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Abstract—While scalarization approaches to multi-
criteria optimization become infeasible in the case of many
objectives, for few objectives the benefits of a population
compared to a set of independent single-objective optimiza-
tion trials on scalarized functions are not obvious.

The multi-objective covariance matrix adaptation evolu-
tion strategy (MO-CMA-ES) is a powerful algorithm for
real-valued multi-criteria optimization. This population-
based approach combines mutation and strategy adaptation
from the elitist CMA-ES with multi-objective selection.

We empirically compare the steady-state MO-CMA-ES
with different scalarization algorithms, in which the elitist
CMA-ES is used as single-objective optimizer. Although
only bicriteria benchmark problems are considered, the
MO-CMA-ES performs best in the overall comparison.
However, if the scalarized problems have a structure that
can easily exploited by the CMA-ES and that is less
apparent in the vector-valued fitness function, the CMA-
ES with scalarization outperforms the population-based
approach.

I. INTRODUCTION

The goal of multi-objective optimization (MOO) can
be defined as efficiently finding a set of solutions
that diversely and accurately approximates the set
of Pareto-optimal solutions. Evolutionary algorithms
(EAs) are particularly well-suited for MOO. This may
have several reasons, but one of the most intriguing
arguments is that the search in MOO for a set of
solutions perfectly matches the concept of populations
in EAs. In this study, we empirically investigate the
role of the population dynamics in a recently proposed
evolutionary MOO algorithm.

Many established deterministic approaches to MOO
consider the scalarization of the vector-valued prob-
lem. To find a diverse approximation of the set of
Pareto-optimal solutions, the vector-valued problem is
reduced to a number of different scalar-valued opti-
mization problems, which favor different trade-offs be-

tween objectives. Prominent examples of scalarization
methods are the basic weighted-sum approach and the
Tchebycheff-method [1].

In contrast, most state-of-the-art evolutionary meth-
ods for solving MOO problems more directly rely
on the notion of Pareto-dominance for finding good
approximations of the Pareto-optimal set. This does not
explicitly need information regarding the importance of
single criteria. However, selection in general requires a
ranking of the individuals in the current population
including the comparison of solutions that are not
related in terms of Pareto-dominance. This ranking
may be viewed as some kind of scalarization, which
is, however, dynamic and usually for each solution
dependent on the other solutions represented in the
current population. In the population-based algorithms
considered here, this ranking is induced by the hyper-
volume in the objective space covered by the solutions
in the population: Selection aims at preserving those
solutions that maximize the covered hypervolume.

Scalarization approaches as outlined above are only
feasible if there are only very few objectives, as the
number of combinations of weighting coefficients ex-
pressing relative preferences for objectives grows expo-
nentially with the number of objectives and so scales
the number of single-objective optimization trials in
simple scalarization methods. However, for two or
three objectives the benefits of directly evolving a set
of solutions compared to independent (parallel) single-
objective optimization trials on scalarized functions are
not obvious. Note that there exists scalarization meth-
ods (e.g., based on the Tchebychef metric) that do not
suffer from the often mentioned problems of weighted-
sum approaches with non-convex MOO problems.

In this study, we consider the covariance matrix
adaptation evolution strategy (CMA-ES [2], [3]), which



is an elaborate algorithm for real-valued optimization
performing well in real-world applications [4] as well
as in benchmark scenarios [5], and its multi-objective
variant, the MO-CMA-ES [6], [7]. The latter features
a population-based approach combining the methods
for mutation and strategy adaptation from the elitist
CMA-ES with multi-objective selection. This makes the
algorithm ideal for studying the influence of the pop-
ulation dynamics in the case of few objectives, because
we can directly compare the MO-CMA-ES with single-
objective optimizations using the elitist CMA-ES. To
this end, we formulate “hybrid” algorithms combining
established scalarization methods with the CMA-ES.

The remainder of this paper is organized as follows.
First, the single- and multi-objective elitist CMA-ESs
are introduced. Then, two basic methods for scalar-
ization are presented and combined with the CMA-
ES. After that, the experimental setup is described and
results of the performance assessment are presented.
The paper closes with conclusions and suggestions for
future work.

II. SCALARIZATION OF MULTI-OBJECTIVE

OPTIMIZATION PROBLEMS

This section introduces the weighted-sum method
and the method of weighted metrics for the scalariza-
tion of vector-valued optimization problems. The abil-
ity of these methods to find Pareto-optimal solutions
are briefly discussed.

