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1 Introduction
The main motivation for developing a program for au-
tomatic composition is to attach importance on get-
ting melodies that have something new: The pro-
gram should simulate creativity so that it can be used
for composition assistence. Similar to the work of
Biles [2, 3] or Wiggins and Papadopoulos [14] we
use an evolutionary algorithm. Biles uses an interac-
tive method as evaluation function, Wiggins and Pa-
padopoulos use weighted sums of numerical features
values extracted from the melodies. The interactive
approach has the disadvantage of requiring much time
to evaluate melodies. Using weighted sums raises the
question if that method maps the personal taste of mu-
sic appropriately.

There have been some approaches to learn a fit-
ness function, for example with neural networks, but
without emphasizing creativity [5], so the generated
melodies are not pleasing to the ear [4] or they are just
not very interesting [10].

Our idea is to extract features [19, 21] on which a
data mining algorithm can classify the melodies. That
approach has the advantage of the possibility that the
automatically generated classifier fits the user’s taste
and can classify the melodies fast.

Next to the evaluation function another important

∗This is an extended version of [12].

element of the evolutionary algorithm is the initial-
isation for which we not only use purely randomly
assigned note lengths and pitches but more complex
methods like Markov chains of different order. A great
introduction to the modelling of interrelations in mu-
sic with statistical methods can be found in [23].

Another important thing to point out is that the
implementation is licensed under the Gnu Public Li-
cence1 so that everyone can try out the program and
experiment with different parameters2. This is a spe-
cial feature because most systems for automatic com-
position are closed source apparently.

The rest of the paper is organised as follows: At
first we explain the evolutionary algorithm developed
here before we look at the methods for building the
initial population. Then some of the variation opera-
tors are described and elucidated on some examples.
The probably most important part of our work is the
evaluation procedure for melodies which will be ex-
plained next. The last section is a conclusion and an
outlook on future work.

1http://www.gnu.org/copyleft/gpl.html
2Download information can be found on
http://www.romanklinger.de/musicomp/musicomp.html and on
http://sourceforge.net/projects/musicomp
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2 Overview
An evolutionary algorithm [1] is an optimization
scheme which works on a set on possible solutions,
in our case on melodies. A visualisation is given in
figure 1. ‘
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Fig. 1: Main components of an evolutionary algo-
rithm.

At first the set of solutions, also called population
of individuals, is initialised. This is done by using
statistical methods like Markov chains so that they
are meaningful according to some musical laws. For
that, the user specifies the chords on which the melody
should be played. After that this set is altered by mu-
tation and recombination of the individuals. Then the
original individuals and the altered ones are evaluated
by some fitness function. The best ones, in our case
the hopefully most pleasant melodies, form the subse-
quent population.

3 Initialisation
For using the optimisation scheme of evolutionary al-
gorithms it is necessary to build an initial population
of melodies. We use different methods, distinguishing
between those for developing the rhythm and those for
fixing the pitches of the notes. The general workflow
for the initialisation is as follows:

Define Rhythm
⇓

Set Pitches
⇓

Postprocess

Implemented methods for defining the rhythm are
Markov chains [9], Pattern sets and random assign-
ment using a uniform distribution. Techniques for fix-
ing the pitches are Markov chains, random walks and
random assignment using a Gaussian distribution. The
postprocessing adjusts possible inaccuracies relating
to matching the note pitches to the given chord se-
quence.

There are approaches using these methods inde-
pendent to an optimisation scheme for generation of
melodies (see [13, 20] for an overview) what has other
needs than an initialisation for optimisation: Using
them as a stand-alone method needs them to be more
robust and providing nice melodies out of the box. In
our case we want them to supply some creative and
new aspects. For that they have to be parameterisable
to find a trade-off between generating new melodies
that are perhaps not pleasing before starting the evo-
lutionary algorithm but having potentials in them and
having good enough individuals for giving the optimi-
sation a chance.

The simplest methods are the random assignments
of lengths and pitches. For the rhythm, the parameters
to set are the shortest and longest length. In this inter-
vall a note with index i at position pi with length li is
generated which starts at position pi−1 + li−1. In ad-
dition, a propability is given that a “note” has no pitch
but is a rest.

