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Abstract. Multi-objective as well as dynamic characteristics appear in
many real-world problems. In order to use multi-objective evolutionary
optimization algorithms (MOEA) efficiently, a systematic analysis of the
algorithms’ behavior in dynamic environments by means of dynamic test
functions is necessary. These functions can be classified into problems
with changing Pareto sets and/or Pareto fronts with different dynamic
criteria. Thus, a test suite with existing benchmark functions having
dynamic behavior and new designed dynamic test functions for yet un-
covered cases is proposed. Convergence and solution distribution features
of modern MOEA, namely NSGA-II, SPEA2, and MSOPS using differ-
ent variation operators (Simulated Binary Crossover with Polynomial
Mutation and Differential Evolution) will be analyzed. For this reason, a
new path integral metric is introduced. Especially the transfer of single-
objective results and the ability of the algorithms to use historically
evolved population properties will be discussed.

1 Introduction

An effective optimization of dynamic multi-objective problems using population
based optimization algorithms requires a systematic case study. New generic
functions are needed to analyze the distribution and convergence properties of
MOEA when dynamically varying Pareto front structures or changing restric-
tions are used. Simple dynamic test functions allow an isolated study of dynamic
criteria. Thus, such test functions are developed and empirically analyzed. An
insight into this field is given and problems while using standard MOEA in dy-
namic environments are shown. The application of an open source library (PISA)
allows the adaptation of the results to real-world problems and comparability of
results.



2 Literature on Dynamic Multi-objective Optimization

Dynamic multi-objective function optimization is rarely discussed in current
literature. Jin and Sendhoff [1] introduced an open scheme for generating test
functions when shifting dynamically between static functions. This approach
does not led to clearly defined problems yet. Farina, Deb, and Amato [2, 3]
designed dynamic functions following the concepts of Deb et al. [4, 5]. These are
currently the only dynamic multi-objective test functions at hand.

To guarantee a comprehensive test suite and an organized analysis of MOEA
on dynamic test functions a categorization of used functions is essential. Two
different approaches are suggested by Branke [6, page 14 et sqq.] and Farina, Deb,
and Amato [2, 3]. The latter classifies dynamics of multi-objective problems into
four classes depending on the concerned space:

1. Static Pareto front PFtrue, dynamic Pareto set Ptrue,
2. Dynamic PFtrue, dynamic Ptrue,
3. Dynamic PFtrue, static Ptrue, and
4. Static PFtrue, static Ptrue. The fitness topology may change.

The dynamics can further be divided into subclasses that correspond to the
dynamics in shape or structure (e.g. connectivity) of the Pareto fronts. None,
static or dynamic definitions of the feasible set D and restrictions in objective
space lead to further items usable for a more specified subdivision. As categorized
by Branke, different dynamic criteria like frequency, severity, predictability, and
cycle length of change have to be taken into account within every class.

In this paper the functions of Farina, Deb, and Amato – called FDA1 to
FDA5 – are used as test cases with known properties3. They are representa-
tives of the first three classes described and also allow to analyze the effect of
Branke’s criteria. The original FDA2 function representing the third class had
to be redesigned in order to get a Pareto front that is changing from a convex
to a concave shape independent of the decision variables’ assignment. Thus, in
the experiments FDA2mod was used:

FDA2mod :











































































f1(xI) = x1

f2(g, h) = g · h(f, g)
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x2

i +
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(

f1

g

)H(t(τ))

H(t) = 0.2 + 4.8 t(τ)2

t(τ) = 1
nt

⌊

τ
τt

⌋

,
τ current generation
τt change rate
nt number of distinct steps

xI = (x1)
T , x1 ∈ [0, 1]

xII = (x2, . . . , xr1
)T ∈ [−1, 1]r1−1

xIII = (xr1+1, . . . , xn)T ∈ [−1, 1]n−r1−1

(1)

3 For an explicit definition of the FDA functions please refer to [2, 3].



The change rate τt is the number of generations for which t(τ) remains fixed.
Thus, τ−1

t describes the frequency of change. The severity of change depends on
choice of nt. Time t is restricted to the interval [0, 1] and the exponent H(t) is in
[15 , 5]. In the following the authors use the abbreviation t := t(τ). To guarantee
a change from a convex to a concave shape (H(t) ≥ 1) for t ≈ 0.5 the square of
t is calculated.

