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Abstract� The mutation distribution of evolutionary algorithms usu�
ally is oriented at the type of the search space� Typical examples are
binomial distributions for binary strings in genetic algorithms or normal
distributions for real valued vectors in evolution strategies and evolu�
tionary programming� This paper is devoted to the construction of a
mutation distribution for unbounded integer search spaces� The prin�
ciple of maximum entropy is used to select a speci	c distribution from
numerous potential candidates� The resulting evolutionary algorithm is
tested for 	ve nonlinear integer problems�

� Introduction

Evolutionary algorithms �EAs� represent a class of stochastic optimization al�
gorithms in which principles of organic evolution are regarded as rules in opti�
mization� They are often applied to real parameter optimization problems ��	
when specialized techniques are not available or standard methods fail to give
satisfactory answers due to multimodality
 nondi�erentiability or discontinuities
of the problem under consideration� Here
 we focus on using EAs in integer
programming problems of the type

maxff�x� � x � M � ZZng ��

where ZZ denotes the set of integers� Note that the feasible region M is not
required to be bounded� Consequently
 the encoding of the integer search space
with �xed length binary strings as used in standard genetic algorithms �GA�
��
 �	 is not feasible� The approach to use an evolution strategy �ES� ��
 �	 by
embedding the search space ZZn into IRn and truncating real values to integers
has
 however
 also its de�ciency� As evolution strategies usually operate on
real valued spaces they include features to locate optimal points with arbitrary
accuracy� In integer spaces these features are not necessary because the smallest
distance in ���norm between two di�erent points is � Therefore
 as soon as
the step sizes drop below  the search will stagnate� Thus
 EAs for integer
programming should operate directly on integer spaces�
Early approaches in this direction can be found in ��	 and ��	� They proposed
random search methods on integer spaces in the spirit of a � � ��ES�
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Choose x��� �M and set t � �
repeat

y�t��� � x�t� � z�t�

if y�t��� �M and f�y�t���� � f�x�t�� then x�t��� � y�t���

else x�t��� � x�t�

increment t
until stopping criterion ful�lled

Here
 z�t� denotes the random vector used at step t� Gall ��	 and Kelahan�Gaddy
��	 used a �continuous� bilateral power distribution with density

p�x� �


� k a��k
jxj��k�� � ��a�a��x� � k � IN�

to generate random vector z via zi � a����u�k with u � U ��� 	 for each vector
component and by truncating these values to integers� The factor a is used to
shrink the support of the distribution during the search by a geometrical sched�
ule� Since the support is bounded and its range tends to zero as time increases

the above algorithm is at best locally convergent� Moreover
 the truncation of
random variables values drawn from continuous mutation distributions to inte�
ger values might complicate theoretical investigations� Therefore
 the usage of
mutation distributions with support ZZn seems most natural for integer problems
���
The remainder of the paper is devoted to the construction and test of an appro�
priate mutation distribution� As there are several candidates for such a mutation
distribution we pose some requirements for the desired distribution before using
the concept of maximum entropy to guide our �nal choice� The resulting evo�
lutionary algorithm
 which is oriented at a ��� ���ES
 is tested for �ve nonlinear
integer problems�

� Construction of Mutation Distribution

Assume that the current position of the algorithm in the search space is the
point x � ZZn� Since the algorithm does not have prior knowledge of the re�
sponse surface there is absolute uncertainty about the next step to be taken� In
each coordinate direction one might ask the questions� Should we go left or right
� How many steps should be taken in the chosen direction � The �rst question
has a simple solution� Since we do not have prior knowledge which direction will
o�er improvement
 we should move to the left or right with the same probability�
The second question is more di�cult to answer� Since we do not know which
step size will be successful
 we could draw a step size s � IN� at random� But
which distribution should be used for random variable s � There are several
candidates
 for example Poisson
 Logseries and geometrical distributions ��	� To
select a speci�c distribution with given mean
 say � � �
 we may use the concept
of maximum entropy� A distribution with maximum entropy is the one which
is spread out as uniformly as possible without contradicting the given informa�
tion� It agrees with what is known
 but expresses maximum uncertainty with



respect to all other matters ��	� The usage of this concept to select a distribution
usually leads to the task to solve a nonlinear
 constrained optimization problem
analytically� This will be done in subsection ��� The symmetrization of the
chosen distribution and its extension to the multivariate case will be considered
in subsection ���� Finally
 we discuss possibilities to control the average step size
during the search in subsection ����

��� Maximum Entropy

Definition 
Let pk with k � IN� denote the density of a discrete random variable� Then

H�p� � �
�X
k��

pk log pk ���

is called the entropy of the distribution
 provided that series ��� convergesy� �

Proposition 
Let X be a discrete random variable with support IN� and mean E�X	 � � � ��
If the distribution of X is requested to possess maximum entropy
 then X must
have geometrical distribution with density

PfX � kg �


� � 

�
�



� � 

�k

� k � IN� � ���

Proof � The optimal values for pk can be obtained after partial di�erentation
of the Lagrangian

L�p� a� b� � �
�X
k��

pk logpk � a

�
�X
k��

pk � 

�
� b

�
�X
k��

k � pk � �

�
�

The details are omitted due to lack of space� �

��� Symmetrization and Extension to the Multivariate Case

A discrete distribution is symmetric with respect to �
 if pk � p�k for all k being
elements of the support� How this can be achieved �

Proposition � ���
 p� �������	�
Let X be a discrete random variable with support IN� and Y a random variable

with support ZZnIN and Y
d
� �X� If X and Y are stochastically independent


then Z
d
� X � Y possesses a symmetric distribution with respect to �� �

Here
 X possesses geometrical distribution with PfX � kg � p � ��p�k
 so that
for Y holds PfY � kg � p � � � p��k� The convolution of both distributions
leads to the distribution of Z� We distinguish two cases�

yConvention	 � � log � 
 ��



I� Let k � �� Then PfZ � kg � PfX � Y � kg �

�X
j��

PfX � j � kg � PfY � �jg �
�X
j��

p � �� p�j�k � p � �� p�j �

p	 �� p�k
�X
j��

�
�� p�	

�j
�

p

�� p
� � p�k �

II� Let k 	 �� Then PfZ � kg � PfX � Y � kg �

�X
j��

PfX � jg � PfY � �j � kg �
�X
j��

p � �� p�j � p � �� p�j�k �

p	 �� p��k
�X
j��

�
�� p�	

�j
�

p

�� p
�� p��k �

Thus
 the probability function of Z is

PfZ � kg �
p

�� p
� � p�jkj � k � ZZ ���

with E�Z	 � � and Var�Z	 � � � � p� 
 p	� Next
 we consider the multivariate
case� Two questions are of special interest� Does the extension to the multivari�
ate case remain symmetric � What is the expectation and variance of the step
size in n�dimensional space �

Definition � ���	�
A discrete multivariate distribution with support ZZn is called ���symmetric if
the probability to generate a speci�c point k � ZZn is of the form

PfX� � k�� X	 � k	� � � � � Xn � kng � g�kkk�� �

where k � �k�� � � � � kn�
� with ki � ZZ and kkk� �

Pn
i�� jkij denotes the ���norm�

�

We shall generate the mutation vector Z by n independent random variables Zi

with probability function ���� Let k � ZZn be any point of length kkk� � s
 s
�xed� Then PfZ� � k�� Z	 � k	� � � � � Zn � kng �

nY
i��

PfZi � kig �

�
p

�� p

�n nY
i��

�� p�jkij �

�
p

�� p

�n

�� p�
P

n

i��
jkij �

�
p

�� p

�n

�� p�kkk� �

That means that each point with length s is sampled with the same probabil�
ity� Therefore
 the multivariate distribution is ���symmetric� To determine the



expectation and variance of the step size in n�dimensional space
 we require the
expectation of random variable jZ�j� Since PfjZ�j � jg � PfZ� � jg�PfZ� �
�jg for j � IN and PfjZ�j � �g � PfZ� � �g we obtain

PfjZ�j � jg �

�			

			�

p

�� p

 if j � �

� p

�� p
�� p�j 
 if j � IN

�

Straightforward calculations lead to

E� jZ�j 	 �
� �� p�

p ��� p�
and V� jZ�j 	 �

� �� p�

p	

�
�

� �� p�

��� p�	


�

As the random variables jZij are stochastically independent we obtain for vector
Z

E� kZk� 	 � n � E� jZ�j 	 and V� kZk� 	 � n �V� jZ�j 	 � ���

It should be noted that ��� could have been derived from the ansatz

PfZ � kg �
qjkj

�P
j���

qjjj
�

qjkj

 � �
�P
j��

qj
�
�� q� � qjkj

 � q

with q � � p� Another approach with

PfZ � kg �
qk

�

�P
j���

qj�
�

qk
�

 � �
�P
j��

qj�
�

qk
�

�
�q� ��
� ���

where �
�q� x� denotes the third Theta function �
 entry ������	
 gives exactly
the distribution with maximum entropy under the constraints PfZ � kg �
PfZ � �kg for all k � ZZ and V�Z	 � �	 �see Appendix�� There are
 however

three problems�

� The multivariate version of ��� is symmetric with respect to �	�norm�

�� The control of ��� with parameter � would require the approximate de�
termination of the zeros of a highly nonlinear equation �see Appendix�
 as
soon as parameter � is altered�

�� There exists neither a closed form of �
�q� �� nor of its partial sums
 so
that the generation of the associated random numbers must be expensive
and inaccurate�

While the �rst point is a matter of taste
 the last two points are prohibitive
for the usage of distribution ��� in an optimization algorithm� The last two
problems do not occur with distribution ���� Firstly
 the random variable Z



can be generated by the di�erence of two geometricly distributed independent
random variables �both with parameter p� and a geometric random variable G
is obtained as follows� Let U be uniformly distributed over � �� � � IR� Then

G �

�
log�� U �

log�� p�

�

is geometricly distributed with parameter p� Secondly
 the distribution could be
controlled by the mean step size ���
 so that one obtains

S � n �
� �� p�

p ��� p�
	 p � �

S
n

� � �S
n�	���	 � 
� ���

where S � E� kZk� 	�

��� Parameter Control

As soon as an probabilistic optimization algorithm approaches the optimum
 the
step size of the algorithm must decrease to balance the probability to generate
a new successful point� There are several ways to control the parameters of the
mutation distribution� A simple idea is to decrease the step size s by a determin�
istic schedule
 say st � s�
t or st � t � s� with  � ��� �� This is su�cient for
problems with only one local �� global� optimum� But for problems with more
than one local optimum such a schedule would force the algorithm to approach
the closest local optimum� Therefore
 it might be useful to o�er the chance to
increase the step size
 too� Evolution strategies employ the following technique
��	� An individual consists of a vector x � ZZn and a mutation control parameter
s � IR�� Both x and s are regarded as genes changeable by genetic operators�
First
 the mean step size s is mutated by multiplication with a lognormally dis�
tributed random variable� s� � s � exp�N �
 where N is a normally distributed
random variable with zero mean and variance �	 � 
n� Thus
 the mean step
size is decreased or increased by a factor with the same probability and it is
likely that a better step size will also produce a better point� Since a mean step
size below  is not useful for integer problems
 the mutated mean step size is set
to  if the value is less than �
Finally
 vector x is mutated by adding the di�erence of two independent geo�
metricly distributed random numbers to each vector component� Both geometric
random variables have parameter p depending on the new step size s� via ����

� Computational Results

��� Sketch of the Algorithm

The evolutionary algorithm to be developed here is basically a ��� ���ES ��	 �out�
lined below�� Initially
 vector x of each individual is drawn uniformly from the
starting areaM� ZZn
 which need not contain the global optimum� The initial
value of s is chosen proportional to the nth root of the volume ofM� Recom�
bination of two individuals is performed as follows� The step size parameters



of the parents are averaged and the new vector x is generated by choosing the
vector component of the �rst or second individual with the same probability�
Infeasible individuals are sampled anew�

initialize � individuals
calculate the �tness of the individuals
repeat

do � times�
select two individuals at random
perform recombination to obtain an o�spring
mutate the o�spring
calculate the �tness of the o�spring

od
select � best o�spring

until termination criterion ful�lled

��� Test problems

Problem ���� �unconstrained� of ��	 with x � ZZ
�� f��x� � �kxk� with known
solution� xi � � with f�x� � �� Starting area M � ������ ���	
� � ZZ
��
Initial mean step size s� � ���
��
Problem � of ��	 with x � ZZ
�� f	�x� � �x� x with known solution� xi � �
with f�x� � �� Starting area M � ������ ���	
� � ZZ
�� Initial mean step
size s� � ���
��
Problem � of ��	 with x � ZZ��

f�
x� � 
� �� �� � �� x � x�

�
BBB�

�� ��� �� �� ��
��� �� �� �� ��
�� ��  �� ��
�� �� �� �� ���

�� �� �� ��� �

�
CCCA x

Best solutions known� x � ��  �� � ��� and x � �� � �� � ��� with f
�x� �
���� Starting areaM � ��� ��	� � ZZ�� Initial mean step size s� � ��
��
Derived from problem � of ��	 with xi � ��

f�
x� � �

��X
i��

xi �

�
log

�
xi � i

�� �
P

��

i��
xi

�
� di


� � � 
A� � B� �C�� �

with d � ������� ����������������������� ������ ���� ������ �������������

A � x� � �x	 � �x
 � x� � x�� � �
 B � x � x� � x� � x� �  and C �
x
 � x� � x� � x� � x�� � � Best solution known� x � �� � � � � � � � � ���

with f�x� 
 ������� Starting area M � ���� ��	�� � ZZ��� Initial mean step
size s� � ��
��

Problem � of �	 with xi � �� f��x� �
Q��

i�� �� �� ri�
xi 	 with constraints

c� x � ��� and w� x � �� �see �	 for details��
Best solution known� x � �� � � � � � � � � � � � � � ��� with f��x� 
 ��������
Starting areaM � ��� �	�� � ZZ��� Initial step size s� � ��



��� Results

The evolutionary algorithm was tested with � � �� and � � ��� The test
statistics over ��� runs for each problem are summarized in tables  and �
below�

min max mean std�dev� skew
f� �� �� ���� ���� ����
f	 � �� ���� ��� ����
f
 �� �� ���� ���� ����
f �� ��� ���� ���� ����
f� � ����� ����� ������ ����

Table � Statistics of the �rst hitting time distribution�

Table  shows the minimum
 maximum
 mean
 standard deviation and skewness
of the sample of �rst hitting times �of the global maximum� obtained from ���
independent runs� Problems f� and f	 only have one local �� global� maximum�
Surprisingly
 the distribution of the �rst hitting times is skewed to the right
signi�cantly for problem f�
 while the tails of the distribution for problem f	
are balanced� But as can be seen from table � containing the percentiles of the
ordered sample
 at least ��� of all runs solved problem f� in not more than ��
generations� The reasons for these di�erent characteristics are unknown at the
moment�

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
f� � �� �� �� �� �� � �� �� ��� �� ���
f� �� �� �� �� �� �� �� � �� �� �� ��
f� �� � �� �� � � �� �� �� �� � ��
f� �� �� �� �� �� �� �� �� �� ��� �� ���
f� �� �� �� � �� �� �� �� ��� ���� ���� ����

Table �� Percentiles of the �rst hitting time distribution

Problems f

 f and f� possess more than one local maxima� Seemingly
 prob�
lems f
 and f do not cause di�culties
 maybe due to the low dimensionality
of the problems� The results for problem f� reveal that this problem is solvable
for ��� of the runs in less than �� generations
 but there must be local max�
ima on isolated peaks preventing the population to generate better solutions by
recombination
 so that mutation is the only chance to move from the top of a
locally optimal peak to the global one�

� Conclusions

The principle of maximum entropy is a useful guide to construct a mutation
distribution for evolutionary algorithms to be applied to integer problems� This
concept can and should be used to construct mutation distributions for arbi�
trary search spaces
 because special a priori knowledge of the problem type



may be formulated as constraints of the maximum entropy problem
 so that this
knowledge �and only this� will be incorporated into the search distribution�
The evolutionary algorithm developed here demonstrated the usefulness of this
approach� It was able to locate the global optima of �ve nonlinear integer prob�
lems relatively fast for at least �� percent of ��� independent runs per problem�
Clearly
 a test bed of only �ve problems may not be regarded as a basis to judge
the power of the algorithm
 but these �rst results and the �simplicity� of the
mutation distribution are encouraging for further theoretical research�
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Appendix� A Family of Maximum Entropy Distributions

The question addressed here is� Which discrete distribution with support ZZ is
symmetric with respect to �
 has a variance �	 � � or a mean deviation s and
possesses maximum entropy � The answer requires the solution of the following
nonlinear optimization problem� �

P�
k��� pk log pk � max subject to

pk � p�k k � ZZ � ���
�X

k���

pk �  � ���

�X
k���

jkjm pk � �	 ���

pk � � k � ZZ � ��

We may neglect condition ��
 if the solution of the surrogate problem ful�lls
these inequalities� We may therefore di�erentiate the Lagrangian

L�p� a� b� � �
�X

k���

pk log pk � a �

�
�X

k���

pk � 

�
� b �

�
�X

k���

jkjm pk � �	

�

to obtain the necessary condition ��� and ��� and �� log pk � a� b jkjm � �
or alternatively

pk � ea�� � �eb�jkj
m

k � ZZ � ���

Exploitation of the symmetry condition ��� and substitution of ��� in ��� leads
to

�X
k���

pk � p� � � �
�X
k��

pk � ea�� �

�
 � � �

�X
k��

�eb�jkj
m

�
�  � ���

Let q � eb 	  so that S�q� ��
�P
k��

qjkj
m

	 � and q � S��q� �
�P
k��

jkjm qjkj
m

�

Then condition ��� becomes

e��a �  � � � S�q� �

�
� � q�
�� q� 
 if m � 

�
�q� �� 
 if m � �
� ���

where �
�q� z� denotes the third Theta function �	� Substitution of ��� in ���
yields
�X

k���

jkjm pk � � �
�X
k��

jkjm pk � � e
a�� �

�X
k��

jkjm qjkj
m

� � ea�� � q � S��q� � �	 �

so that with substitution of ��� for m � � one obtains

� q S��q�

�
�q� ��
� �	 � ���

while m �  gives ��� with q �  � p and s
n � �	� The value of q in ��� for
given � can be determined numerically only� Substitution of ��� in ��� gives
��� for m � � and ��� for m � �


