
On the Hybridization of SMS-EMOA and Local Search
for Continuous Multiobjective Optimization

Patrick Koch
Dep. of Computer Science
TU Dortmund, Germany

pkoch@uni-paderborn.de

Oliver Kramer
Dep. of Computer Science
TU Dortmund, Germany
oliver.kramer@tu-

dortmund.de
Günter Rudolph

Dep. of Computer Science
TU Dortmund, Germany
guenter.rudolph@tu-

dortmund.de

Nicola Beume
Dep. of Computer Science
TU Dortmund, Germany
nicola.beume@tu-

dortmund.de

ABSTRACT
In the recent past, hybrid metaheuristics became famous as
successful optimization methods. The motivation for the hy-
bridization is a notion of combining the best of two worlds:
evolutionary black box optimization and local search. Suc-
cessful hybridizations in large combinatorial solution spaces
motivate to transfer the idea of combining the two worlds
to continuous domains as well. The question arises: Can lo-
cal search also improve the convergence to the Pareto front
in continuous multiobjective solutions spaces? We intro-
duce a relay and a concurrent hybridization of the successful
multiobjective optimizer SMS-EMOA and local optimiza-
tion methods like Hooke & Jeeves and the Newton method.
The concurrent approach is based on a parameterized pro-
bability function to control the local search. Experimental
analyses on academic test functions show increased conver-
gence speed as well as improved accuracy of the solution set
of the new hybridizations.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization; G.4 [Math.
Software]: Algorithm design and analysis

General Terms
Algorithms

Keywords
Hybrid Evolutionary Multiobjective Algorithm, Local Search,
Memetic Algorithms, Hybrid Metaheuristics
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1. INTRODUCTION
The optimization of multiple conflictive objectives is a

hard problem. Effective stochastic optimization methods
have been developed to solve multiobjective problems. In
particular the S-Metric Selection Evolutionary Multiobjec-
tive Algorithm, in short SMS-EMOA [1] – turned out to
be one of the most successful evolutionary multiobjective
optimizers. In the last years a new and successful trend
appeared: hybridizing evolutionary algorithms with local
search. When usual stochastic operators cannot contribute
to an improvement, e.g. because of low success rates, more
specialized local search methods may accelerate the search.
Up to now a notable success can be observed in large com-
binatorial search spaces, e.g. [10, 12, 13, 11, 5, 14]. In
general, a hybrid metaheuristic is a metaheuristic combined
with a search technique that is often a classical optimizer,
e.g. gradient descent or the Newton method. The question
arises: Can the hybridization with local search improve the
optimization process in continuous multiobjective solution
spaces? Or more precisely: Can local search techniques like
Steepest Descent, Hooke & Jeeves or Newton speed up the
search in combination with the well-known and successful
SMS-EMOA? To answer this question, we integrated local
search into the SMS-EMOA and performed a detailed ex-
perimental analysis.

The invoked methods and related research on hybrid mul-
tiobjective optimization are introduced in the next section.
Section 3 presents the proposed relay hybrid of SMS-EMOA
and local search and Section 4 the concurrent hybrid. The
experimental studies are integrated in the sections respec-
tively. We conclude with a summary and topics of future
research in Section 5.

2. MULTIOBJECTIVE HYBRIDIZATION
In the following, we introduce the foundations of hybrid

metaheuristics for multiobjective optimization techniques,
in particular the invoked methods of our work.

2.1 Optimization with SMS-EMOA
A multiobjective optimization problem consists of m ob-

jective functions f1(x), f2(x), ..., fm(x), with fi(x) : R
n →

R, ∀i ∈ 1, ..., m to be minimized.
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The SMS-EMOA [1] belongs to the indicator-based EMOAs
that optimize a set of solutions according to a certain scalar
quality measure—the S-metric in this case. The S-metric
or hypervolume indicator measures the size of the space
dominated by the population. It is integrated into the se-
lection operator of SMS-EMOA which aims for maximiza-
tion of the S-metric and thereby guides the population to-
wards the Pareto front. A (µ+1) (or steady-state) selection
scheme is applied: In each generation discarding the indi-
vidual that contributes least to the S-metric value of the
population. The invoked variation operators are not specific
for the SMS-EMOA but taken from literature, namely poly-
nomial mutation and simulated binary crossover with the
same parametrization as for NSGA-II [4].