3 New Dynamic Multi-objective Test Functions

The DTLZ and ZDT test functions [4, 5] used as source of the above dynamic
functions are already challenging in their static version. To analyze the effect
of the different dynamic criteria in a more isolated way, simpler test functions
are needed. The new functions DSW1 to DSW3 are motivated by the static
multi-objective function of Schaffer [7]. The parabolic character of this function
shows analogies to the single-objective unimodal sphere model which is used
as a typical test case for the analysis in dynamic single-objective continuous
optimization [8]. Therefore, the DSW functions allow to compare the results
of the MOEA to ones of dynamic single-objective optimization as in literature
described. The general scheme used for the DSW functions is

DSW :

{

f1(x) = (a11x1 + a12|x1| − b1 ·G(t))2 +
∑n

i=2 x
2
i

f2(x) = (a21x1 + a22|x1| − b2 ·G(t) − 2))2 +
∑n

i=2 x
2
i

(2)

where G(t) : IR → IR is a continuous function with monotonously increasing or

periodically changing values. The definition G(t) := t(τ) · s with t(τ) =
⌊

τ
τT

⌋

is

used where s is the severity of change. If the border of feasible space is reached
the shift of G(t) turns its direction, i.e. G(t) decreases. In the analysis, the DSW
functions have been defined as follows:

DSW1 : x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1, a21 = 0, b1 = 1, b2 = 1
DSW2 : x ∈ [−50, 50]n, a11 = 0, a12 = 1, a21 = 0, a21 = 1, b1 = 1, b2 = 1
DSW3 : x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1, a21 = 0, b1 = 0, b2 = 1

DSW1 is a test function with static PFtrue (f∗
2 = (

√

(f∗
1 )−2)2) and shifting

Ptrue. The challenge presented to the MOEA is to keep the value of the first
decision variable in the interval [G(t), G(t) + 2]. This is equivalent to the single-
dimensional and single-objective dynamic sphere model where the center of the
sphere is shifted with linear speed.

The DSW2 problem has the two separated Pareto sets which depart diamet-
rically. PFtrue does not change in time and is identical to DSW1. With n = 1
the Pareto set is Ptrue = [−G(t) − 2,−G(t)] ∪ [G(t), G(t) + 2]. For periodical
G(t) the Pareto sets will join and depart periodically.

In problem DSW3 the right border of the interval of the Pareto set is moving
while the other border remains static. This is realized by setting b1 = 0. The
Pareto set and the corresponding convex Pareto front extend with increasing t.



The new generic scheme DTF is an enhanced generalization of the FDA func-
tions and allows a variable scaling of the dynamic properties’ complexity. The
number ψ of separated Pareto front sections and the number ω of local optimal
fronts are introduced, motivated by static test functions ZDT3 and ZDT4 [4].
The curvature of the Pareto front α, the density of arguments β, and the optimal
argument value γ for all xII can be adjusted analog to FDA problems.

DTF :















































f1(xI) = x
β(t)
1

f2(g, h) = g · h(f, g)
g(xII) = 1 +

∑
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g

)α(t)

−
(
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g

)

· | sin(ψ(t)πf1)|
α(t)

xI = (x1)
T , x1 ∈ [0, 1]

xII = (x2, . . . , xn)T ∈ [−1, 1]n−1

(3)

A typical definition are e.g. n = 20, α(t) = 0.2 + 4.8t2, β(t) = 102sin(0.5πt),
γ(t) = sin(0.5πt), ψ(t) = t · s, s ∈ IR+, and ω(t) ∝ ψ(t).

In practical applications restrictions cause severe difficulties in optimization
problems. The introduction of dynamic restrictions is also motivated by the idea
to analyze the empirical behavior of algorithms such as NSGA-II and SPEA2,
which explicitly utilize the distribution properties of Pareto front approximations
when parts of the Pareto front are restricted.

The following restrictions can be scaled easily in positions, size, and number.
Here, infeasible areas in the objective space of dimension m are defined by m-
dimensional spheres with radii rj (j = 1, . . . , k) and center points (c1j

, . . . , cmj
)T .

The position and the radii of the spheres may change over time (see Fig. 1). With
a value ε > 1, the center points depart from PFtrue. Moving circular obstacles
in the objective space is a new way to analyze the convergence robustness of the
optimizing algorithms. The corresponding inequalities for the restrictions are:

gj : r(t)2− (ε(t) ·c1j
−f1(x))2−· · ·− (ε(t) ·cmj

−fm(x))2 ≤ 0, j = 1, . . . , k (4)
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Fig. 1. Dynamic restrictions with varying position (left) or radii (right).



4 Multi-objective Evolutionary Algorithms

Today, NSGA-II [9] and SPEA2 [10] surely belong to the most commonly ap-
plied MOEA. The analysis of these algorithms implies a good comparability and
applicability of the following results for many research fields that intend to allow
dynamics in optimization problems. Variants of above algorithms for noisy op-
timization [11] have not been taken into account because the defined problems
return exact values without any noise. Furthermore, the use of an archive may
lead to better results with periodical dynamics.

Additionally, the MSOPS (Multiple Single Objective Pareto Sampling) [12]
is analyzed to get an impression of the behavior of a stochastic population based
algorithm that does not utilize the Pareto-dominance principle. MSOPS works
with a weighted Min-Max aggregation of objectives and a ranking scheme due to
multiple weight vectors called targets. In contrast to conventional linear aggrega-
tion approaches, weighted Min-Max is able to find solutions also for non-convex
Pareto fronts. The multi-objective PISA library [13] served as a common inter-
face to well tested genetic operators such as Simulated Binary Crossover (SBX)
and Polynomial Mutation (PM) [15, page 109 et sqq.]. Differential Evolution
(DE) variation operators DE1 and DE2 [14] were not provided by PISA and
have been added by the authors. In PISA variation modules can be combined
with many common selection modules like NSGA-II and SPEA2. MSOPS was
not provided in PISA and has been added for a more comprehensive analysis.

5 Metrics

The quality of a Pareto front approximation PFapprox is often measured by func-
tions which assign a real value to evaluate the given PFapprox. In the MOEA
terminology these measures are called (unary) metrics4. The use of these func-
tions allows to compare approximations of different MOEA and to analyze the
progress in optimization. Most metrics focus on the distance to the Pareto front
and/or the distribution of solutions. In order to analyze both aims separately,
two metrics – a convergence and a distribution metric – are used.

The generational distance metric Gτ was introduced by van Veldhuizen and
Lamont. Given a set of discrete N solutions of a MOEA in generation τ , Gτ is
defined as follows [16, page 185]:

Gτ :=

√

∑N

i=1 d
2
i

N
(5)

The di are the minimum euclidean distances of one discrete solution to an opti-
mal solution. Here, this measure is calculated in decision space because for the
most part of the problems considered the Pareto set is dynamically shifted.

4 The strict mathematical definition of a real metric is not always guaranteed by
MOEA-metrics.



Most distribution metrics calculate euclidean distances to evaluate the distri-
bution of solutions. The shape and structure of the problem’s Pareto front is
neglected. Path integrals offer the possibility to determine the distance between
two discrete solutions via the length of the delimited path on the Pareto front.
Thus, a new distribution metric – the PL-metric – is introduced. A precondition
for the necessary calculations is an analytic closed description of PFtrue. This
is true for the DSW as well as for the FDA1-3 functions.

