid performed very well in

general, the application of this method after 50 generations

of FA-ES brings measurable improvement. Also a slight

advancement was observed for 25% ASM Hybrid applied

on IV category.

No specific recommendation for the feature set for differ-

ent classification tasks can be made, as it has been already

shown in [11]. But for the partition size and the overall

number of used features we can observe some trends from

the experimental results and Table II. As the complexity of

the problems falls, the larger partition sizes are better and

the number of the required features is smaller. Certainly

the simpler music categorization like classic vs. rock does

not require many features, and it allows the aggregation of

the features over larger partitions. For further investigations

of this hypothesis we plan to start more experiments with

different categories in the near future.

B. Analysis of the Music Category Examples

For the better interpretation of the structure of the category

instances we performed the analysis of the best individuals

ever found during 80 runs for each category. Left subplots of

Figures 4-6 depict the experiments where we added features

with LS+ operator and reduced feature number with LS−

operator starting from the best found individual. It is marked

with a vertical line.

One can clearly see that a very small number of features

is not sufficient for the classification. Too many features are

also not very efficient. Since the decision trees already reduce

the number of the features and prune the trees, different

numbers of features may produce the same fitness values as a

consequence. This is supported by the existence of plateaus

in the figures. However the feature pruning mechanism of

C4.5 seems to have its limitations, since the adding of

features one-by-one due to their correlation rank leads to

worse fitness values at increasing feature numbers. Here the

overtraining of the classifier happens. Therefore the feature

pre-selection makes sense even if a complex classifier with

the integrated selection strategy is applied. ES can be applied

for this task.

Another issue is that the application of LS operators from

the optimum value implies not only a monotonic change

of feature number, but also almost always the monotonic

increase of the error metric. It confirms the usefulness of the

designed operators.

We analyzed also the changes in partition size with a

frozen feature configuration starting from the best found

solutions (see right subplots of Figures 4-6).

The functions which describe the impact of the partition

size for a given music category and feature set seem to have

very noisy progress but also almost linear general trends. It

is obvious, that the very small partition sizes cannot capture

meaningful music characteristics and produce also too many

inputs which may lead to overtraining of the classifier. On

the other side very large partitions correspond to audio

segments with a lot of different music events and are also

not optimal. Interestingly a compromise is very different for

the examined categories. ED and IV solutions are at best if

small partitions are used (see Table II for the exact details),

and WT individuals produce smaller classification errors with

rather large partitions. A suggestion here is that the simpler

categories which distinguish between very different music

categories (e.g. classic vs. rock) are more robust at mixing

features over larger partitions and producing the smaller

number of the input instances for the classifier. Since no

general recommendation about the optimal partition size can

be made, here it is again a parameter which can be tuned by

ES.

C. Comparison of Algorithms Starting with the Same Indi-
viduals

The experiments described in section IV-A were performed

starting with the randomly generated individuals. Another

possibility for the algorithm comparison is to start from

the same individuals. This situation is more artificial but it

provides some interesting results if the start individuals of

the different complexities are taken into account.

We generated 100 solutions at random for each problem

and saved the individuals with the minimum and maximum

values. The goal was to compare the algorithms which start

from solutions with different quality. An individual with

the minimum fitness value can be harder to optimize if it

corresponds to a local optimum. Start from an individual with

the maximum fitness value is easier if local optima should be

avoided, but it is obviously not a very good solution at the

beginning. FA-ES, SA-ES and 100% ASM Hybrid provided

the best results during the previous experiments, so we made

five runs for these three methods. The results are outlined in

Table III.

TABLE III

OPTIMIZATION RESULTS AFTER 100 EVALUATIONS, NORMALIZED MEAN

SQUARED ERROR E2 · 102 (MEDIAN AND MEAN DEVIATION FROM

MEDIAN)

start ED IV WT
FA min 16.66 ± 00.49 05.81 ± 00.08 04.02 ± 00.09
SA min 16.82 ± 00.17 05.99 ± 00.01 04.20 ± 00.01

ASM min 16.40 ± 00.37 05.96 ± 00.13 04.07 ± 00.01
FA max 19.02 ± 00.39 05.52 ± 00.18 04.64 ± 00.40
SA max 17.66 ± 00.61 05.65 ± 00.12 04.61 ± 00.34

ASM max 16.67 ± 00.44 05.44 ± 00.30 05.28 ± 00.67

The results are comparable to the previous experiments.

ASM Hybrid is again the best algorithm for ED category

(both minimum and maximum starts). The worst perfor-

mance of ASM Hybrid was for the ‘easiest’ individual to

optimize, namely WT maximum. FA-ES is in most cases

better than SA-ES. Therefore we can carefully support here

the conjecture that FA-ES performs better for simpler cate-

gories, ASM Hybrid for more complex categories, and SA-

ES is slightly worse than FA-ES. At any rate, more statistics

and also classification problems are required for the more

detailed analysis of these algorithms.
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V. CONCLUSION AND OUTLOOK

In our work we concentrated on the two important param-

eters of the music classification chain, namely the features

to select and the size of a music partition for the feature

consolidation. Several ES algorithms were designed using

the different techniques (self-adaptation, hybridization with

local search, operators with domain-specific knowledge).

Several trends can be observed for the comparison of

methods and optimized parameter settings. For the algo-

rithms, no clear winner was found in the course of our

experiments, however the ASM Hybrid performed well for

IV and WT categories and was the best for the most difficult

category ED. The parameter optimization for the simpliest

category was done at best with a standard ES with mutation

adjustment by a function. For the hybrid algorithms, the

application of the VNS scheme seems to be reasonable

only after successful mutations. Running several steps of

the LS operators for each new offspring requires too much

evaluation time. Also, it did not offer performance progress

except of two cases running a hybrid method after some pre-

optimization by e.g. FA-ES.

No concrete recommendation for the optimized parameters

for the different categories can be made, as already have

been shown in our previous and other works. Therefore

parameter tuning by evolutionary algorithms is a resonable

step if smaller classification errors are desired. However

some general trends can be observed. Too few or too many

features should not be used, as well as too small or too large

partitions. Further suggestion is that simpler classification

problems may be categorized better with larger partitions and

they require fewer features. More experiments with different

music categories are necessary.

Here are some suggestions for further work: As men-

tioned before, the better understanding of such a complex

optimization problem like music categorization requires large

empirical studies. We want to extend our category set using

more personal categories and also genre classifications. The

complete feature processing chain can be extended and opti-

mized by ES. We want to add some new low-level features

from the latest research activities. A possibility to switch

on or off single dimensions of multi-dimensional features

(e.g. using only a couple from 13 MFCC coefficients) has

been considered, but on the other side produces a more

complex representation and makes the optimization a harder

task. We plan to add further feature selection methods, using

some statistical analysis like PCA or LDA. Finally also

the algorithms can be tuned. New and also domain-specific

operators, meta-optimization and other methods like swarm-

based optimization are promising areas for future work.
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Fig. 1. Category ED: Median E2 values for evaluation numbers of different algorithms

Fig. 2. Category IV: Median E2 values for evaluation numbers of different algorithms

Fig. 3. Category WT: Median E2 values for evaluation numbers of different algorithms
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Fig. 4. Category ED: E2 values for different numbers of selected features (left) and partition sizes (right) starting from the best individual found

Fig. 5. Category IV: E2 values for different numbers of selected features (left) and partition sizes (right) starting from the best individual found

Fig. 6. Category WT: E2 values for different numbers of selected features (left) and partition sizes (right) starting from the best individual found
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