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� Introduction

Multi�membered evolution strategies	 as introduced by Schwefel 
��	 are known to be ro�
bust optimum seeking procedures for a variety of parameter optimization problems� On
account of their inherent parallelism multi�membered evolution strategies can be imple�
mented easily on parallel computers� However	 while there have been several studies on
parallel versions of genetic algorithms 
�
��	 only little work has been done on parallel
versions of evolution strategies�

The approach taken here to parallelize the evolution strategy can be considered as a
coarse grained one� A large population is divided into several subpopulations � each of
them �living� on a di�erent transputer� After one or more generations some individuals
migrate to a neighboring subpopulation	 or in other words� the distributed optimization
processes exchange information during the search�

One �eld of application might be the search for a global optimum in high dimensional
parameter spaces with nonlinear objectives � a problem which is unsolvable in general

��� Even if the search space and the accuracy are bounded the general problem remains
NP�hard� While those problems can be solved by means of complete enumeration in low
dimensions this strategy must fail in high dimension due to the exponential increase of
the necessary e�ort�

An analoguous argumentation about the solvability can be drawn to the general class
of combinatorial problems� among them you can �nd the well�known Travelling Salesman
Problem �TSP� which has been included into the testbed� To make the evolution strategy
running on this kind of problems one has to map a feasible solution of the TSP to a
so�called �object variable vector� of the evolution strategy and vice versa� This will be
explained in the next sections in more detail�



� Distributed Evolution Strategies

Two new parameters have been added to the traditional evolution strategy� The parameter
migration period �MP� represents the number of generations wherein no migration takes
place� The number of the migrants is controlled by the parameter migrants �Mig��

In addition to various parameter settings of these two parameters the recombination
parameter of the traditional strategy has been varied	 too� Using intermediate recombi�
nation �I� means	 that the genotype�phenotype vector of the o�spring is generated by
evaluating the mean vector of the parents� vectors� Discrete recombination �D� can be
regarded as a dynamic n�point crossover� the genome of the o�spring is produced by
choosing either the vector component of the �rst or the second parent with the same
probability�

� Continuous Problems

��� Convergence Speed

In order to determine the convergence speed of the distributed evolution strategy each
variant at �rst was tested on a unimodal �strict convex� problem�
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The starting point for each subpopulation was set at random to xi � ����� to obtain a
large obversation period� From the data ��g� �� we can assume that every variant has a
geometric resp� linear�R convergence for the unimodal problem�
De�nition �

Let ��k� be a nonnegative sequence with �k � � for k � �� If there is an index k�	 a
number C � � and a number r � 
� � ��	 so that

�k � C � rk �k � k� � ��

then the sequence ��k� is said to be geometrically convergent or linear�R convergent� �

From the data we can derive
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Hence	 with C � ���� and k� � � we get
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which ful�lls ��� That means that the convergence speed does not su�er from migration
obviously�



Figure �� Best overall convergence for problem �

��� Reliability

The reliability was tested for a generalized form of Rastrigin�s problem 
�� which can be
considered as a perturbed version of problem ����
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The starting points were chosen at random in S � fx � 
�� � jxij � ����g	 so that the
function has ����� local minima in S� However	 if the population is far from the global
minimum the perturbations are dominated by the quadratic term� The closer the strategy
approaches the global minimum the stronger the e�ects of the perturbations�

From �gure  one can see that only those variants with discrete recombination and
migration could �nd the global minimum� all intermediate variants and even the discrete
variant without migration failed� But this might be explained by the symmetric arrange�
ment of the local minima� Suppose	 a subpopulation has converged to a local minimum
�n � ��

��� �� �� �� ���

and another to the local minimum

��� �� �� �� ��� �

By means of migration individuals from the subpopulations meet each other and mak�
ing use of discrete recombination they perhaps produce an o�spring with the following
genome�



Figure � Best overall convergence for problem 
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This o�spring is much closer to the optimum than its parents and after some migrations in
subsequent generations the global optimum can be found� If this is the right explanation	
this e�ect will occur whenever the local optima are arranged regularly related to each
vector component � regardless of the scaling�

On the other hand	 if an o�spring is produced by intermediate recombination the
genome looks like

����� ���� �� �� ����� �

Such o�springs are always worse than their parents so that the e�ects of migration will
be eliminated by selection with high probabilty�

� Combinatorial Problems

��� Genotype�Phenotype�Mapping

The genotype of an individual is represented by an object variable vector x with contiuous
components and the strategy variable vector �� To get the phenotype resp� a feasible
solution of the TSP the components of the object variable vector x are sorted	 so that
the corresponding sorted indices of the vector represent a feasible tour� The sorting was
done by a variant of heapsort 
���



��� First results

The distributed algorithm with the above mapping was tested for a ��� cities problem�
The best tour known so far has the length ���� The best tour found by the distributed
evolution strategy within ��� generations has the length ���� and can be seen in �g�
�� Surely	 it is not likely that an evolution strategy using this simple mapping will �nd
the global minimum	 but there might be some possibilities to invent a more sophisticated
mapping� However	 for a �� cities problem the best known tour was found within ��
generations�
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Figure �� Best tour for the ��� cities problem
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