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1   Introduction 

Many optimization problems in scientific and engineering fields involve 
simultaneously two or more objectives that are competing or in conflict with each 
other frequently. They are known as multi-objective optimization problems (MOP). 
Ordinary MOPs have a set of optimal solutions, which is called Pareto solutions set. 
The plot of the objective functions whose vectors of the decision variables are in the 
Pareto solutions set is called the Pareto front[1]. 

As evolutionary algorithms have more advantage in dealing with discontinuous and 
concave Pareto fronts than traditional mathematical programming techniques, a large 
number of multi-objective evolutionary algorithms (MOEA) have been proposed 
during the last two decades, such as MOGA[2], NPGA[3], NSGA2[4], SPEA2[5] etc. 
Some important theoretical work related to MOEA has been done. Rudolph has 
investigated convergence properties of some MOEAs under partially ordered finite set 
theory[6, 7]. Hanne presented an evolutionary algorithm for approximating the 
efficient set of MOP [8]. 

Meanwhile, the quantum mechanical computational theory is attracting serious 
attention, some quantum-inspired evolutionary algorithms (QEA) were proposed in[9-
11]. In last two years, some specific algorithms combining MOEA with QEA, which 
are called quantum-inspired multi-objective evolutionary algorithms (QMOEA) in 
this paper, were proposed[12, 13]. Those experiments results show better proximity 
performance as well as diversity maintenance. However, few theoretical results on the 
QMOEA have been done. 
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In this paper, we will propose a general framework of QMOEA, and discuss its 
sufficient convergence conditions to the Pareto optimal set and give several example 
algorithms.  

2   Preliminaries 

MOP can be defined with a mathematical formulation as follows: 

                    Optimum  f(x)=(f1(x), f2(x),…fd(x))T   s.t. x ∈S                                (2.1) 

where f: S → Rd is a vector-valued objective function, x = [x1,x2,…,xk]
T is the vector 

of decision variables and the S is the feasible set, which is usually defined by some 
constraint functions, 

                    { }qjpixhxgRxS ji
k ...2,1,...2,1;0)(,0)(: ===≤∈= .                                       (2.2) 

Without loss of generality, let “optimum” mean “minimum” here. We say that a 
solution to a MOP is Pareto optimal if there exists no other feasible solution which 
would decrease some criteria without causing a simultaneous increase in at least one 
other criterion. The set comprising all of Pareto optimal solutions is just the Pareto 
optimal set. Generally the image set of all feasible solutions in a MOP does not 
constitute a totally ordered set, instead a partially ordered set. The theoretical 
background on the partially ordered set in this paper roots in [6, 14]. 

Let F be a set., we can define a partial order relation “≤” which is a reflexive, 
antsymmetric and transitive relation on F, and a strict partial order relation “<” as an 
antireflexive, asymmetric and transitive relation which may be obtained by the former 
relation by setting x < y := (x ≤ y) ^ (x ≠ y). 

Definition 2.1. Let F be some set. If the partial order relation “≤” is valid on F then 
the pair (F, ≤) is called a partially ordered set (or short: poset). If x < y for some x, 
y∈F then x is said to dominate y. Distinct points x, y ∈F are said to be comparable 
when x < y, y < x or x = y. Otherwise, x and y are incomparable which is denoted by 
x || y. If each pair of distinct points of a poset (F, ≤) is comparable then (F, ≤) is 
called a totally ordered set or a chain. Dually, if each pair of distinct points of a poset 
(F, ≤) are incomparable then (F, ≤) is termed an antichain. An element x*∈F is 
called a minimal element of the poset (F, ≤) if there is no x∈F such that x < x*. The 
set of all minimal elements, denoted M (F, ≤), is said to be complete [9, 21] if for 
each x∈F there is at least one x*∈M(F, ≤) such that x* ≤ x.  