The pitches of the notes are set using the keynote
of the given chord at the same timepoint with some
Gaussian noise according to a standard deviation that
must be specified as a parameter by the user.

Another simple method for generating the rhythm
is the use of patterns. For that, the system reads some
user given MIDI files from which only the rhythm is
extracted in a user given length from the beginning.
These patterns (one from each file) are then selected
randomly and concatenated to get the rhythm for a new
individual.

The most interesting and flexible idea to generate
initial individuals is the use of Markov chains. For the
melody the random walk is just a special case of that
method. The Markov chains and their corresponding
characteristic matrices are computed from a given set
of MIDI files using a maximum-likelihood algorithm.
As a representation for the Markov chains for generat-
ing the rhythm we use integer values r. If r < 0 holds,
it represents a rest, otherwise it describes a ’real’ note.
The absolute value gives the length of the rest or the
note where |r| = 1 is a quarter, |r| = 1

2 is an half-
quarter and so on. An example of a first order Markov
chain can be seen in figure 3.

G 4
4
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˘ ˇ ˇ ¯

Fig. 2: Example melody for generating Markov
chains.

We always assume a melody to start with a tone af-
ter the longest possible rest (represented by −4, real
rests at the beginning of the melody are ignored). In
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Fig. 3: Example Markov chain generated from the
melody in figure 2.

the example, always a quarter follows this virtual rest.
With 10% each a double-quarter or a whole note fol-
lows. With 80% a quarter is followed by a quarter.
The question arrises what happens after a whole note:
In cases like that where no successive state is defined
we start again like at the beginning of the rhythm.

For setting the pitches we have two possible vari-
ants of the Markov chains. The one we call absolute
Markov chain works on sequences of absolute pitch
values, the one called relative Markov chain works on
sequences of intervalls between two successive notes.
Examples can be found in figure 6(a) and 6(b). In the
case of reaching a state without successor we choose
the following pitch respectively intervall from the set
of states with successors.

The main difference between the two different kinds
of Markov chains is that absolute Markov chains are
often more simple but the input MIDI files should be
transposed to the goal scale and key. The relative
Markov chains are not that dependent to the scale.

G 4
4
< > ˇ ˇ` (ˇ ˇ ˇ ˇ` (ˇ ˇ ˇ ˇ ? (ˇ ˇ

ˇ

G ˘ >
ˇ ˇ` ? ˇ ˇ ˇ` (ˇ ˇ ˇ ˇ` (ˇ ˇ ˇ ˘

<

Fig. 4: Example melody for generating a Markov
chain (Auld Lang Syne)

Another important parameter of the Markov chains
should be mentioned: It is possible to specify the order
of the chain. This is useful to decide how similar the
generated melodies should be to the input melodies
from which the matrices are computed. Because of
that in a Markov chain of order 4 we recognize whole
bars of the input melodies. As an example in figure
5 generated rhythms using Markov chains of different
order which are estimated from Auld Lang Syne (figure
4) are displayed. We can see that they are more similar
to the rhythm of Auld Lang Syne the higher the order
of the Markov chain is.