2.2 Local Search in Continuous Solution Spaces
Local search techniques are classic hill-climbing methods.

They start at a certain point in the search space and move
iteratively in a descent direction until they reach a local
optimum of the function. For a comprehensive introduction
to local search techniques we refer the interested reader to
Schwefel [18] and Box et al. [2]. Basically, local search
methods for numerical optimization can be partitioned into
the following three classes:

• Derivative-free methods, e.g. Direct Search methods

• First-order methods, e.g. Steepest Descent

• Second-order methods, e.g. Newton’s method

Usually, local search methods are not designed to solve mul-
tiobjective problems. Direct Search methods for instance
compare objective function values to find a local minimum.
But in the multiobjective case the optimizer must cope with
an m-dimensional objective vector instead of a scalar value.
Hence, it is no easy undertaking to use a single-objective
local search method in multiobjective solution spaces. A
possible answer to this problem is the scalarization of the ob-
jective function by minimizing the distance to an “utopian”
point as described by Steuer1 [21]. Another technique is to
use the multiobjective Steepest Descent method by Fliege
and Svaiter [8] or the Newton method by Fliege et al. [7].
These methods use first or second order derivatives of the
objective function to find a descent direction of the function.
Sections 2.2.1, 2.2.2 and 2.2.3 provide concrete instances of
the three local search classes for the multiobjective case.

2.2.1 Hooke & Jeeves
The method of Hooke & Jeeves [9] belongs to the class of

Direct Search methods. In particular, no additional deriva-
tive information is necessary. The fundamental advantage of
Hooke & Jeeves is its ability to approximate the actual gra-
dient direction. In each iteration an exploratory move along
the coordinate axes is performed. Afterwards, the vectors of
the last exploratory moves are combined to a projected di-
rection that can accelerate the descent of the search vector.
When the exploratory moves lead to no improvement in any
coordinate direction, step sizes are reduced by a factor η –
we will set η = 0.5. The search terminates after a number of
predefined function evaluations or, alternatively, when the
step size falls below a constant value ε > 0.

1The “utopian” point is a solution that strictly dominates
all solutions.

The application of Hooke & Jeeves to multiobjective solu-
tion spaces is not possible without modifications. The algo-
rithm makes use of comparisons of scalar function values, so
that the quality measures of a multiobjective solution must
be mapped to a scalar value first. This can be done by us-
ing the weighted Tchebycheff method as proposed by Steuer
[21]. The algorithm minimizes the weighted Tchebycheff dis-
tance from the current position to an ”utopian”point. Here,
we deploy the weighted sum approach developed in [3].

2.2.2 Steepest Descent
Fliege and Svaiter [8] generalize the method of Steep-

est Descent for multiobjective optimization. The algorithm
computes the Jacobian Jf = (∇f1, . . . ,∇fm) of the objec-
tive function and tests if the current search vector ~xk ∈ R

n

is locally Pareto-optimal. If the vector is locally Pareto-
optimal, that is when no descent direction is available in the
surrounding area, the algorithm stops. Otherwise, the algo-
rithm computes a search direction ~v by using the gradient
information from the Jacobian at point ~xk as described by
Fliege and Svaiter [8]:

min
v

(

max
i=1,..,m

(∇fi(~xk)T~v) +
1

2
||~v||2

)

. (1)

Fliege and Svaiter show that the algorithm converges to
a Pareto-optimal point without the need of a scalarization
of the objective function. For details of the multiobjective
Steepest Descent algorithm we refer to [8].

2.2.3 Multiobjective Newton Method
The multiobjective Newton method by Fliege et al. [7]

is an extension of Newton’s method for the single-objective
case. The technique makes use of the gradients and Hessian
matrices of all objectives to converge faster to an optimal
solution. With the additional information of Hessians the
search direction ~v can better be estimated by solving the
following auxiliary problem as described by Fliege et al. [7]:

min
v

(

max
j=1,..,m

(∇fj(~xk)T~v) +
1

2
~vT∇2fj(~xk)~v

)

. (2)

The convergence rate of the algorithm is quadratic if the
second derivatives are Lipschitz continuous. Since the mul-
tiobjective Newton method converges one order faster than
multiobjective Steepest Descent it is potentially an excellent
local search method for hybridization.

2.3 Types of Hybridization
The most important design decision for hybrid techniques

concerns the way of information interchange between its
components. In which order shall the components work to-
gether, which information is shared, and when? Can general
hybridization rules be derived from theory or experiments?
Talbi [23] and Raidl [16] tried to answer these questions and
introduced taxonomies of hybridization techniques. They
introduced the terms relay or sequential, and coevolutionary
or interleaved hybrids. A relay hybrid is a simple succes-
sive execution of two or more algorithmic components. A
stochastic method might pre-optimize coarsely while the lo-
cal search performs fine-tuning and approximation of local
optima. The coevolutionary hybrid is a nested approach.
Typically, a local search method is embedded into an evo-
lutionary optimizer: In each iteration the local search opti-
mizes the offspring solutions until a predefined termination
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condition is fulfilled. Information is passed alternately be-
tween the components in the concurrent approach.