If the poset (F, ≤) is finite then the completeness of M (F, ≤) is guaranteed [6]. Let 

f: X → F be a mapping from some set X to the poset (F, ≤). For some A ⊆ X the set Mf 
(A, ≤) = {a∈A: f(a)∈M( f(A), ≤)} contains those elements from A whose images are 
minimal elements in the image space f(A) = {f(a): a∈A}. In order to clarify the 
notion of “stochastic convergence to the set of minimal elements” we need measures 
on the distances between finite point sets. Here the first measure is characterized as 

follows: If A and B are subset of a finite ground set X then d(A,B) = |A∪B| - |A∩B| is 

a metric on the power set of X. the second measure uses quantity δB(A) =|A| - |A∩B| 
counting the number of elements that are in set A but not in set B. 
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Definition 2.2. Let At be a solutions set of a MOA at iteration t ≥0 and Ft = f(At) its 
associated image set, F* denotes the set of minimal elements. The algorithm is said to 
converge with probability 1 to the entire set of minimal elements if  

               d(Ft, F
*) → 0 with probability 1 as t → ∞.                                          (2.3) 

And the algorithm is said to converge with probability 1 to the set of minimal 
elements if  

                δF*(Ft) → 0 with probability 1 as t → ∞.                                           (2.4) 

Needless to say, d(Ft, F
*) → 0 implies δF*(Ft) → 0.  

3   The Basic Principles and the General Framework of Quantum-
Inspired Multi-Objective Evolutionary Algorithms 

A few researchers have proposed some QMOEAs that are mainly based on a 
particular MOEAs, such as Kim, Kim and Han’s QMEA based on the NSGA2 in [13] 
and Meshoul, Mahdi and Batouche’s algorithm based on SPEA2 in [12]. Here we 
present a new general QMOEA framework, which is based on the basic principles of 
QEA and the general schemes of MOEA. 

3.1   The Basic Principles of Quantum-Inspired Evolutionary Algorithm 

A. Q-bits’ Chromosome Representation and Q-individual 

The individuals’ chromosomes in QEA utilize Q-bits representation which is a kind of 
probabilistic representation. Q-bit (or qubit) is abstraction of quantum bit. It is the 
smallest unit of information in QEA, which is defined with a pair of numbers (α, β) 
[15]. Consequently, an individual’s chromosome q can be defined as m Q-bits string 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m

mq
β
α

β
α

β
α

...

...

2

2

1

1  

where miii ,...2,1,1
22 ==+ βα . In this paper we call this kind of individual as 

Q-individual. This quantum representation mechanism has the advantage to represent 
a linear superposition of states. All possible combinations of decision variables values 
can be derived from a single Q-individual.  

B. Q-population and observing population 

For more diversity, QEA maintains a population of Q-individuals, called Q-
population in this paper, using Q(t)={q1

t,q2
t,…qn

t} at each generation t of the 
evolutionary iterative process where n is the size of population and qj

t is a Q-
individual defined as above text. 

A quantum operator called observing is applied in order to obtain feasible solutions 
in QEA. This operator makes a population of binary solutions, P(t)={x1

t,x2
t,…xn

t}, 
which is called observing population in the present paper. Each component xj

t , 
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j=1,2,…n is a length m binary string which is formed by selecting either 0 or 1 for 
each bit by using the probability either 2

iα or 2

iβ , k=1,2,…m of qj
t, respectively.  

C. Updating Q-individual and Q-gate 

In QEA process Q-individuals can be updated by applying a variety of Q-gate 
operators, by which the updated Q-bit with a new pair of number (α’, β’) should 
satisfy the normalization condition, 1

2'2' =+ βα . The rotation gate acting on a 

single Q-bit is the basic Q-gate in QEA as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΔ
Δ−Δ

=Δ
)cos()sin(

)sin()cos(
)(

θθ
θθ

θR  

where Δθ is a rotation angle toward either 0 or 1 state depending on its objective sign. 
As the rotation gate is applied, a correlative binary individual to each Q-individual, 
which is called an objective solution, is often appointed in advance. The objective 
sign to each bit of a Q-individual is defined as the corresponding bit of the correlative 
objective binary individual, respectively. After the rotation gate R(Δθ) acting on a Q-
bit (α, β), the updated Q-bit (α’, β’) satisfy ( ) ( )TT

R βαθβα ,)(, '' ⋅Δ= . Here Δθ should 

be designed in compliance with the application problem and each Q-bit possibly 
matches with different angles. Several rotation gate strategies have been given, here 
we use the Δθ strategy in [10]. 

