
1

Two-layered Surrogate Modeling for Tuning
Optimization Metaheuristics

Günter Rudolph, Mike Preuss, Jan Quadflieg

I. INTRODUCTION

The problem of detecting suitable parameters
for metaheuristic optimization algorithms is well
known long since. As these nondeterministic meth-
ods, e.g. evolution strategies (ES) [1], are highly
adaptible to a specific application, detecting good
parameter settings is vital for their success. Per-
formance differences of orders of magnitude (in
time and/or quality) are often achieved by means
of automated tuning methods. In the last years,
several of these have been suggested, and many
incorporate surrogate models for the algorithm
parameter space. Although tuning methods are reli-
able tools to build specific optimization algorithms
by modifying the parameters of canonic ones, their
use is somewhat restricted to relatively cheap ob-
jective functions (in terms of computational cost).
As a huge number of algorithm runs is necessary,
they are simply not applicable when the evaluation
time of the objective function increases beyond
a certain level. If the objective function is too
expensive for applying tuning methods directly,
one can resort to simpler approaches:

1) Try to find a suitable parameter setting for
a canonical metaheuristic by means of a
simple randomized or space-filling design, or

2) give up on the parameter optimization ap-
proach and optimize the problem directly
with a heuristic or metaheuristic that incor-
porates surrogate models itself.

The latter methodology is employed e.g. by
EGO [2], but also by surrogate model enhanced
metaheuristics like the model-assisted evolution
strategy (MAES) [3]. Whereas tuning methods
utilize many runs of standard algorithms which are

All authors are with the Chair of Algorithm Engineering, Com-
putational Intelligence Group, Dept. of Computer Science, Technis-
che Universität Dortmund, Germany. E-mail: firstname.lastname@tu-
dortmund.de

performed on the original optimization problem
and do not model it1, MAES and similar algo-
rithms model the optimization problem ’on-the-fly’
but do not adapt the algorithm itself. There is no
reason to believe that these two approaches could
not go well together and thus make tuning ap-
plicable to more expensive optimization problems
than before. In this work, we combine the use of
metamodels (= surrogate models) for the tackled
problem with the tuning technique SPO [4] which
uses kriging metamodels in the algorithm parame-
ter space. Note that this combination is especially
straightforward for a model-assisted optimization
algorithm, but that the technique is useful also if
other optimization algorithms shall be applied to a
costly problem and need to be tuned.

II. TWO-LAYERED MODEL-SUPPORTED
OPTIMIZATION

The basic idea of our approach is to start an
algorithm tuning process with a minimal space-
filling design and to use the obtained objective
function samples to build a first-layer surrogate
(kriging) model on which the algorithm tuning
is then continued. Modern tuning algorithms like
SPO themselves establish a surrogate model we
term second-layer model here, as it does not op-
erate on the problem itself. As soon as the tuning
process converges, validation runs are performed to
test the tuned algorithm on the real objective func-
tion. Thereby, more samples become available for
updating the first-layer model. The tuning process
may then be continued on the updated model
and the resulting algorithm configuration validated
again. This loop shall be terminated if either a
predefined budget of objective function evaluations
is used up or no better algorithm configurations are
obtained from the tuning process any more.

1their model belongs to the algorithm parameter space



2

Fig. 1. Two layers of metamodels for saving function evaluations.

We make the assumptions that the algorithm
tuning problem is easier to solve than the opti-
mization problem itself and that a surrogate model
represents the real problem good enough to allow
for tuning the optimization algorithm to perform
well on the original problem. The first assumption
is supported by the smaller dimensionality of the
tuning problem (usually around 5, many real-world
optimization problems have between 10 and 30
variables), and prior knowledge about the mech-
anisms of the optimization algorithms. The second
assumption has to be tested experimentally. It is
clear that although we head for greatly reduced
tuning times, our approach is suitable only if
objective function evaluations are on the order of
minutes at most; otherwise, tuning is not possible
any more and few runs of any optimization algo-
rithm have to suffice.

In this preliminary study, we restrict ourselves
to validate the second assumption. It is currently
unknown how detailed a first-order model has to be
to allow meaningful tuning. A very accurate model
will surely suffice, but it is also very expensive.
The overall question is if the number of objective
function evaluations to invest into the model is
small enough. At most, it should be on the order of
10-20 algorithm runs, otherwise using the tuning
method directly on the problem is cheaper, if
applicable at all.