2.4 Related Work
The first work on hybridization with the SMS-EMOA stems

from Emmerich et al. [6] who proposed a relay hybrid ver-
sion of the SMS-EMOA. The main idea of the hybrid is to
guide the local search by calculating the gradient of the S-
Metric. Emmerich et al. report a linear convergence to the
optimum. Deb and Goel [3] employed scalar local search on
a weighted sum surrogate function. Other proposals of hy-
brid multiobjective evolutionary algorithms are concurrent
or memetic approaches. E.g. Sindhya et al. [20] have exam-
ined a hybrid version of the NSGA-II [4] with an integrated
gradient descent method as local optimizer. They use an
augmented scalarization function to map the multiobjective
solution to a single scalar value. Schuetze et al. [17] present
a hillclimber with sidestep in an iterative local search procd-
edure that can be integrated in an arbitrary multiobjective
optimizer. Mart́ınez and Coello Coello [15] propose to hy-
bridize the NSGA-II with classical Direct Search techniques.
Shukla [19] has also hybridized the NSGA-II with two gra-
dient methods using a perturbation technique as mutation
operator.

3. RELAY SMS-EMOA HYBRID
First, we concentrate on relay hybridization of the SMS-

EMOA and the Steepest Descent method. After the descrip-
tion of the algorithmic concept, an experimental analysis on
typical multiobjective test functions follows.

3.1 Algorithmic Description
Our first relay hybrid is based on the SMS-EMOA and the

Hooke & Jeeves method. The relay hybridization requires
the definition of an adequate termination criterion for the
first optimizer. In literature following stopping criteria are
proposed for hybrid algorithms:

1. Stop after k function evaluations.

2. Stop, when quality Q is reached.

3. Stop, when improvement over k iterations is smaller
than ε > 0.

Termination criterion 2 is not applicable if the function is
unknown. It is also difficult to choose adequate parameter
settings for termination criterion 3 as stagnation may occur
during the optimization process. Therefore we resort to the
first criterion in this study. In the experimental analysis,
see next paragraph 3.2, we analyze the point in time for a
strategy switch systematically. After the strategy switch the
local search is started. The hybrid method terminates when
the local search terminates.

3.2 Experimental Analysis
We perform a systematic analysis of when to switch to

local search. Therefore we investigate the influence of the
ratio ϕ between function calls of the SMS-EMOA and local
search. A value ϕ = 0.0 means that 0 percent of the maximal
function calls are spent with SMS-EMOA. Figure 1 shows
the results of the SMS-EMOA-Steepest Descent-relay hybrid
in ten runs of:

1. pure optimization with Steepest Descent (ϕ = 0.0),
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Figure 1: Function evaluations on ZDT1. The bars
show different rates ϕ of total function evaluations
between SMS-EMOA and Steepest Descent.

2. 25% of 20, 000 fitness function evaluations spent for
SMS-EMOA and 75% spent for Steepest Descent2 (ϕ =
0.25),

3. 50% of 20, 000 fitness evaluations for both SMS-EMOA
and Steepest Descent (ϕ = 0.5),

4. as well as 75% of 20, 000 evaluations for SMS-EMOA
and 25% for Steepest Descent (ϕ = 0.75),

5. and 100% for SMS-EMOA respectively (ϕ = 1.0).

As quality measure, we make use of the NDHV-measure
(normalized-difference in hypervolume that has to be mini-
mized) like Sindhya et al. [20]:

NDHV = (HV∗ − HV)/HV∗.

The value HV∗ is the optimal hypervolume value for the
problem, regarding to a fixed reference point R. In fact
the optimal hypervolume value is usually not available for
non-academic test functions, but can be computed in case
of academic problems as the ZDT functions by Zitzler et
al. [24], so that NDHV remains a proper quality measure.
The value HV then indicates the achieved hypervolume value
regarding to R.

Steepest Descent Hooke & Jeeves
ϕ Median Std.Dev. Median Std.Dev.
0.0 0.258 0.03357 0.0969 0.03441
0.25 2.01 · 10−3 0.00918 1.32 · 10−4 5.3 · 10−4

0.5 9.56 · 10−5 4.30 · 10−5 4.87 · 10−5 2.01 · 10−6

0.75 6.54 · 10−5 1.00 · 10−5 4.23 · 10−5 2.71 · 10−7

1.0 5.26 · 10−5 5.99 · 10−6 5.26 · 10−5 5.99 · 10−6

Table 1: NDHV values for the relay hybrid SMS-
EMOA with Steepest Descent (left) and Hooke &
Jeeves (right) on problem ZDT1. Lower values are
better.

It seems as if Steepest Descent without SMS-EMOA saves
a huge number of fitness evaluations until termination. But
a comparison to the achieved fitness after termination, see
left part of table 1, shows that the achieved fitness for ϕ =

2but may terminate earlier
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Figure 2: Runtime of the relay hybrid SMS-EMOA
with Hooke & Jeeves in seconds for different ϕ set-
tings. Note that for ϕ no bars are visible, because
the runtime is very close to zero.