Moreover NOT gate and Hε gate are other two operator. The function of the former 
is to exchange the probabilities of ‘0’ state and ‘1’ state in the Q-bit. It can be defined 
as a transformation matrix

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01

10
N . The latter is extended from the rotation gate 

and was proposed by Han and Kim in [11]. If acted by Hε gate, a Q-bit (α, β) would 
be updated as ( ) ),,(, '' θβαβα ε Δ= H

T , where for ( ) ( )TT
R βαθβα ,)(, '''' Δ=  

a) if εα ≤
2''  and εβ −≥1

2''  then ( ) ( )TT εβεαβα −⋅⋅= 1)sgn(,)sgn(, '''''' ; 

b) if εα −≥ 1
2''  and εβ ≤

2''  then ( ) ( )TT εβεαβα ⋅−⋅= )sgn(,1)sgn(, '''''' ; 

c) otherwise ( ) ( )TT '''''' ,, βαβα = . 

Here 10 <<< ε . 

3.2   The General Framework of Quantum-Inspired Multi-Objective 
Evolutionary Algorithms 

The algorithms for MOP have two main goals in the iterative process: making current 
solutions as close as possible to the Pareto front and as diverse as possible. A number 
of good techniques have been used in order to improve MOEAs, some of them are so 
successful that they have become general schemes, such as nondominated rank 
sorting and selection, maintaining solutions diversity and reserving elitism solutions 
as an external population etc[16]. Integrating the basic principle of QEA and general 
schemes of MOEA, we propose a general framework of quantum-inspired multi-
objective evolutionary algorithms as follows: 
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The Procedure of the QMOEAs’ Basic Framework 
Begin 

t ← 0 
i)       Initialize Q(t) 
ii)       A(t) ={ }, C(t) = { } 
iii)      While (not termination condition) do 

t ← t+1 
iv)     Make P(t) by observing the state of Q(t-1) 
v)             Evolve P(t)                       \\  Sometimes this step can be omitted.  
vi)            Make C(t) = Mf( P(t)∪ C(t-1), ≤ )      \\ Normally this step is eliminated.  
vii)    Rebuild the archive set A(t);  

\\ Here A(t) ⊆ Mf( P(t)∪ A(t-1), ≤ ) and maximize the diversity of 
those chosen elements in A(t). 

viii)        Make Q(t) by updating Q(t-1) on Q-gates 
End 

End 

i) ~ ii) First the two external archive set A(t), C(t) and the Q-population Q(t) are 
initialized. Set A(0) = φ , C(0) = φ . Make Q(0) = {qj

0, j=1,2,…n}, where each 

Q-bit in qj
0 have the identical probability of ‘0’ state and ‘1’ state. In other word, 

each Q-bit of qj
0 can be presented as ⎟

⎠

⎞
⎜
⎝

⎛
2

1
,

2

1 . 

iii)  Until the termination condition is satisfied, the QMOEA is running in the while 
loop. 

iv)  Binary solutions in P(t) are formed by observing the state of Q(t) as above 
subsection.  

v)   P(t) can evolve by using some evolutionary operations, such as simple genetic 
algorithm, evolutionary strategy etc. In fact, this step is not indispensable; it 
may be omitted in some QMOEAs. 

vi)  According to the definition of C(t) = Mf(P(t) ∪ C(t-1)), C(t) consists of all 

nondominated solutions in∪ t

t
tP

1 1
1

)(
=

. Here some efficient techniques can be 

used, such as the fast nondominated sorting method which was proposed in 
NSGA2 [4]. Since the size of C(t) will continually grow along with the iteration 
cycles and may be too huge, this step usually is not adopted in practice.  