G 4
4 ˇ ˘ > ˇ ˇ ? ˇ (ˇ

8

(ˇ ˘ > (ˇ
8

(ˇ ˇ ˇ ` ˇ ˇ
G 4

4 ˇ ˇ ˇ ˇ ˇ ` (ˇ ˇ ˇ ˇ ` (ˇ ˇ ˇ ? (ˇ ˇ ˇ ˇ
G 4

4 ˇ ˘ > ˇ ˇ` (ˇ ˇ ˇ` (ˇ ˇ ˇ ˇ ` (ˇ ˇ ˇ
(a) 1st order

G 4
4 ˇ ˇ` (ˇ ˇ ˇ ˇ ` (ˇ ˇ ˇ ˇ ˇ ` (ˇ ˇ ˇ ˇ ` (ˇ
G 4

4 ˇ ˇ` (ˇ ˇ ˇ ? (ˇ ˇ ˇ ˇ ` (ˇ ˇ ˇ ? (ˇ ˇ ˇ ˇ
G 4

4 ˇ ˇ` (ˇ ˇ ˇ ˘ > ˇ ˇ ` (ˇ ˇ ˇ ? (ˇ ˇ ˇ
(b) 2nd order

G 4
4 ˇ ˇ` (ˇ ˇ ˇ ˇ ? (ˇ ˇ ˇ ˘ > ˇ ˇ ` ˇ (ˇ
G 4

4 ˇ ˇ` (ˇ ˇ ˇ ˇ ? (ˇ ˇ ˇ ˇ ? (ˇ ˇ ˇ ˇ ` (ˇ ˇ
G 4

4 ˇ ˇ` (ˇ ˇ ˇ ˇ ? (ˇ ˇ ˇ ˇ ` (ˇ ˇ ˇ ˇ ` (ˇ ˇ
(c) 3rd order

G 4
4 ˇ ˇ` (ˇ ˇ ˇ ˇ ? (ˇ ˇ ˇ ˘ > ˇ ˇ ` ˇ (ˇ
G 4

4 ˇ ˇ` (ˇ ˇ ˇ ˇ` (ˇ ˇ ˇ ˘ > ˇ ˇ ` ˇ (ˇ
G 4

4 ˇ ˇ` (ˇ ˇ ˇ ˇ ? (ˇ ˇ ˇ ˘ > ˇ ˇ ` ˇ (ˇ
(d) 4th order

Fig. 5: Examples for rhythms, which were generated
using Markov chains of different order esti-
mated from the melody in figure 4.

For the initialisation of melodies it is recommended
to use more than one method with not too strict pa-
rameters so that the first population is diverse enough
for building innovative melodies. The implemented
program selects randomly from a set of user specified
methods which one should be used for an individual.

Remarkable is the trade-off between conservative
and innovative initialisation as visualised in table 1.

Innovative Conservative

Markov chains
complex simple
low order high order

Pattern sets
many patterns few patterns
short patterns long patterns

Table 1: Trade-off between innovative and converva-
tive initialisation.

A

0.25

B0.75
0.5

0.25

C0.25 D1.0 F1.0 E1.0

(a) Absolute Markov chain

-2 2
1.0
0.5 00.25

3

0.25

0.5

1
0.5

1.0

-11.0

(b) Relative Markov chain

Fig. 6: Markov chains for the generation of pitch se-
quences estimated using the melody in figure
2.
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4 Mutation and Recombination
The operators mutation and recombination represent
the methods to change the melodies so that they en-
hance their interestingness. Here we only give some
examples because a description of the whole set of
operators would exceed the size of the paper awfully.
More details can be found in [11].

The mutation operators can be distinguished in
those which change pitches (one-point-mutation,
transposition, inversion), those which change rhythm
(moving, merging, splitting of notes) and those which
make some structural modification of the melody (ro-
tating, sorting, mirroring of some range).

G 4
4 ˇ ˇ

ÂÂ
ˇ ˇ ˇ ĆĆ̌

Fig. 7: Example of some melody prior to variation.

For the examples we assume figure 7 being the orig-
inal melody. An example for the one-point-mutation
could be the melody in figure 8 in which the second
note is raised by one half step and the fifth tone is
raised by one step. That method changes the pitch
of every note with a low probability. The stepsize is
determined by a bilateral geometric distribution [18].

G 4
4 ˇ 4ˇ

ÂÂ
ˇ ˇ ˇ ˇ

Fig. 8: One-point-mutation of melody in figure 7.

An example for changing the rhythm is splitting ev-
ery note with a low probability as we can see in fig-
ure 9. Here the second and the third note are split into
two notes, each of half of the length of its original.
The pitch of the second note is changed analogous to
one-point mutation.

G 4
4 ˇ ˇ ˇ ˇ \ˇ ˇ ˇ ĹĹ̌

Fig. 9: Splitting some notes of melody in figure 7.

G 4
4 ˇ ˇ

ÂÂ
ˇ ˇ ˇ ÂÂˇ

Fig. 10: Sorting of melody in figure 7.

An example for a structural modification is sorting
the notes downwards with respect to their pitches as

we can see in figure 10. Here the whole melody is
sorted. In our implementation only a randomly deter-
mined part of the melody is changed.

The recombination combines two parents to one or
more new individuals. We experimented with interme-
diate methods which work by using the mean pitches
of two notes on the same point in time of the two par-
ents. Here the problem in using that kind of operator
is that the melodies tend to a single tone repetition. So
the better choice is using a one-point-crossover which
builds two individuals by beginning with the first par-
ent and ending with another and the other way round.
The crossover point is determined randomly. An ex-
ample is shown in figure 11.