A path between [a, b] can be defined by a continuous parametric function
γ : [a, b] ⊆ IR → IRm, γ(t) = (γ1(t), . . . , γm(t))T . For bi-objective problems with
a continuous Pareto front f2(f1) the corresponding path follows γ(t) = (t, f2(t)).
Let γ be a path that is continuously differentiable in [a, b]. Then the length
L(γ, a, b) of a path between [a, b] on γ is

L(γ, a, b) :=

∫ a

b

|γ̇|dt =

∫ a

b

√

γ̇2
1 + . . .+ γ̇2

mdt (6)

where γ̇ is the derivative of γ in t and | · | is the euclidean norm.

The PL-metric is defined by the the normalized product of the path be-
tween sorted neighboring points on PFtrue

5 adding 1 to ensure that new solu-
tions increase the value of the metric: ξxi

= L(γ, f(xi), f(xi+1)) + 1 . Analytical
proofs show that the PL-metric attains its unique maximum, if the path that de-
scribes PFtrue is divided into equidistant sections, i.e. a uniform approximation
of PFtrue is found. In this case the measure reaches

(

1 +
LPFtrue

|PFapprox| − 1

)|PFapprox|−1

≤ eLPFtrue (7)

with equality for |PFapprox| → ∞. With this condition, the PL-metric can be
numerically stable normalized in [0, 1] using the natural logarithm:

PLτ :=
ln(

∏

f(xi)∈PFtrue
ξxi

)

ln eLPFtrue

=

∑

f(xi)∈PFtrue
ln(ξxi

)

LPFtrue

. (8)

More than two objectives and disconnected Pareto fronts complicate the appli-
cation of the PL-metric. Thus, in this cases Schott’s spacing metric [16, page
186] is used. For illustration purposes also the success ratio

SCτ =
|{x|f(x) ∈ PFtrue}|

|PFapprox|
(9)

is computed.

5 Due to the approximative character of MOEA, a solutions is said to be in PFtrue,
if it is in an ε-region near PFtrue. In the analysis ε = 0.01 is used.



Table 1. Setting for the Selection- and Variation Operators

Selection Parameter Setting Variation Parameter Setting

General α pop. size 100 SBX pc crossover rate 0.5
λ parents 100 ηc spread factor 15
µ offspring 100 Uniform pswap prob. 0.5
κ age ∞ Poly. Mut. pm mutation rate 1/|x|
tournament binary ηm perturbance factor 20

DE1 F weight 0.7
MSOPS T target vectors 50 CR insert prob. 0.5

DE2 F weight 0.85
SPEA2 N archive size 100 λDE weight 0.85
NSGA-II no additional parameters CR insert prob. 1

6 Experimental Setup

The selection module MSOPS and the DE variation operators were implemented
for PISA in C++. The metrics were calculated in MATLAB. Table 1 shows the
parameter settings6. Each experiment was performed 20 times and the arithmetic
mean was used to get an impression of the average system behavior. Extreme
values occurring in single runs are neglected.

7 Empirical Results

The first class with static PFtrue and dynamic Ptrue is analyzed with DSW1,
DSW2, FDA1 and FDA4. In the beginning, the severity of change s is linearly
increased. If SBX and PM are used, the results on the one-dimensional shifted
sphere function DSW1 show similarities to the findings of Bäck [8]. Like the
evolutionary strategy on the shifted single-objective sphere model, all MOEA
considered are able to follow the moving optimum with a distance that is about
quadratic in the currently applied s. Fig. 2 shows this behavior exemplary for
NSGA-II. The perturbances in the graph for higher s are caused by changes in the
shifting direction of the Pareto set to ensure that Ptrue stays in the feasible set.
Further experiments show that the distance to the Pareto set is approximately
the same for the corresponding static value of s. Thus, the predictability of
change has small influence on the MOEA.

The PL-metric shows a linearly decreasing trend (see Fig. 3) for increasing
severity of change s. MSOPS tends to concentrate toward the center region of
the Pareto front for small s which implicates lower values of PLτ .