We can expect that the necessary accuracy de-
gree of the first-order model will not be the same
for all problems, and that some problems may
possess properties rendering the whole approach
infeasible. Furthermore, not every surrogate model
may be suitable for a certain problem type. Thus
we start with two well-known benchmark prob-
lems, the rotated Rastrigin problem and Schwe-
fels problem 2.13, both employed in the CEC’05
benchmark suite for evolutionary optimization al-

gorithms [5]. Both are multimodal and the first has
the overall structure of a hyper-parabola with many
bumps, whereas the second is less multimodal but
deceptive (the best optima are on different sides of
the search space). For these problems, generating
point databases for setting up surrogate models
takes only minutes. In a second experiment, the
approach is tested on a real-world problem where
a standard SPO tuning procedure with e.g. 500
algorithm runs would not be applicable because
each run takes around a day. The task is to find a
suitable algorithm for solving problems from fluid
dynamics, in our case optimizing a ship propulsion
system.

For both levels of surrogate models, we rely on
ordinary kriging models (assuming an unknown
constant trend). However, the use of kriging as
first-order surrogate model is rather motivated by
the success of the method as second-order model
within SPO than by factual evidence. Nevertheless,
kriging may be a good candidate as it makes very
few assumptions on the modeled function and thus
should work reasonably well in many cases.

III. MODEL USAGE IN MAES AND SPO

In order to clarify how the different algorithms
use surrogate models, we shall specify how they
work in detail. The MAES is a model-enhanced
evolution strategy that learns the step sizes in a
self-adaptive fashion as described in [1]. It em-
ploys a population of µ solutions from which λ
new search points are generated by gaussian muta-
tions (with standard deviation given by the current
step size, initially set to σinit) in all dimensions
simultaneously. Before applying mutation, the step
size undergoes a slight randomized change regu-
lated by the learning rate τ . The µ most successful
offspring (new search points) are kept and form
the next population. The parameter κ denotes the
maximum number of iterations any solution may
survive in the population. See table II, row of entry
’standard’ for the default settings used in this work.

During runtime, the MAES keeps a database of
points ever visited and uses it to establish a first
order surrogate model of the problem it operates
on. We rely on a local ordinary kriging model
made from the 15 points in the database with the
smallest euclidean distance to the new search point



3

in this work, but other models would be possible
as well, given that a surrogate model component
is added. With a given rate (here: 0.5), the MAES
samples the original objective function, otherwise
it does so on the kriging model. One advantage of
using a kriging model lies in its ability to return
an estimate of the error next to one of the function
value. The estimated function value and the error
estimation are added so that the MAES prefers re-
gions with predicted good function values, but also
honors large errors that may result in good function
values if sampled on the real objective function.
For the case of minimization, the error value is
subtracted from the function value estimation. In
any case, the importance of the error estimation
is scaled by a constant we keep at 1 in this
work, as advocated by preliminary experiments.
Note that the internal model kept by the MAES
inspired sampling on the kriging model only as
we do later on. However, every other derivative-
free optimization algorithm may be used as well.
When sampling on the model only, we allow for
twice as many function evaluations as the MAES
was given in the mixed case, corresponding to the
rate of 0.5 real and 0.5 model-based evaluations.

The employed tuning method SPO starts with a
latin hypercube design in the provided algorithm
parameter space and then establishes a global ordi-
nary kriging model to predict good regions for fur-
ther sampling. It utilizes the expected improvement
criterion of EGO [2] to take the predicted error
value into account as well as the function value
prediction. A huge difference between MAES and
SPO in addition to their different working spaces
(problem vs. algorithm parameters) is that SPO has
to cope with non-deterministic answers, whether
MAES expects deterministic ones. It does so by
doing increasing numbers of repeats at good de-
tected algorithm configurations (parameter values).
Thus, the most successful configurations are sam-
pled many times more than had been undertaken
for the initial design. The obtained best function
values for each performed algorithm run are added
to the model so that it improves over time.

SPO also possesses some parameters that are
set as follows in this work: The total budget of
algorithm runs is 500, the initial design has a
size of 25 with 4 repeats each. In each iteration,

only one new point is added and is run two times
as often as the current leader (which is also re-
run up to the same amount of runs to attain a
fair comparison), with a maximum of 30 runs per
configuration.