Parents:
G 4

4
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ \ˇ ˇ \ˇ \ˇ ˇ ˇ ˇ ˇ ˇ \

ÊÊ
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

G 4
4
< ˇ ˇ ˘ ˇ ˇ 4˘ 4ˇ ˇ ¯

Offspring:

G 4
4
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇÈÈ̌ ˇ \˘ 4ˇ ˇ ¯

G 4
4
< ˇ ˇ ˘ ˇ 4ˇŤŤ

ˇ \ˇ \ˇ ˇ ˇ ˇ ˇ ˇ \
ÊÊ
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

Fig. 11: Example for one-point-crossover.

5 Selection
The operator selection builds the subsequent popula-
tion. We tried to use fitness proportional selection, but
this reduces the diversity of the individuals. It is nice
not to have too similar individuals in the set because
then it is more likely to have variations that could pos-
sibly fit the personal taste. Actually, it is crucial to
maintain diversity in the population to provide suffi-
cient potential for continuing evolution. Determinis-
tic selection as used in evolution strategies works very
fine, especially with niching methods to enhance the
diversity.

We use two niching methods [1]. The first, fitness
sharing, works by scaling down the fitness of similar
individuals. The second, in our case much more suc-
cessful, is called crowding. Here two parents are re-
combined to two children. The parents and children
compete to each other in the pairing in which their
similarity is higher. The function that gives the sim-
ilarity between two individuals I1 and I2 with pitches
mi at points of time i is

sim(I1, I2) = 1−
∑n

i=1 dist(m1
i , m

2
i )

h(I1, I2)
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with

dist(m1
i , m

2
i ) =

{
0 if m1

i 6= −2 ∧m2
i 6= −2

min(|m1
i −m2

i |, ∆max) otherwise

and

h(I1, I2) =
n∑

i=1

a(x, y)

with

a(x, y) =

{
0 for x = y = −2
∆max otherwise

For understanding the formula above it is impor-
tant to know about our representation of melodies: A
melody is a tuple m ∈ {−2,−1, 0, . . . , 127}n where
i ∈ {1, . . . , n} are points of time and the values
0, . . . , 127 represent the start of a tone with a note
pitch according to the general midi specification3. The
value−1 means “Holding the last event” and−2 starts
a rest.

We set ∆max = 4, which means that the largest
intervall between two pitches that is considered is 4.
This also holds for an interval between a “−1” and the
starting of a note with a given pitch in two individuals
at the same point of time.

That function emphasizes the importance of the
rhythm, so especially rhythmic features of the
melodies are kept over the generations.

6 Evaluation
The evaluation function is a very important point in the
generation of melodies with evolutionary algorithms.
It “restricts” the creativity of the mutation and recom-
bination operators. In addition to the interactive eval-
uation, which we also implemented in form of a slider
the listener can move between 1 and 10 in steps of
0.01 after the melody was played that has to be evalu-
ated, we implemented some methods based on feature
extractions.

6.1 Feature Extraction
The feature extraction follows the work presented in
[19, 21] with some additional methods. The fea-
tures are subdivided into pitch features, tonale fea-
tures, contour features, rhythmic features, pattern fea-
tures, features for chord change and accentuation fea-
tures. For explanation we give some examples which
are all played on the chord sequence4: Am, Dm, E,
Am

3http://www.midi.org/about-midi/gm/gminfo.shtml
4The chord Am is a set of the notes a, c, e. Dm is d, f, a. E is e,

g#, b.

The feature Harmonicity gives the ratio between the
number of notes with pitches of the current chord and
the number of all notes. An example for two different
melodies is given in figure 12.

G 4
4 ˘ ˇ ˇ ˘ ˇ ˇ Z˘ ˇ ˇ ˘ ˘
G 4

4 ˘ ˇ ˇ ˘ ˇ ˇ ˘ ˇ ˇ ˘ ˘

Fig. 12: Example for feature Harmonicity. The value
of the first melody is 0, the one for the second
is 1.