vii)  As A(t) ⊆ Mf( P(t)∪ A(t-1), ≤ ), all elements of A(t) are the nondominated 

solutions in ∪ t

t
tP

1 1
1

)(
=

. Unlike C(t), A(t) is the archive set, its size is usually 

changeless. In order to maximize its diversity, some techniques can be used such 
as crowding-distance [4], clustering [17] etc. 

viii)  In this step, Q-individuals in Q(t) are updated by applying Q-gates, such as the 
rotation gate, NOT gate and Hε gate. When the rotation gate are applied, a 
correlative solution to each Q-individual, which is called a objective solution, is 
often selected from A(t). Then the objective sign to each bit of a Q-individual is 
defined as the corresponding bit of the correlative objective solution, 
respectively. 
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4   On the Convergence Properties of QMOEA 

4.1   One of the Sufficient Convergence Conditions to QMOEA 

According to those definitions of MOP and partially ordered set in section 2, we look 
upon the image space of MOP, (f(S), ≤), as a partially ordered set. The set M(f(S),≤), a 
subset of (f(S),≤), denotes the Pareto optimal set of the MOP. By the construction of 
the basic framework, A(t) is the archives solutions set. Thus we can define the concept 
on convergence to the Pareto optimal set as follows. 

Definition 4.1. Let F* = M(f(S),≤) and A(t) be the archives solutions set of QMOEA. 
The QMOEA is said to converge with probability 1 to the Pareto optimal set if  

           δF*(f(A(t))) → 0 with probability 1 as t → ∞.                                      (4.1) 

Proposition 1. One of sufficient conditions by whose the QMOEA converges with 
probability 1 to its Pareto optimal set is that the set sequence {C(t)} satisfy 

                   d(f(C(t)), F
*) → 0 with probability 1 as t → ∞.                               (4.2) 

where F* = M(f(S),≤) is the minimal elements set of the image set f(S). 

Proof:  Since 0)),1()(()( >−= ttCtPMtC f ∪  and φ=)0(C , 0)),1()(()( >−⊆ ttAtPMtA f ∪  

and φ=)0(A , we can attain )()( tCtA ⊆ and ))(())(( tCftAf ⊆ . 

Let S0 = f(C(t)) – f(A(t)). We can conclude that 
*** ))(())(())),((( FtCfFtCfFtCfd ∩∪ −=  

**
0

* ))(())(())(( FtCfFSFtAftAf ∩∪∩ −+−=  

**
0 ))(()))(((* FtCfFStAf

F
∩∪ −+=δ  

)))(((* tAf
F

δ≥ . 

Since δF*(f(A(t))) ≤ d(f(C(t)), F*), it is clear that if d(f(C(t)), F*) → 0 with 
probability 1 as t → ∞ then δF*(f(A(t))) → 0 with probability 1 as t → ∞. Considering 
the definition (4.1), we have proved this proposition.                                                    ■ 

Proposition 2. Let S be a feasible solution set of MOP, s∈S be an arbitrary from 
feasible solution. If the probability P(s∈P(t)) is independent each other for different t 
and there exists a real number ε0,0<ε0<1, which satisfies P(s∈P(t)) ≥ ε0 for all s∈S, 
all t > 0, then d(f(C(t)), F

*) → 0 with probability 1 as t → ∞, where F* = M(f(S),≤) is 
the minimal elements set of the image set f(S). 

Proof: In one ‘while loop’ of the basic framework the P(t) maybe be changed in v) 
step. For avoiding the different understanding, the P(t) always denotes its final result 
in v) step in following text. 

First, we describe d(f(C(t)), F*) → 0 with probability 1 as t → ∞ with a 
mathematical limit language as follows: 

 10, 11 <<<∈∀ εε R , NN ∈∃ 0
such that 

1
* 1)0))),(((( ε−≥=FtCfdP   for all t > N0 . 