IV. EXPERIMENT ON BENCHMARK PROBLEMS

For two well-known benchmark problems (each
in 2 and 10 dimensions), we first generated a
number of points to be used for modeling via per-
forming repeated runs. To prevent too many very
similar points entering the databases, a minimum
Manhattan distance was required in at least one
dimension or the fitness value to every existing
point (relative to the extension of the whole pop-
ulation). The minimal distance was set to 0.0025
for 2 dimensions, and 0.01 for 10 dimensions. For
every problem, databases of sizes 0, 1000 and 2000
were established.
Research Question. Is tuning on first-order mod-
els of the problem successful with respect to algo-
rithm behavior on the original problem?
Pre-Experimental Planning. At first, we tested
if providing the MAES with a database of points
for its internal surrogate model improves the opti-
mization behavior. The MAES used kriging model
samples and real evaluations each with probability
0.5. The parametrization is found in table II as
standard and is the result of manual tuning on
the different problems, including the real-world
problem reported later on.

Figure 2 shows box plots of the results of 20
runs for each configuration with all three database
sizes (configuration 1,2,3 means DB size 0, 1000,
2000). Although an improvement seems visible for
a large database in 10d of f10, the result sets
showed no significant difference by means of a
Wilcoxon rank-sum test at significance level 0.05.
For 10d on f12, significance was also not reached.
In 2d for f12, configuration 3 was significantly
better than any other, and for f10, configuration
2 was better than any other. This is somewhat
unexpected but may pay tribute to the highly
multimodal nature of the test functions. One may
deduct that except for few cases, adding databases
does not change the performance of the MAES
much on difficult functions. However, the MAES
parameter setting may have been not ideal for



4

that case so that databases get more important for
specific algorithm configurations.
Task. Our hypothesis is that the behavior of the
MAES on the benchmark problems can be im-
proved via tuning it on a first-order surrogate
model. We require that a significant improvement
results in precision qualities at the 5%-level, ac-
cording to a Wilcoxon rank-sum test.
Setup. All runs on 10 dimensional problems are
terminated after 300 function evaluations on the
original problem, and 600 on the surrogate model,
in 2 dimensions, these limits are set to 60 and
120, respectively. The higher values for the runs
on the model are fair as the MAES on the original
problem is configured to do half of its evaluations
on its internal model. The overall very low function
evaluation numbers stem from the need to apply
the method to costly real-world problems later on,
which often do not allow for more than a few
hundred evaluations. For 2 dimensions, the bud-
get has been reduced deliberately to increase the
hardness of the problems, as 300/600 evaluations
often lead to near optimal optimimization results
where tuning is not needed any more.

On each of the 4 test problem settings (f10 and
f12 in 2 and 10 dimensions), three SPO tuning
processes are performed with a budget of 500
algorithm runs, separately for three configurations.
These are: MAES without initial database (as is
normally the case) on the original problem, MAES
on a kriging first-order surrogate model of the
problem with a database size of 1000, and the same
again with a database size of 2000. The second
model should be more accurate, whether the tuning
on the original problem may serve as the uppper
limit of the performance to be reached when tuning
on the model only. After tuning, the best resulting
configurations are validated with 20 runs on the
original problem. The tuning intervals are given
in table I. They allow for a wide range of MAES
variants, only the population size/offspring num-
ber is fairly restricted as the number of function
evaluations allowed is very small and the MAES
should be able to run for at least 5-10 generations.
Experimentation/Visualization. Figure 3 displays
box plots of the validation runs after SPO tuning
in a similar fashion as for the original MAES runs
in figure 2. Table II shows the parameter values

chosen by SPO for the most successful tuning
runs (as indicated by figure 3. Table III reports
the p-values of Wicoxon rank-sum tests between
the standard configuration and the SPO determined
configurations.
Observations. Four all 4 tested func-
tion/dimension combinations, tuning results in
significantly better configurations. Pondering the
determined MAES parameter values as reported in
table II leads to the insight that generally a larger
population (and thereby enabled recombination)
is helpful. Interestingly, the parameter sets found
while tuning only on the surrogate model are
relatively close to the ones determined on the
original function. The success of the tuning
process if run on the model seems to depend on
the number of points put into it, and not always,
more points are better (f10-10d). However, this is
always the case for the problem f12. It seems that
the advantage gained here is mainly due to a more
stable behavior (smaller spread). At least one of
the model-tuned configurations was significantly
better than the original parameter set, except for
f10-2d, where significance was narrowly missed
with a p-value of 0.059.
Discussion. The overall impression is that the
two-layered approach for tuning works remark-
ably well. Although the used first-order surrogate
models with 1000 and 2000 points may not be
very accuracte, given that the problems are highly
multimodal, an improvement is reached in 3 of four
cases (probably mainly by switching from a single-
individual population to a larger one). On f10-2d
tuning may be very hard because the standard para-
meters already entail good results, even if there is
still room for a little improvement. The observation
that for f12, more accurate models provide better
tuning results meets expectation well. However,
this seems to be different for f10. As possible
explanation, it comes to mind that SPO is itself

TABLE I

PARAMETER INTERVALS FOR THE TUNING PROCESS, NAMELY

INITIAL STEPSIZE, LEARNING RATE, MAXIMUM ALLOWED

LIFETIME, POPULATION SIZE, OFFSPRING NUMBER.

σinit τ κ µ λ
0.01:0.5 0.1:2 1:30 1:5 5:15



5

fitness (minimization)

co
nf

ig
ur

at
io

n

1

2

3

−300 −200 −100 0

●

●

● ● ●

f10−10d

1

2

3

−340 −320 −300 −280 −260

●

●

●

●

●●●

f10−2d

fitness (minimization)

co
nf

ig
ur

at
io

n

1

2

3

0 50000 150000 250000

●

●

●

●

f12−10d

1

2

3

−500 0 500 1000 1500 2000

●

●

● ●●

f12−2d

Fig. 2. Performance of the MAES with different additional databases, configuration 1,2,3 stands for 0, 1000 and 2000 points. Left:
Problem f10 (Rastrigin, optimum -330), 2 and 10 dimensions, right: Problem f12 (Schwefel, optimum -460), 2 and 10 dimensions.

fitness (minimization)

co
nf

ig
ur

at
io

n

1

2

3

−300 −200 −100 0

●

●

● ●

f10−10d

1

2

3

−340 −320 −300 −280 −260

●

●

●

●●

f10−2d

fitness (minimization)

co
nf

ig
ur

at
io

n

1

2

3

0 50000 150000 250000

●

●

●

●

●

f12−10d

1

2

3

−500 0 500 1000 1500 2000

●

●

●

●

f12−2d

Fig. 3. Performance (20 validation runs) of the SPO-tuned MAES configurations, 1 stands for SPO on the original problem, 2 for SPO
on the 1000 point database model, and 3 for SPO on the 2000 point database model. The boxes shall be compared with configuration
1 of figure 2 that shows the performance of the untuned algorithm. Left: Problem f10 (Rastrigin, optimum -330), 2 and 10 dimensions,
right: Problem f12 (Schwefel, optimum -460), 2 and 10 dimensions.

a non-deterministic method, so that some tuning
runs are simply luckier than others. Nevertheless,
the model size is a question that deserves further
attention in future.

V. A REAL-WORLD TEST PROBLEM

As a suitable test problem, we employ the opti-
mization of a relatively new ship propulsion system
(a linearjet, figure 4) which possesses 15 design
variables. It consists of a tube with a rotor and a
stator, and several lengths, angles and thicknesses
can be variated. Our objective function is a very
basic fluid dynamic simulation of a linearjet that
takes about 3 minutes to compute, and the task is
to reduce cavitation at a predefined efficiency. Cav-
itation (the emergence of vacuum bubbles in case
of extreme pressure differences due to very high
accelerations of the water) damages the propulsion

system and also leads to high noise levels. Note
that for bringing down the simulation time to
minutes, many simplifications are in effect, so that
the obtained result is not very accurate. A full
simulation would take about 8 hours, employing
parallel computation, which is by far too much
to serve as test problem. However, the simplified
simulation is still accurate enough to detect good
design points that can afterwards validated by the
full simulation.

A MAES [3] has been applied to a simpler
form (less variables) of the problem with limited
success [6]. This may be due to a very rugged
search space with many plateaus, cliffs and bumps.
As indicated by a random sample around a good
search point in figure 5, the quality to distance
correlation looks fairly unstructured and layered.
This impression is approved by several grid tests



6

Fig. 4. Vizualization of the running linearjet propulsion system
simulation. Due to symmetries, only a partial movement is simu-
lated, and the water body is restricted to the parts in touch with the
tube, rotor and stator.

in only 2 dimensions around a good solution as
displayed in figures 6 and 7. The two closely
correlated variables of the rotor printed in figure
6 reveal a very rugged surface. Small steps into
either direction may lead to high cavitation which
is heavily penalized, with no recognizable smooth
transition between them. The other figure leads to
a very different impression with linear structures
of bad fitness. Overall, we deduct that the fitness
surface is fairly inhomogenous, which should make
it difficult for optimization algorithms as well as
for providing good models of it. However, if used

TABLE II

STANDARD AND TUNED PARAMETER SETTINGS OF THE MAES

(INITIAL STEPSIZE, LEARNING RATE, MAXIMUM ALLOWED

LIFETIME, POPULATION SIZE, OFFSPRING NUMBER).