G 4
4 ˘ ˇ ˇ ˘ ˇ 2ˇ ˘ ˇ ˇ ¯
G 4

4
< ˇ ˇ < ˇ ˇ < ˇ 2ˇ ¯

Fig. 13: Example for feature Rests on Downbeats with
a value of 0 in the first melody and a value of
0.75 in the second one.

G 4
4 ˇ ˇ ˇ ˇ ˇ ˇ \ˇ ^ˇ \ˇ \ˇ ˇ ˇ ˇ ˇ ˇ ˇ
G 4

4 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
Fig. 14: Example for feature Repeated Pitch with a

value of 0 in the first melody and a value of
1 in the second one.

The feature Rests on Downbeats determines the ra-
tio between the number of downbeats and the number
of downbeats on which there is a rest. In figure 13 are
two melodies with 4 downbeats: One with a value of 0
with no rests and one with 3 rests and a resulting value
of 0.75.

The feature Repeated Pitch computes the ratio be-
tween the number of all intervalls with a size of 0 and
the number of all intervals (= number of notes−1). In
the example in figure 14 is one melody without pitch
repetition (value 0) and one with all possible pitch rep-
etitions (value 1).

6.2 Evaluation with Data Mining Methods
Typical problems of interactive evaluation are the long
time required for listening to the melodies, the subjec-
tivity and that this methods are not always reliable. So
a nice idea is to use machine learning on the features

512



WSEAS TRANS. on INFORMATION SCIENCE & APPLICATIONS Issue 3, Volume 4, March 2007 ISSN: 1790-0832 513

mentioned before. We tried artificial neural networks
and decision trees. For generating these we use a set of
examples which were evaluated by a single person. It
is composed of 45 well-known melodies with a major-
ity of high evaluations, 136 automatically generated
individuals (by saving all individuals of an evolution
with interactive evaluation) and 24 outstanding unaes-
thetic individuals with very low fitness values. The
melodies are given in MIDI-Format with an XML-File
specifying the chords and the fitness.

6.2.1 Using Feed Forward Neural Networks

It is possible to select the features that should be used
as input for the neural net. For every feature we use
one input neuron and in every net one output neuron
which gives the evaluation.

We experimented with neural networks with differ-
ent structures and detected that when using all 42 im-
plemented features it is reasonable to use a fully con-
nected net with one hidden layer of 35 neurons. We
decided to use resilient propagation [17, 8] for training
which lasts only few minutes. It is possible to reach a
resubstitution error of 0.022.

6.2.2 Using Decision Trees

Neural networks are theoretically capable of approxi-
mating arbitrary functions, but the weights of the con-
nections between the neurons are not intuitively inter-
pretable. A very good approach for a better under-
standable classifier are decision trees that are built up
in an inductive way [15, 16]. The algorithm we use is
called C4.5 and is implemented in the Weka-Library
[22] for Java. This algorithm deals with continuous
attributes which correspond to our features but cannot
handle regression. Because of that the fitness values
have to be discretized. So the user specifies a number
of classes in which the fitness values of the individuals
in the example set should be reclassified.

An example for an automatically generated decision
tree using only 2 fitness classes (0 and 10) so that the
tree is small enough to print it here is depicted in fig-
ure 15 (the numbers in brackets give the number of
classified examples on the according leave).

Already this small example provides the facility for
interpretation. If the feature Repeated Rhythm Pat-
terns of Four Notes is very small and Rhythmic Range
is also not very high the individual is classified as a
bad melody. But if the Rhythmic Range is high and the
Note Pitch Changing with Chord Change is also high
it is classified as being a good one. Likely the follow-
ing explanation holds: In the examples the chords are
often changing with the bars. So if the rhythmic range

Repeated Rhythm Patterns of Four Notes

Rhythmic Range

<= 0.166667

Rhythmic Range

> 0.166667

0.0 (149.0)

<= 0.75

Note Pitch Changing with Chord Change

> 0.75

0.0 (6.0)

<= 0.833333

10.0 (3.0)

> 0.833333

0.0 (3.0)

<= 0.0625

Key Centering (Quanta)

> 0.0625

0.0 (4.0)

<= 0.266667

Harmonicity

> 0.266667

Key Centering (Quanta)

<= 0.5

10.0 (37.0)

> 0.5

10.0 (3.0)

<= 0.393443

0.0 (2.0)

> 0.393443

Fig. 15: Example for a decision tree for the classifica-
tion of melodies.