Real-valued, m-objective optimization problems

f : Rn → Rm,x 7→ (f1(x), . . . , fm(x))

to be minimized in each objective are considered.

A. The Weighted-Sum Method

The weighted-sum method (e.g., [8], [9]) associates
each objective function with a weighting coefficient and
minimizes the weighted sum of the objectives. Thus,
the vector-valued optimization problem is transformed
into a scalar optimization problem of the following
form:

minimize
x∈Rn

ω(f ,w)(x) =
m
∑

i=1

wifi(x) ,

where w is a weighting-vector with wi ≥ 0 for all i =
1, . . . ,m and

∑m
i=1 wi = 1.

B. The Method of Weighted Metrics

In this method, the distance between some reference
point and the feasible objective region is minimized.
Most often, the utopian point u∗ is used as a ref-
erence and Lp-metrics are used to measure distance.
Moreover, each single objective function is associated
with a weighting coefficient. Thus, the multi-objective

Fig. 1. Illustration of the Tchebycheff-method for the scalarization
of a multi-objective optimization problem. The figure emphasizes the
ability of the method to find solutions within concave regions of the
Pareto-front.

optimization problem f is replaced with the follow-
ing single-objective optimization problem, called the
weighted Lp-problem:

minimize
x∈Rn

L(f ,w,u∗)
p (x) =

(

m
∑

i=1

wi|fi(x)− u∗
i |

p

)1/p

with 1 ≤ p < ∞, wi ≥ 0 for all i = 1, . . . ,m and
∑m

i=1 wi = 1. In the case of p = ∞, the metric is also
called the Tchebycheff metric and the weighted L∞- or the
Tchebycheff problem is of the form:

minimize
x∈Rn

τ (f ,w,u∗)(x) = max
i=1,...,m

wi|fi(x)− u∗
i |

The utopian point u∗ = z∗ − ε can be set via the ideal
point z∗ with z∗i = min{fi(x) : x ∈ Rn} and ε > 0.

C. Properties of Scalarization Methods

Now we review some properties of the methods
introduced before regarding their ability to find every
Pareto-optimal solution of a vector-valued optimization
problem

Recall that a function g : Rn → R is convex if for
all x1,x2 ∈ Rn and 0 ≤ β ≤ 1 the following equation
holds

g(βx2 + (1− β)x2) ≤ βg(x1) + (1− β)g(x2) .

A set S ⊆ Rn is convex if x1,x2 ∈ S implies that βx1 +
(1− β)x2 ∈ S with 0 ≤ β ≤ 1.

A multi-objective optimization problem is convex, if
all the objective functions and the feasible region are
convex.

Let f : Rn → Rm be a multi-objective optimization
problem with the feasible region S ⊂ Rn. As stated in
[1], if f is convex and x∗ ∈ S is Pareto-optimal, then
there exists a weighting-vector w ∈ Rm such that x∗ is
a solution of ω(f ,w).

The Tchebycheff-method is able to find every Pareto-
optimal solution regardless of the vector-valued opti-
mization problem f being convex. That is, let x∗ ∈ S
be Pareto-optimal. Then there exists a weighting vector
w ∈ Rm such that x∗ is a solution of τf,w,u∗

.



III. COVARIANCE MATRIX ADAPTATION EVOLUTION

STRATEGIES IN MULTI-OBJECTIVE OPTIMIZATION

In this section we describe the covariance matrix
adaptation evolution strategy (CMA-ES). First we re-
view the elitist single-objective CMA-ES, and then we
outline the steady-state multi-objective CMA-ES.

The key idea of CMA-ES algorithms is to alter the
mutation distribution such that the probability to repro-
duce steps in the search space that led to the actual pop-
ulation (i.e., produced offspring that were selected) is
increased. This enables the algorithm to detect correla-
tions between object variables and to become invariant
under affine transformations of the search space. The
algorithms implement several important concepts for
adapting search distributions. The first one is known as
derandomization meaning that the mutation distribution
is adapted in a deterministic way. The second principle
is cumulation, which refers to taking the search path of
the population over the past generations into account,
where the influence of previous steps decays exponen-
tially.