Second, we consider the preconditions that can guarantee 0))),((( * =FtCfd . The 

poset f(S) is complete since the feasible set S and its image poset f(S) are finite. Let x 
be an arbitrary element of f(S) – F*. There exists at least an element y∈F* and y 
dominate x. By the definitions of C(t), It is guaranteed that if y∈ f(C(t0)) then x 
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∈ f(C(t)) is impossible for all t ≥ t0. Further, if F* ⊆  f(C(t0)) implies that any element 
of f(S) – F* will not stay in f(C(t)) for all t ≥ t0. In other words, F* ⊆  f(C(t0)) implies 
(f(S) - F*)∩f(C(t))= φ  for all t ≥ t0. Since f(C(t)) is a subset of f(S), we can affirm that 

if F* ⊆  f(C(t0)) and (f(S) - F*)∩f(C(t))= φ  then F*= f(C(t)). Hence, it is clear that if 

F* ⊆ f(C(t0)) then 0))(())(())),((( *** =−= FtCfFtCfFtCfd ∩∪  for all t ≥ t0. 

Third, we estimate the probability that all element of F* enter into f(C(t) in K×l 
iterations beginning from t0, ( )))(( 0

* lKtCfFP ×+⊆ , as follows. By construction of the 

basic QMOEA framework and those definitions of C(t), it is guaranteed the image set 
f(C(t)) is the minimal set of the union set ∪t

t
tPf

1 1
1

))((
=

. As soon as an element of F* 

has entered f(P(t0)) then it will be saved in f(C(t0)) and then it will stay in f(C(t)), t ≥ 
t0, forever.  

Let K = |F*|. Without loss of generality, we can assume that all elements of |F*| are 
label as {s1, s2,…, sK}. Taking into account that the probability P(s∈P(t)) is 
independent each other for different t, we can decompose these probability 
expressions in following inequations. Since there exists a real number ε0,0<ε0<1, 
which satisfies P(s ∈P(t)) ≥ ε0 for all s ∈S, all t > 0, we can estimate the probability 
that an element sj, j = 1,2,…,K, enter into f(C(t)) in l iterations beginning from t0 as 
follows: 

( )))(())(( 00 tCfsltCfsP jj ∉+∈  

( )))(())((1 00 tCfsltCfsP jj ∉+∉−=  

)))2((()))1((()))((((1 000 +∉+∉∉−= tPfsandtPfsandtCfsP jjj
 

))))(((... 0 ltPfsandand j +∉  

( ) ( ) ( )⋅+∉⋅+∉⋅∉−= ))2(())1(())((1 000 tPfsPtPfsPtCfsP jjj
 ( )))((... 0 ltPfsP j +∉⋅  

l)1(1 0ε−−≥ , 

where l and t0 are arbitrary nature number. 
Further, we can estimate the probability that all element of F* enter into f(C(t) in 

K×l iterations beginning from t0 as follows: 

( )))(( 0
* lKtCfFP ×+⊆  

andltPsandltPsP ))2(())((( 0201 +∈+∈≥ )))((... 0 lKtPsand K ×+∈  

( ) ( )⋅+∉+∈⋅∉+∈≥ ))())2())())( 02020101 ltPsltPsPtPsltPsP  

( ))))1(())(... 00 lKtPslKtPsP KK ×−+∉×+∈⋅  

Kl ))1(1( 0ε−−≥ , 

where l and t0 are arbitrary nature number. 
Finally, we can sum up the proof by a fit N0 for arbitrary ε1 as follows. 

Let K

N
1

1

0

)1(1
11 log ε

ε
−−

−= . 10, 11 <<<∈∀ εε R , we set 110 +⋅≥ NKN and NN ∈0
. Let t0 = 1 

and t > N0. With all the above conclusions we can conclude as follows: 
( )0)),((( * =FtCfdP  

( ))(( 10
* NKtCfFP ⋅+⊆≥  
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KN ))1(1( 1
0ε−−≥  

11 ε−= . 