σinit τ κ µ λ
standard 0.15 1.0 10 1 5
f10 2d SPO(O) 0.088 0.753 6 3 13
f10 2d SPO(1000) 0.338 1.662 15 3 14
f10 10d SPO(O) 0.400 0.525 19 5 11
f10 10d SPO(1000) 0.415 1.525 20 5 12
f12 2d SPO(O) 0.055 0.114 20 5 14
f12 2d SPO(2000) 0.3974 0.696 29 4 14
f12 10d SPO(O) 0.017 0.173 23 5 13
f12 10d SPO(1000) 0.208 0.210 10 4 11
linearjet SPO(2000) 0.170 0.794 20 4 11

TABLE III

P-VALUES OF THE WILCOXON RANK-SUM TEST BETWEEN THE

20 VALIDATION RUNS OF THE DIFFERENT PARAMETER SETS,

STANDARD AND DETECTED BY SPO. SPO(O) MEANS TUNING

ON THE ORIGINAL PROBLEM, SPO(1000) TUNING ON 1000

POINT, SPO(2000) ON 2000 POINT SURROGATE MODEL.

f10 2d f10 10d f12 2d f12 10d
standard : SPO(O) 10−3 10−5 0.010 10−5

standard : SPO(1000) 0.134 0.005 0.799 10−4

standard : SPO(2000) 0.059 0.277 0.013 10−4

SPO(O) : SPO(1000) 0.142 0.024 0.021 0.006
SPO(O) : SPO(2000) 0.883 10−4 0.038 0.013
SPO(1000):SPO(2000) 0.142 0.102 0.883 0.369

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4

run1−p.4.correl

dP

dF

Fig. 5. Quality to search space distance correlation around a good
solution, ∆quality (dF) over ∆search space distance (dP).

in a tuning context, a surrogate model only has
to embody the most important properties of the
original problem. The tuning process may then
adapt the algorithm to these if parameter changes
provide this possibility. Without looking at the
following experiment, we cannot be completely
sure if this is the case at all for the system of
MAES and the linearjet optimization problem.

VI. VALIDATION EXPERIMENT ON THE
LINEARJET PROBLEM

The original goal of this work had been to
find a good parameter setting and thus a good



7

0.838 0.840 0.842 0.844 0.846 0.848 0.850

0.
93

2
0.

93
4

0.
93

6
0.

93
8

0.
94

0
0.

94
2

c(x05)

c(
x1

)

−1.75

−1.70

−1.65

−1.60

−1.55

−1.50

Fig. 6. 20x20 grid test around a very good point in dimensions
11 and 12 (2 rotor parameters), minimization.

algorithm for optimizing on the linearjet problem.
After showing that our 2-level surrogate model
approach works on simple benchmark functions,
the test on the original real-world problem is the
necessary next step. However, we cannot conclude
that the approach is either always successful or
completely useless, regardless of the outcome.
Research Question. Can the 2-level surrogate
model based tuning approach also improve algo-
rithms on real-world problems?
Pre-Experimental Planning. The standard para-
meter setting of the MAES used throughout the
whole paper was determined via first runs on this
problem.
Task. We demand that the algorithm with tuned
parameters performs significantly better in terms
of best fitness per run than the untuned version, at
the 5 % level of a Wilcoxon rank-sum test.
Setup. A database of 2000 points is generated from
previous test runs on the linearjet problem, from
which we create a local ordinary kriging model.
The SPO tuning operates on this model only, with a
run length of 600 evaluations (according to the 0.5
probability for the MAES in its chosen configura-
tion to sample from the real objective function and
a run length of 300 real function evaluations). The

0.185 0.190 0.195 0.200 0.205 0.210 0.215

0.
26

0
0.

26
2

0.
26

4
0.

26
6

kr(x0)

cS
ta

t(
x0

5)

−1.75

−1.70

−1.65

−1.60

−1.55

−1.50

Fig. 7. 10x10 grid test around the same point as in figure 6,
dimensions 13 and 20 (which should be rather uncorrelated),
minimization.

MAES is then run 9 times each with the obtained
best configuration and the standard configuration
for validation purposes with run length 300. Note
that one run needs between 12 and 24 hours
computation time on a modern PC.