A. Nomenclature

In the elitist CMA-ES, an individual, a, in gener-

ation g is a 5-tuple a(g) = [x(g), p
(g)
succ, σ

(g),p
(g)
c ,C(g)]

comprising its candidate solution vector x(g) ∈ Rn,

an averaged success rate p
(g)
succ ∈ [0, 1], the global step

size σ(g) ∈ R+, an evolution path p
(g)
c ∈ Rn, and the

covariance matrix C(g) ∈ Rn×n. For the generational

multi-objective CMA-ES, an individual a
(g)
k denotes

the k-th individual in generation g. Additionally, the
following nomenclature is used:

• f : Rn → R,x 7→ f(x) is the scalar fitness function
to be minimized. For the multi-objective CMA-ES,
f : Rn → Rm,x 7→ f(x) is the vector-valued fitness
function.

• N (m,C) is a multi-variate normal distribution
with mean vector m and covariance matrix C. The
notation x ∼ N (m,C) denotes that random vari-
able x is distributed according to the distribution
N (m,C).

• x
(g)
1:λ ∈ Rn is the best point from

{

x
(g)
1 , . . . ,x

(g)
λ

}

,

that is, f(x
(g)
1:λ) ≤ f(x

(g)
i ) for all i = 1, . . . , λ.

B. Elitist Single-Objective CMA Evolution Strategy

The (1+1)-CMA-ES combines success-based step size
adaptation and elitist selection [10], [11], [12] with the
covariance matrix adaptation presented in [2].

The algorithm is described within three routines. In
the main routine, (1+1)-CMA-ES, the new candidate
solution is sampled and the parent solution a(g) is
updated depending on whether the new solution a(g+1)

is better than a(g).

Procedure(1+1)-CMA-ES ( x(0) )

g = 0, initialize a(g) with x(0)
1

repeat2

a(g+1) ← a(g)
3

x′(g+1) ∼ N
(

x(g), σ(g)2C(g)
)

4

σ-update
(

a(g+1), I
(

f
(

x′(g+1)
)

≤ f
(

x(g)
)))

5

if f
(

x′(g+1)
)

≤ f
(

x(g)
)

then6

x(g+1) ← x′(g+1)
7

C-update

(

a(g+1),
x(g+1) − x(g)

σ(g)

)

8

g ← g + 19

until stopping criterion is met10

Here the indicator function I(·) is one if its
argument is true and zero otherwise. Thus,
I
(

f
(

x′(g+1)
)

≤ f
(

x(g)
))

is one if the last mutation has
been successful and zero otherwise. After sampling the
new candidate solution, the step size is updated based
on the success with a learning rate cp (0 < cp ≤ 1)
using a target success rate p

target
succ .

Procedure σ-update(a = [x, psucc, σ,pc,C], psucc)

psucc ← (1− cp) psucc + cppsucc1

σ ← σ · exp

(

1

d

(

psucc −
p

target
succ

1− p
target
succ

(1− psucc)

))

2

This update rule is rooted in the 1/5-success-rule pro-
posed by [10] and is an extension from the rule pro-
posed by [13].

If the best new candidate solution was better than
the parent individual (see main routine), the covariance
matrix is updated as in the original CMA-ES (see [2]).

Procedure C-update(a = [x, psucc, σ,pc,C],xstep)

if psucc < pthresh then1

pc ← (1− cc)pc +
√

cc(2− cc) xstep2

C ← (1− ccov)C + ccov · pcpc
T

3

else4

pc ← (1− cc)pc5

C ← (1− ccov)C + ccov ·
(

pcpc
T + cc(2− cc)C

)

6

The update of the evolution path pc depends on the
value of psucc. If the smoothed success rate psucc is
high, that is, above pthresh < 0.5, the update of the
evolution path pc is stalled. This prevents a too fast
increase of axes of C when the step size is far too small,
for example, in a linear surrounding. The constants cc

and ccov (0 ≤ ccov < cc ≤ 1) are learning rates for the
evolution path and the covariance matrix, respectively.
The factor

√

cc(2− cc) normalizes the variance of pc

viewed as a random variable (see [2]). The evolution
path pc is used to update the covariance matrix. The
new covariance matrix is a weighted mean of the old
covariance matrix and the outer product of pc. In



the second case (line 5), the second summand in the
update of pc is missing and the length of pc shrinks.
Although of minor relevance, the term cc(2−cc)C (line
6) compensates for this shrinking in C.