Summing up: 1,0,, 1010 <<<∈∀ εεεε R , NN ∈∃ 0
 such that ( ) 10 1)1(1 1 εε −≥−−

Nt  for all t 

>N0, i.e. it is true that d(f(C(t)), F
*) → 0 with probability 1 as t → ∞.                           ■ 

Considering the proposition 1 and proposition 2, we can immediately conclude the 
theorem 1 as follows, whose proof is omitted. 

Theorem 1 (Sufficient Convergence Condition). Let S be a feasible solution set of 
MOP. One of the sufficient conditions by whose this QMOEA converges with 
probability 1 to its Pareto optimal set is that there exists a real number ε0,0<ε0<1, 
which satisfies P(s ∈P(t)) ≥ ε0 for all s ∈S, t > 0 and P(s ∈P(t)) is independent from 
each other for different t. 

Remark 1. From theorem 1, we obtain a sufficient convergence condition of 
QMOEA to the Pareto optimal set. However, it is not indispensable. We can give an 
example which does not satisfy this sufficient condition but converge to its Pareto 
optimal set. 

4.2   On the Convergence Property of QMOEA with Hε Gate 

The first example algorithm meeting the convergence condition is the MOEA with Hε 
gate. The Hε gate is firstly proposed by Kim and Han in [11] and we have simply 
described it in subsection (3.1). The procedure of this algorithm is similar with that 
basic framework but the step v) and vi) are eliminated and the Hε gate is adopted in 
step viii). 

The Procedure of the QMOEA with Hε Gate 
Begin 

t ← 0 
i)      Initialize Q(t) 
ii)       A(t) = {} 
iii)      While (not termination condition) do 

t ← t+1 
iv)          Make P(t) by observing the state of Q(t-1) 
v)  Rebuild the archive set A(t);  

\\ Here A(t) ⊆ Mf( P(t)∪ A(t-1), ≤ ) and maximize the diversity of 
those chosen elements in A(t). 

vi)      Make Q(t) by updating Q(t-1) on Hε gate 
End 

End 

Theorem 2. The QMOEA with Hε gate which is defined above converges with 
probability 1 to its Pareto optimal set. 

Proof: Taking into account the definition of Hε gate, we can conclude 
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10 <<∃ ε , )(
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...

2

2

1

1 tQq t
jm

t
jm

t
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t
j

t
j

t
jt

j ∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∀

β
α

β
α

β
α , εβαε −≤≤ 1,

22 t
jk

t
jk

 where 

j = 1,2,… n , k = 1,2,…,m, t > 0, 10 <<< ε . 
According to the observing operator, if we define the function observing(α, β) as 

one observing operator to Q-bit (α, β), it can only get either 1 or 0. We can estimate 

the probability of the observing result to a Q-bit ( )t
jk

t
jk βα ,  as follows: 

( ) εαβα ≥==
2

0),( t
jk

t
jk

t
jkobservingP ,  

( ) εββα ≥==
2

1),( t
jk

t
jk

t
jkobservingP . 

Let us now consider the probability P(s∈P(t)), s ∈S, t > 0. On the assumption that 
s is an arbitrary element in S, s can be expressed as a binary string {s1s2…sm }, where 
sk is either 0 or 1, k = 1,2,…,m. Further we can conclude the probability of the 
observing result to a Q-individual qj

t: 
mk

m

k

t
jk

t
j sqobservingPsqobservingP ε≥=== ∏

=

))(()))((
1

, j = 1,2,.. n, t > 0. Thus we 

can conclude that P(s∈P(t)) ≥ mt
j sqobservingP ε≥= )))(( . 

Moreover, Considering the construction of the algorithm, it is guaranteed that 
P(s∈P(t)) is independent each other for different t. 