The use of DE1 and DE2 results in worse values of both metrics. The popu-
lations collapse and the operators are no longer able to create new solutions7.
Disconnected Pareto sets as in DSW2 delay the collapse of the population and

6 The settings are chosen following suggestions of Deb et al. [9, 14, 15]
7 DE operators create new solutions as weighted sums of current individuals. To de-

termine the best individual, the relation defined in the concerned algorithm is used.
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improve the power of DE slightly, while the use of SBX and PM shows nearly
same results on DSW1 and DSW2. All algorithms tend to concentrate soon at
only one of the partitions of Ptrue. This is sufficient to cover all parts of FPtrue.

The analysis of different change frequencies τ−1
t is performed on FDA1. The

dimension of the decision space is raised to n = 20 with s = 1/nt = 0.1. The main
focus is the ability of the MOEA to obtain advantages to a restart strategy which
randomly reinitializes its solutions after every change. If τt = 1, all algorithms fail
to approximate Ptrue permanently. Instead, a convergence to x2, . . . , xn = 0.5
representing the center of the search space can be observed (see Fig. 4). The
average distance over all generations is minimized. With increasing τt, in the
static phases the algorithms using SBX and PM succeed in converging toward
Ptrue. After 25 generations, i.e. 2500 function evaluations, the first solutions
reach Ptrue. Like Fig. 5 shows, NSGA-II converges faster than MSOPS which
converges faster than SPEA2. All algorithms perform significantly better than
the best restart strategy NSGA-II Re in regard to both metrics. Historically
evolved solutions can be of use.

FDA4 is analyzed with three objectives and decreases the dimension of the
decision space to n = 12. MSOPS can obviously improve the generational dis-
tance while NSGA-II and SPEA2 need much more function evaluations to reach
PFtrue (see Fig. 5). This can be related to a decreasing selection pressure be-
cause of more incomparable solutions in regard to the dominance relation used in
these algorithms. Again MSOPS tend to concentrate at certain spots of PFtrue

while SPEA2 and NSGA-II reach good distributions.

Similar results can be observed in the analysis of the second class with grow-
ing Pareto fronts and strong modifications in the density of arguments such
as FDA3 and FDA5. Whenever the population contains a lot of incomparable
individuals the Pareto dominance based algorithms can not guarantee further
convergence. If there are no density modifications as in DSW3, NSGA-II and
SPEA2 succeed in approximating even large Pareto fronts regarding the PL-
metric.
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FDA2 and DTF with dynamically changing ψ are used to analyze the third
class of changing PFtrue and static Ptrue. First, all algorithms successfully con-
verge to PFtrue. After that, the changes in shape (FDA2) and structure (DTF)
of the Pareto front induce short declines in both metrics. MSOPS reveals prob-
lems in adapting the population to new shapes and structures. This shows that
even changes with no influence on the optimal solutions can present a challenge
to MOEA. NSGA-II performs best in adapting to the new shapes of PFtrue

while SPEA2 shows advantages in approximating new structures regarding the
PL-metric. A dynamic structure of the function describing PFtrue (DTF) and
structural changes due to dynamic restrictions show the same effects.

The analysis of the last class using DTF with dynamic ω indicates that
dynamic changes not always enhance the difficulty of a given problem. Shifting
local optima assists MOEA to leave local attractors and to converge to the static
global optima.

8 Summary and Outlook

An extensive empirical analysis is performed on standard benchmark functions
as well as on new designed functions for previously uncovered problem cases in
dynamic multi-objective optimization. A new metric is introduced to face the
problem that most distribution metrics do not include informations about shape
and structure of the Pareto front.

The basic DE operators are only applicable to low-dimensional decision
spaces. For complex problems, extensions are necessary to avoid the problem
of preliminary convergence. Whenever a problem produces a lot of incomparable
solutions in regard to the dominance relation, alternative MOEA like MSOPS
show advantageous behavior.

A statistical search for the best parameter settings as well as the analysis of
the population structure of the MOEA is matter for future research.
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