The (external) strategy parameters are the population
size, target success probability ptarget

succ , step size damp-
ing d, success rate averaging parameter cp, cumulation
time horizon parameter cc, and covariance matrix learn-
ing rate ccov. Default values, as given in [6] and used in
this paper, are: d = 1+n/2, ptarget

succ = (5 +
√

1/2)−1, cp =
ptarget
succ /(2 + ptarget

succ ), cc = 2/(n + 2), ccov = 2/(n2 + 6),
and pthresh = 0.44.

The elements of the initial individual a(0) are set to
psucc = p

target
succ , pc = 0, and C = I. The initial candidate

solution x(0) ∈ Rn and the initial σ ∈ R+ must be
chosen problem dependent. The optimum should pre-

sumably be within the cube
⊗n

i=1[x
(0)
i −2σ, x

(0)
i +2σ ].

C. Multi-Objective CMA Evolution Strategy

In the following, we briefly outline the multi-
objective covariance matrix adaptation evolution strat-
egy (MO-CMA-ES) according to [7], for a detailed de-
scription and a performance evaluation on benchmark
functions (in particular a comparison with real-valued
NSGA-II [14]) we refer to [6].

The MO-CMA-ES relies on the non-dominated sort-
ing selection scheme suggested by [14]. As in the
SMS-EMOA [15], the hypervolume-indicator serves as
second-level sorting criterion to rank individuals on the
same level of non-dominance.

Let A be a population, and let a, a′ be two individ-
uals in A. Let the non-dominated solutions in A be
denoted by ndom(A) = {a ∈ A|∄a′ ∈ A : a′ ≺ a}
where ≺ denotes the Pareto-dominance relation. The
elements in ndom(A) are assigned a level of non-
dominance of 1. The other ranks of non-dominance
are defined recursively by considering the set without
the solutions with lower ranks ([14]). Formally, let
dom0(A) = A,doml(A) = doml−1(A) \ ndoml(A), and
ndoml(A) = ndom(doml−1(A)) for l ≥ 1. For a ∈ A
we define the level of non-dominance rank(a,A) to be
i iff a ∈ ndomi(A). Let ∆S(a,A) be the contributing
hypervolume of a with respect to {a′ ∈ A| rank(a′, A) =
rank(a,A)} [15]. Moreover, let cont(a,A) be the con-
tribution rank of a with respect to its contributing
hypervolume. Then the following relation is defined.

a ≺A a′ ⇔ rank(a,A) < rank(a′, A)∨

(rank(a,A) = rank(a′, A)∧

cont(a,A) > cont(a′, A))

The standard version of the steady-state MO-CMA-
ES reads:

Algorithm 4: Steady-State MO-CMA-ES

g = 0, initialize Q(g) ←
{

a
(g)
k |1 ≤ k ≤ µ

}

1

repeat2

i← U(1, |ndom
(

Q(g)
)

|)3

a(g+1) ← Q
(g)
≺:i4

a′(g+1) ← a(g+1)
5

x′(g+1) ∼ N
(

x(g+1), σ(g+1)2C(g+1)
)

6

Q(g) ← Q(g) ∪
{

a′(g+1)
}

7

C-update

(

a′(g+1)
,
x′(g+1) − x(g+1)

σ(g+1)

)

8

σ-update
(

a(g+1), I
(

a′(g+1)
≺Q(g) a(g+1)

))

9

σ-update
(

a′(g+1)
, I
(

a′(g+1)
≺Q(g) a(g+1)

))

10

Q(g+1) ← Q(g) \Q
(g)
≺:µ+111

g ← g + 112

until stopping criterion is met13

The parent of the only offspring is selected uniformly
at random among the non-dominated solutions in the
current population and an offspring is generated (line
4–7). The step size of the parent and its offspring
are updated depending on whether the mutation was
successful, that is, whether the offspring is better than
the parent according to the relation ≺Q(g) .

Both step size and covariance matrix update are the
same as in the single-objective (1+1)-CMA-ES described
above.

The best µ individuals in Q(g) sorted by ≺Q(g) form

the next parent generation (line 11, where Q
(g)
≺:i is the

i-th best offspring in Q(g) w.r.t. ≺Q(g)).

D. Hybrid MO-CMA-ES

In this section we introduce the canonical version
of an algorithm for solving vector-valued optimization
problems by using the scalarization methods intro-
duced previously and the single-objective, elitist (1+1)-
CMA-ES. The new algorithm is denoted by (1+1)-
CMA-ESτ,ω, where the superscript indicates the scalar-
ization method: τ denotes the Tchebycheff and ω the
weighted sum approach.