 0

 2

 4

 6

 8

 10

 12

 14

lkjihgfedcba

pruned decision tree, 5 fitness classes

unpruned decision tree, 5 fitness classes

decision tree, 11 fitness classes

interactive

Fig. 16: Comparison of decision tree classifiers with
interactive evaluation.

 0

 2

 4

 6

 8

 10

lkjihgfedcba

neural net, 6 hidden neurons

neural net, 35 hidden neurons

interactive

Fig. 17: Comparison of neural net classifiers with in-
teractive evaluation.

is high there is a good possibility that the rhythm is
confusing, but if there is always a note on the first beat
in a bar it is considered not bad.

7 Conclusions
Since it is difficult to evaluate the quality of the au-
tomatic classification functions we used 10 different
melodies and compared their automated classification
with an interactive one. In figure 16 we see the com-
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Fig. 18: 10-fold crossvalidation of decision trees with
different number of classes

parison of some decision trees. The classification of
the one with 11 fitness classes is identical using a
pruned and an unpruned variant so there is no differ-
ence. The individuals a to l are sorted with respect
to the interactive evaluation. The tree with 11 fitness
classes makes some errors on the bad individuals and
the unpruned one with 5 fitness classes is questionable
in the middle fitness area. The pruned tree with 5 fit-
ness classes leaves the best impression.

The comparison of the neural networks in figure 17
reveals that they are not very good in our configura-
tion. Because of the very low TSSE and a small mean
squared error using 10-fold-crossvalidation of 0.025 it
is likely that there is a problem with overfitting (see
section 6.2.1).

An evaluation using 10-fold-crossvalidation on the
decision trees with different numbers of classes is
displayed in figure 18 (the curves are smoothed us-
ing [6]). For training and validation the individuals
mentioned in section 6.2 are utilised. With the num-
ber of classes the size of the tree naturally increases.
While this complexity should be as small as possible
for a better generalisation and interpretability the er-
ror should also be minimised. It decreases with the
number of classes because of the decreasing discreti-
sation error but probably at the expense of generalisa-
tion. Because of that, a number of about 40 classes
seems to be appropriate. The very low error described
here, which is computed using the mean of the vali-
dation individuals and the mean of the 10 folds of the
squared error, has to be interpreted with caution be-
cause of the small size of the training and validation
sets. But we can conclude that it is possible to distin-
guish between individuals in an advisable way using
decision trees on our feature set.

An example for some automatically generated
melodies is given in figure 19.

Based on this preliminary experimental study we
conjecture that decision trees seem to be good for au-
tomatic classification on a comparative small number
of example individuals. Neural networks are not con-

G 4
4 ˘ ˇ ˇ ˘ ˇ 4̌ ˘ 4ˇ ˇ ˘ ˘ G 4

4
< ˇ ˇ Z˘ ˇ ˇ Z˘ 6ˇ Zˇ ^ˇ Zˇ ˇ ˇ

Ľ̌Ľ̌ ˇ ˇ ˇ ˇ

G 4
4
< ˇ ˇ ˘ ˇ ˇ \˘ ˇ ˇ ¯ G 4

4
< ˇ ˇ ˘ ˇ 2ˇ ˘ 2ˇ 6ˇ ¯

G 4
4
˘ ˇ ˇ ˘ ˇ ˇ Z˘ 2ˇ 6ˇ ˘ ˘ G 4
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Fig. 19: Automatically generated melodies using a
pruned decision tree with 5 fitness classes in
20 generations. The bars specify the automat-
ically assigned fitness.

vincing and should be analysed on a larger training
set. With our method it is possible to generate pleas-
ant melodies in just a few generations of an evolution-
ary algorithm.

8 Future Work
One main task for future work is to generate a larger
example set for analysing different methods for auto-
matic classification in a more comprehensive manner.
For that purpose it will be helpful to have many exper-
iment participants for a not that subjective evaluation
of the training melodies. Another point is the analysis
of other similarity functions like the one mentioned in
[7].

For the initialisation, an implementation of a com-
bined Markov chain for rhythm and melody in one
model shall be implemented which also respects the
position of notes in the melody respectively in the cur-
rent bar.
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