From the theorem 1, we can conclude the theorem 2.                                                ■ 

4.3   On the Convergence Property of QMOEA Rotation Gate and Nε Gate 

The second example is the MOEA with the rotation gate and the Nε gate. We have 
described the rotation gate and NOT gate in subsection (3.1). The Nε gate is a 
modified NOT gate which is proposed in this paper. In fact its function is to exchange 
Q-bit’s parameters with the probability ε. Its transformation matrix can be defined as 
follows:  

Nε: Nε = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01

10  with probability ε; Nε =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10

01   with probability 1-ε, where 0<ε<<1. 

The simplified procedure of this algorithm is similar with that basic framework but 
the step v) and vi) are eliminated and the rotation gate and the Nε gate are adopted in 
step viii). 

The Procedure of the QMOEA with Rotation Gate and NOT Gate with 
Probability 

Begin 
t ← 0 

i)        Initialize Q(t) 
ii)       A(t) = {} 
iii)      While (not termination condition) do 

t ← t+1 
iv)       Make P(t) by observing the state of Q(t-1) 
v)  Rebuild the archive set A(t);  
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\\ Here A(t) ⊆ Mf( P(t)∪ A(t-1), ≤ ) and maximize the diversity of 
those chosen elements in A(t). 

vi)      Make Q(t) by updating Q(t-1) on rotation gate 
vii)      Update Q(t) on the Nε gate 

End 
End 

Theorem 3. The QMOEA with the rotation gate and the Nε gate which is defined 
above converges with probability 1 to its Pareto optimal set. 

Proof: First we let the Q(t) in vi) step of the algorithm above as follows:  
Q(t) = { qj

t, j = 1,2,…,n} and 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= t

jm

t
jm

t
j

t
j

t
j

t
jt

jq
β
α

β
α

β
α

...

...

2

2

1

1 , t > 0. 

Then let us consider the Nε gate. After updated by Nε gate, each Q-bit in qj
t has 

been exchanged its parameters with the probability ε. According to the observing 
operator in iv) step of the algorithm, the probability of the observing result to kth Q-
bit qjk

t of qj
t can be expressed as follows: 

( ) εαεβεαε +−=+−==
222

)21()1(0)( t
jk

t
jk

t
jk

t
jkqobservingP ,  

( ) εβεβεαε +−=−+==
222

)21()1(1)( t
jk

t
jk

t
jk

t
jkqobservingP . 

Since 0<ε<<1, we can conclude  
( ) ε≥= 0)( t

jkqobservingP   and  ( ) ε≥= 1)( t
jkqobservingP , k = 1,2,…m. 

Let us now consider the probability P(s∈P(t)), s∈S, t > 0. On the assumption that 
s is an arbitrary element in S, s can be expressed as a binary string {s1s2…sm }, where 
sk is either 0 or 1, k = 1,2,…,m. Further we can conclude the probability of the 
observing result to a Q-individual qj

t: 

mk
m

k

t
jk

t
j sqobservingPsqobservingP ε≥=== ∏

=

))(()))((
1

, j = 1,2,.. n, t > 0.  

Thus we can conclude P(s∈P(t)) ≥ )))(( sqobservingP t
j =  mε≥ . 

Moreover, Considering the construction of the algorithm, it is guaranteed that 
P(s∈P(t)) is independent each other for different t. 

From the theorem 1, we can conclude the theorem 3.                                                ■ 

5   Conclusions 

In this article we have presented a general framework for quantum-inspired 
multiobjective evolutionary algorithms. Roughly speaking, this is an integration of the 
basic principles of quantum computing and general schemes of MOEA, such as Q-bit 
individual presentation, observing operator, Q-gate updating operator, external 
archive set, nondominated sorting, diversity preserving etc. We give one of sufficient 
convergence conditions for the basic framework and its proof bases on the partial set 
theory and probability theory. Then we present two algorithms those satisfy this 
convergence condition. One is with Hε Gate and another is with the rotation gate and 
NOT gate with probability. These theoretical characters may be useful for designing 
QMOEAs. 
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Despite of these theoretical features on convergence, we need numerical results 
with these QMOEAs. Furthermore, efficiency and diversity are also significant to 
multiobjective optimization algorithms besides the convergence. These issues should 
be subject of future work. 
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