We restrict ourselves to bicriteria optimization prob-
lems f : Rn → R2 that allow for a simple and
efficient scheme to systematically select the weighting-
vectors. That is, given a number of weight steps nweights,
0 < nweights, a set of weighting-vectors W = {(α, 1 −
α)|α = i/

(

nweights − 1
)

, 0 ≤ i ≤ nweights − 1} ⊂ R2

is populated. For each w ∈ W , wi ≥ 0, i = 1, 2 and
∑2

i1
wi = 1, the (1+1)-CMA-ESτ(f ,w,u∗) and the (1+1)-

CMA-ESω(f ,w) (line 6), respectively, are run for some
number of generations, producing a final solution x∗

and the corresponding objective vector f(x∗).
Given a weighting-vector w and the correspond-

ing solution xw, Rudolph et al. suggested in [16]



Procedure(1+1)-CMA-ESτ,ω(nweights)

F ← ∅1

W ← {(α, 1− α)|α = i/
(

nweights − 1
)

, 0 ≤ i ≤2

nweights − 1}
foreach w ∈W do3

Initialize x(0)
4

(x∗,f(x∗))← (1+1)-CMA-ES {τ,ω}(x(0))5

F ← F ∪ {f(x∗)}6

to use xw as initial search point in solving the
single-objective problem corresponding to w′ = w +
(1/
(

nweights − 1
)

, 1/
(

nweights − 1
)

). Apart from the ini-
tial search point, all parameters of the (1+1)-CMA-ES
are reinitialized, in particular the global step-size σ. The
modified algorithm is denoted with (1+1)-CMA-ES∗,τ,ω

and is outlined in algorithm 6.

Procedure(1+1)-CMA-ES∗,τ,ω(nweights)

F ← ∅, initialize x(0)
1

W ← {(α, 1− α)|α = i/
(

nweights − 1
)

, 0 ≤ i ≤2

nweights − 1}
foreach w ∈W do3

(x∗,f(x∗))←(1+1)-CMA-ES{τ,ω}(x(0))4

F ← F ∪ {f(x∗)}5

x(0) ← x∗
6

a) Calculating the utopian point: The Tchebycheff-
method requires the utopian point u∗ for its operation.
Unfortunately, this point is not known in advance given
a multi-objective optimization problem. Thus, we rely
on the (1+1)-CMA-ES to calculate an estimate of the
ideal point z∗ and set u∗ = z∗ − ε for some ε > 0.
Let f be a bicritera optimization problem, and let
f1

(

xf1
)

,f2

(

xf2
)

be the objective values of the final
points found by the (1+1)-CMA-ES running on f1 and
f2 respectively. Then we choose z∗1 = f1

(

xf1
)

and
z∗2 = f2

(

xf2
)

.

IV. EXPERIMENTS

The experimental setup for the performance evalu-
ation has been chosen similar to the one suggested in
[7].

The results of both variants of the (1+1)-CMA-ES{ω,τ}

were compared to results of the steady-state MO-CMA-
ES using the S-Measure as second-level sorting cri-
terion, termed with S-MO-CMA-ES. We rely on the
evaluation module of PISA [17] presented in [18] for the
performance assessment of the different algorithms. We
briefly outline the evaluation process below and refer
to [19], [20] for a detailed description of the methods.

For k algorithms A1, . . . , Ak and a benchmark func-
tion f a reference Pareto-front approximation is cal-
culated from the normalized approximations gener-
ated by A1, . . . , Ak (see below). Finally, the results of
A1, . . . , Ak are compared to the reference set of objec-
tive vectors by means of unary quality indicators. Here,
the ǫ- and the hypervolume-indicator are measured.

Before the performance indicators are computed, the
data are normalized. We want to compare k algorithms
on a particular optimization problem f after g fitness
evaluations and we assume that we have conducted t
trials. We consider the non-dominated individuals of
the union of all k · t populations after g evaluations.
These individuals make up the reference set R. Their
objective vectors are normalized such that for every
objective the smallest and largest objective function
values are mapped to 1 and 2, respectively, by an affine
transformation.

The closer the indicator value for an algorithm is to
the corresponding indicator value for R the better the
performance. The difference between these values are
reported in the results section (i.e., lower values are
preferable) [18], [7].