Experimentation/Visualization. The best parame-
ters resulting from tuning on the model only are
given in table II, row ’linearjet SPO(2000). Fig-
ure 8 shows a box plot comparing the distributions
of the 9 validation runs each. The mean values of
the best solutions per run are −1.4812 vs −1.5342,
the standard deviations 0.0539 vs 0.0478. The two
samples are different with a p-value of 0.02 in a
Wilcoxon rank-sum test (the data is not normal as
determined by a Shapiro-Wilk test with a p-value
of 10−3 on the standard parameter results).

Observations. We find that the parameters ob-
tained from tuning the MAES on the surrogate
model of the linearjet problem are remarkably
similar to the ones found on the benchmark func-
tions, except a more moderate σinit = 0.17, which
corresponds well to the original value of 0.15. The
validation runs show a different type of distrib-
ution for the standard and the tuned parameter
setting. Under standard parameters, most values



8

fitness (minimization)

co
nf

ig
ur

at
io

n

1

2

−1.60 −1.55 −1.50 −1.45

●

●

● ●

linearjet

Fig. 8. Performance of the MAES on the linearjet problem
before (configuration 1) and after tuning (configuration 2). The dots
correspond to the median values of the distributions.

are concentrated around the median, with some
outliers. However, the spectrum of values in the
tuned results is much broader.
Discussion. The validation experiment is success-
ful, as the SPO-tuned parameter values lead to
a significant performance increase. The differ-
ent distributions of the validation runs probably
stem from the type of algorithm chosen. The
tuned MAES resembles a model-enhanced (4,11)-
ES with κ = 20 and so may profit from a
more globally oriented behavior than the standard
parameter setting with a population size of one.
It seems to pay off to cling longer to the best
found search points (κ 20 vs 10). However, the
observed success does not mean that there is no
other evolutionary optimization method that would
perform even better. We have only obtained a
good configuration for the MAES. Nevertheless,
even that was not fully expected, as the objective
function does not look very well suited for any
model-based optimization scheme.

VII. CONCLUSIONS

The results from our experiments on some
benchmark functions and a difficult real-world
problem support our conjecture that the concept of
using a two-layered surrogate model approach for

tuning optimization algorithms possesses a fruitful
and as yet unexplored potential for optimization
under scarce resources. It remains to provide evi-
dence that parameter tuning via a surrogate model
works since only the main characteristics of the
true problem must be reflected by the surrogate
model. If so, every objective function evaluation
saved by using a surrogate model in the optimiza-
tion runs can be invested for tuning the algorithm.
As a consequence, using the same number of
function evaluations much better solutions can be
found than without the two-layered approach.

As future work, we envision establishing an
integrated method for using a first-order surrogate
model within the tuning process from the different
components used separately within this first study
(first runs on the original problem, tuning process,
validation runs). This would enable tuning on
costly objective functions in a systematic manner,
which is not possible currently.

Acknowledgments
Mike Preuss gratefully acknowledges sup-

port from the Deutsche Forschungsgemeinschaft
(DFG), grant no. RU 1395/3-2 “Ein Verfahren zur
Optimierung von aus Mehrkomponenten bestehen-
den Schiffsantrieben”.

REFERENCES

[1] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: A
comprehensive introduction,” Natural Computing, vol. 1, no. 1,
pp. 3–52, 2002.

[2] D. Jones, M. Schonlau, and W. Welch, “Efficient global opti-
mization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, pp. 455–492, 1998.

[3] M. Emmerich, K. Giannakoglou, and B. Naujoks, “Single- and
multi-objective evolutionary optimization assisted by gaussian
random field metamodels,” IEEE Transactions on Evolutionary
Computation, vol. 10, no. 4, pp. 421–439, 2006.

[4] T. Bartz-Beielstein, Experimental Research in Evolutionary
Computation – The New Experimentalism, ser. Natural Com-
puting Series. Berlin: Springer, 2006.

[5] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen,
A. Auger, and S. Tiwari, “Problem definitions and evaluation
criteria for the cec 2005 special session on real-parameter opti-
mization,” Nanyang Technological University, Singapore, Tech.
Rep., May 2005, http://www.ntu.edu.sg/home/EPNSugan.

[6] B. Naujoks, M. Steden, S.-B. Müller, and J. Hundemer, “Evolu-
tionary optimization of ship propulsion systems,” in Proc. 2007
Congress on Evolutionary Computation (CEC’07), Singapore.
Piscataway NJ: IEEE Press, 2007.