A. Benchmark Functions

Several benchmark functions have been chosen from
the literature. The functions ZDT1, ZDT2, ZDT3, and
ZDT6 [21] and rotated variants of the ZDT-suite termed
IHR1, IHR3 and IHR6 [6]. Additionally, the uncon-
strained and rotated functions ELLI1, ELLI2, CIGTAB1,
and CIGTAB2 proposed in [6] were used. The bench-
mark function WFG1 introduced in [22] has been cho-
sen to illustrate the ability of a scalarization method
to find solutions in concave regions of the Pareto-
optimal front depending on the scalarization method.
In table I the definitions of the benchmark functions are
presented.

B. Parameter Setup

For each of the algorithms, 50 independent trials
with 100000 fitness function evaluations were carried
out. For the hybrid algorithms a number of weight
steps nweights = 100 with the single-objective CMA-
ES running for 1000 generations was chosen. For the
S-MO-CMA-ES, a population size of µ = 100 and
an offspring population size of λ = 1 was chosen.
Accordingly, the number of generations was set to
100000. For all other parameters standard values were
used.

C. Results

Table II shows the results of the performance evalua-
tion after 50 trials with 100000 fitness evaluations. Fur-
ther experiments with 50000 fitness evaluations were
carried out but showed similar results. The S-MO-
CMA-ES performs significantly better than the (1+1)-



TABLE I
BENCHMARK PROBLEMS TO BE MINIMIZED, y = Ox, WHERE O ∈ R

n×n IS AN ORTHOGONAL MATRIX, AND yMAX = 1/ maxj(|o1j |). FOR THE

DEFINITION OF h, hf , AND hg WE REFER TO [21]. FOR THE ROTATED BENCHMARK FUNCTIONS, WITH a = 1000, b = 100, y = O1x, AND

z = O2x, WHERE O1 AND O2 ARE ORTHOGONAL MATRICES. FOR THE BENCHMARK FUNCTION WFG1, THE INPUT VECTOR x IS

TRANSFORMED MULTIPLE TIMES RESULTING IN THE VECTOR t4 , WITH k = 2. WE REFER TO [22] FOR THE DEFINITION OF THE

TRANSFORMATIONS.

Problem n Variable Objective Optimal
bounds function solution

IHR1 10 [−1, 1] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

“

1 −
p

h(y1)/g(y)
”

yi = 0

g(y) = 1 + 9
`
Pn

i=2 hg(yi)
´

/ (n − 1) i = 2, . . . n

IHR3 10 [−1, 1] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

“

1 −
p

h(y1)/g(y) −
h(y1)
g(y)

sin (10πy1)
”

yi = 0

g(y) = 1 + 9
`
Pn

i=2 hg(yi)
´

/ (n − 1) i = 2, . . . n

IHR6 10 [−1, 1] f1(x) = 1 − exp (−4 |y1|)) sin6 (6πy1) y1 ∈ [−ymax, ymax]

f2(x) = g(y) hf

“

1 − (f1(x)/g(y))2
”

yi = 0

g(y) = 1 + 9
ˆ`

Pn
i=2 hg(yi)

´

/ (n − 1)
˜0.25

i = 2, . . . n

WFG1 10 [0, 1] f1(t4) = 1 − cos(0.5t41π) xi = 2i + 0.35
f2(t4) = 1 − t41 − (cos(2 · 5 · πt41 + π/2))/(2 · 5 · π) i = k + 1, . . . , n

Unconstrained Benchmark Functions

ELLI1 10 [−10, 10] f1(y) = 1
a2n

Pn
i=1 a

2 i−1
n−1 y2

i y1 = · · · = yn

f2(y) = 1
a2n

Pn
i=1 a

2 i−1
n−1 (yi − 2)2 y1 ∈ [0, 2]

ELLI2 10 [−10, 10] f1(y) = 1
a2n

Pn
i=1 a

2 i−1
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CMA-ESτ(f ,w,u∗) and the (1+1)-CMA-ES∗,τ(f ,w,u∗) on
all benchmark functions except for ELLI1 and ELLI2.

For the function ELLI2 the values of the difference of
the indicator values exceed the numerical precision of
the result table. For this reason, box plots of the values
are provided in figure 2.

The function WFG1 has a non-convex Paeto front,
and thus it does not come as a surprise that the
weighted-sum approach performs badly on WFG1.

The good results of the (1+1)-CMA-ESω(f ,w) algo-
rithms on the functions CIGTAB1, CIGTAB2, ELLI1 and
ELLI2 are striking. But these are ideal test functions for
this method. First, as all objective functions are convex,
the weighted-sum approach is in principle able to find
all Pareto-optimal points. Second, for fixed weight-
ing coefficients, these functions reduce to quadratic
optimization problems (i.e., for these two functions
w1f1(x)+w2f2(x) are elliptic paraboloids), and exactly
these problems are ideal for the CMA-ES. That is,
on CIGTAB1, CIGTAB2, ELLI1, and ELLI2, the algo-

rithms (1+1)-CMA-ESω(f ,w) and (1+1)-CMA-ES∗,ω(f ,w)

decompose the multi-objective optimization problem
into subproblems perfectly suited for the CMA-ES, and

this results in superior performance on these bench-
mark functions.

V. CONCLUSIONS

Scalarization approaches as considered in this pa-
per suffer from the “curse of dimensionality” and
are not suited for many-objective optimization (MOO).
However, for bicriteria optimization single-objective
evolutionary algorithms applied to a set of scalarized
fitness functions may be competitive to population-
based approaches, in which the population of a single
trial is considered as the solution to the MOO problem.

Here we compared the multi-objective CMA evo-
lution strategy (MO-CMA-ES), which is based on the
elitist CMA-ES, with application of the elitist CMA-
ES to the optimization of scalarized fitness functions.
To this end, we introduced new “hybrid” algorithms
combining established scalarization methods with the
CMA-ES. These algorithms have the same invariance
properties as the MO-CMA-ES.

On most standard benchmark functions, the MO-
CMA-ES outperformed the elitist CMA-ES combined
with scalarization. But when the scalarization produced



TABLE II
RESULTS ON BENCHMARK PROBLEMS. THE UPPER AND LOWER PART OF EACH TABLE SHOWS THE MEDIAN OF 50 TRIALS AFTER 100000

FITNESS EVALUATIONS OF THE HYPERVOLUME-INDICATOR AND THE ǫ-INDICATOR RESPECTIVELY. FOR THE HYPERVOLUME-INDICATOR, THE

MEDIAN OF THE ACTUAL HYPERVOLUME COVERED BY THE RESPECTIVE PARETO-FRONT APPROXIMATION W.R.T. THE REFERENCE POINT

(2.1, 2.1) IS PUT IN PARENTHESIS. THE SMALLEST VALUE IN EACH ROW IS PRINTED IN BOLD, THE LARGEST IN ITALICS. THE SUPERSCRIPTS I, II,
III, IV AND V INDICATE WHETHER AN ALGORITHM IS STATISTICALLY SIGNIFICANTLY BETTER THAN THE S-MO-CMA-ES,

(1+1)-CMA-ESτ(f ,w,u∗) , (1+1)-CMA-ES∗,τ(f ,w,u∗) , (1+1)-CMA-ESω(f ,w) AND (1+1)-CMA-ES∗,ω(f ,w) , RESPECTIVELY (TWO-SIDED

WILCOXON RANK SUM TEST, p < 0.001, SLANTED SUPERSCRIPTS REFER TO A SIGNIFICANCE LEVEL OF p < 0.01).

S-MO-CMA-ES (1+1)-CMA-ESτ(f ,w,u∗) (1+1)-CMA-ES∗,τ(f ,w,u∗) (1+1)-CMA-ESω(f ,w) (1+1)-CMA-ES∗,ω(f ,w)

Hypervolume-Indicator

CIGTAB10.001536(1.124140)II,III,IV,V 0.053042(1.072630) 0.010117(1.115560)II 0.003112(1.122560)II,III 0.001841(1.123830)II,III,IV

CIGTAB20.000000(1.210000)II,III ,IV,V 0.000002(1.210000)IV,V 0.000000(1.210000)II,IV,V 0.000007(1.209990) 0.000002(1.210000)IV

ELLI1 0.066303(1.040650) 0.002458(1.104500)I 0.002516(1.104440)I 0.001379(1.105580)I,II,III 0.000931(1.106030)I,II,III,IV

ELLI2 0.000000(1.210000) 0.000000(1.210000) 0.000000(1.210000)I,II,IV,V 0.000000(1.210000)I,II 0.000000(1.210000)I,II,IV

IHR1 0.000424(1.207610) 0.002778(1.205260)IV 0.002658(1.205380)II,IV,V 0.002843(1.205200) 0.002659(1.205380)II,IV

IHR3 0.000004(1.209800)II 0.025611(1.184200) 0.000270(1.209540)II,IV 0.012111(1.197700)II 0.000216(1.209590)II,III,IV

IHR6 0.014747(1.159390)II,III,IV,V 0.177218(0.996915)IV 0.169071(1.005060)II,IV 0.200065(0.974068) 0.146458(1.027680)II,III,IV

WFG1 0.002983(0.829102)II,III,IV,V 0.014696(0.817389)IV,V 0.012367(0.819718)II ,IV,V 0.059198(0.772888)V 0.064734(0.767351)
ZDT1 0.000630(1.161750)II,III,IV,V 0.050794(1.111590) 0.000814(1.161570)II,IV,V 0.021237(1.141140)II 0.012361(1.150020)II,IV

ZDT2 0.006558(1.114180)II,III,IV,V 0.038717(1.082020) 0.034567(1.086170)II,IV,V 0.038245(1.082490) 0.034744(1.085990)II,IV

ZDT3 0.000254(1.115980)II,III,IV,V 0.104633(1.011600) 0.019863(1.096370)II,IV,V 0.056590(1.059640)II 0.026171(1.090060)II,IV

ZDT6 0.003013(1.150740)II,III,IV,V 0.032967(1.120790)IV,V 0.032950(1.120800)II,IV,V 0.033002(1.120750) 0.032976(1.120780)

ǫ-Indicator

CIGTAB10.002869II,III,IV,V 0.090382 0.018137II 0.008138II,III 0.003577II,III,IV

CIGTAB20.000009II,III,IV 0.000026 0.000011II,IV 0.000016II 0.000010II,III,IV

ELLI1 0.057773 0.005842I 0.006129I 0.004103I,II,III 0.003783I,II,III,IV

ELLI2 0.000004 0.000000I 0.000000I,II 0.000000I,II,III 0.000000I,II,III,IV

IHR1 0.001281 0.004291IV 0.004200II,IV,V 0.004367 0.004201II,IV

IHR3 0.000119II,IV 0.017937 0.003412II,IV,V 0.014500II 0.004128II,IV

IHR6 0.039137II,III,IV,V 0.164918IV 0.130065II,IV,V 0.192874 0.161322II,IV

WFG1 0.004463II,III,IV,V 0.034220III ,IV,V 0.036850IV,V 0.098827 0.098597IV

ZDT1 0.001806II,III,IV,V 0.084596 0.007526II,IV,V 0.043881II 0.039923II,IV

ZDT2 0.017523II,III,IV,V 0.110446 0.107069II,IV,V 0.107188II 0.107075II,IV

ZDT3 0.001299II,III,IV,V 0.141574 0.047396II,IV,V 0.099733II 0.059055II,IV

ZDT6 0.013306II,III,IV,V 0.080600IV,V 0.080600II,IV,V 0.080605V 0.080612
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Fig. 2. Box plots of the results of the performance assessment for the fitness function ELLI2. The left plot shows the hypervolume-

indicator, the right plot shows the ǫ-indicator. In both plots, from left to right, results of the S-MO-CMA-ES, (1+1)-CMA-ESτ(f ,w,u∗),

(1+1)-CMA-ES∗,τ(f ,w,u∗), (1+1)-CMA-ESω(f ,w), (1+1)-CMA-ES∗,ω(f ,w) are shown.



perfect quadratic fitness functions, the powerful strat-
egy adaptation of the CMA-ES could exploit this ideal
structure and the CMA-ES combined with weighted-
sum scalarization performed on par with the truely
population-based MO-CMA-ES. However, across the
test problem scalarization using the Tchebycheff metric
performed better than weighted aggregation, in par-
ticular because of the known problems of the latter
approach with non-convex MOO problems.

Future work will include the evaluation of the pro-
posed algorithms on more than two objectives with the
hypothesis that the MO-CMA-ES will outperform the
hybrid methods even more clearly.

REFERENCES

[1] K. Miettinen, Nonlinear Multiobjective Optimization, ser. Kluwer’s
International Series in Operations Research & Management
Science. Kluwer Academic Publishers, 1999, vol. 12.

[2] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation,
vol. 9, no. 2, pp. 159–195, 2001.

[3] N. Hansen, “The CMA evolution strategy: A comparing re-
view,” in Towards a new evolutionary computation. Advances on
estimation of distribution algorithms., I. I. J.A. Lozano, P. Larraãga
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