0.0 is not satisfying. Only the settings ϕ = 0.5, 0.75 and 1.0
deliver a competitive approximation. Nevertheless, about
one third of the fitness evaluations can be saved for ϕ ≈ 0.5
in comparison to the concurrent hybrid and the stand-alone
SMS-EMOA.

Furthermore, we analyzed the relay hybrid of the SMS-
EMOA with Hooke & Jeeves. Although no considerable
improvement in terms of fitness function evaluations or ac-
curacy could have been achieved, we achieved a performance
gain – Hooke & Jeeves evaluations are faster than S-Metric
evaluations. In each iteration of the SMS-EMOA the hy-
pervolume measure has to be recalculated. Figure 2 shows
the runtime of the SMS-EMOA in comparison to the relay
hybrid.3 The corresponding quality results are shown as
NDHV values in table 1 on the right. As already observed
for the relay hybrid SMS-EMOA with Steepest Descent, the
results are only competitive to a ϕ value of greater than 0.25.
However, the speedup of the hybridization can turn out to
be an improvement in comparison with the standard SMS-
EMOA approach for time-critical applications. The method
of Hooke & Jeeves does not perform time consuming com-
putations, so that the overall speedup turns out to be larger,
as soon as more function evaluations are spent.

4. CONCURRENT SMS-EMOA HYBRID
Not much effort has been spent on concurrent approaches

with the SMS-EMOA in the past. Hence, we decided to con-
centrate our efforts on this hybridization type. In concurrent
approaches, local search is embedded into the evolutionary
optimizer.

4.1 Algorithmic Description
Our concurrent hybrid makes use of the multiobjective

Newton method by Fliege et al. [7] as local search ap-
proach. Newton does not need a scalarization of the ob-
jective functions or any other mapping, but first and second
order derivatives to compute a descent direction. The New-
ton method can converge in superlinear time to a Pareto-

3The test was performed on a 1.66GHz Intel Core 2 Duo
machine with 4GB of memory on Windows Vista.

optimum – a great advantage in contrast to other methods
like Direct Search and Steepest Descent. Algorithm 1 shows
the pseudocode of our concurrent hybridization. A key con-
cept of our approach is the introduction of a probability
function pls(t) for extending the idea presented in Sindhya
et al. [20] who linearly oscillate the probability for start-
ing local search. We propose a parameterized probability
function

pls(t) =
pmax · Φ(t mod (αµ))

Φ(αµ − 1)
(3)

where parameter µ is the population size of the EMOA and
α ∈ (0, 1] is a small constant value − in our experiments
later usually chosen as α = 0.05. The probability function
oscillates with period α · µ and is linear decreasing in each
period. The auxiliary function Φ determines the type of
reduction, i.e. linear, quadratic or logarithmic, and has to
be defined by the user.

Algorithm 1 Concurrent hybrid EMOA

1: t:=0
2: Create random population Pt

3: Evaluate population Pt

4: repeat
5: Select µ parents out of Pt

6: Create population Qt with λ offspring
7: for (i := 1 to λ) do
8: Choose random variable r ∈ [0, 1].
9: if (r ≤ pls(t)) then local search for Qt[i]

10: end if
11: end for
12: Evaluate λ offspring
13: Create Population Pt+1 out of Pt and Qt

14: t := t+1
15: until Stop

4.2 Experimental Analysis
The concurrent hybrid SMS-EMOA has been tested em-

pirically. To make this study comparable with other works
in the field, we have concentrated on keeping the setup sim-
ilar to the work of Sindhya et al. [20]. One goal of the study
is to emphasize the importance of the used probability func-
tion pls that controls the frequency of local search during
the optimization process. We tested three different func-
tions using equation 3 and a constant probability pls. The
hybrid variants using equation 3 obtain a value of α = 0.5
as proposed by Sindhya et al. [20].

1. pls(t) with Φ(x) = x (eq. 3 )

2. pls(t) with Φ(x) = x2 (eq. 3)

3. pls(t) with Φ(x) = log(x) (eq. 3)

4. pls(t) = 0.01

Each hybridization with the above probability functions has
been run 10 times with fixed random seeds on the ZDT
test cases. In each run the hybrid SMS-EMOA is started
with a population size of N = 100, the SBX recombination
operator by Sindhya et al. [20] with probability 1.0, and the
polynomial mutation operator with probability 1.0. Note,
that this setup does not necessarily represent the best choice
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of parameters for the chosen test functions, but nevertheless
allows insights into the hybridization strategies.

Figure 3 shows the development of the Pareto front ap-
proximation of the concurrent hybrid SMS-EMOA on the
ZDT test cases by Zitzler et al. [24]. Again, our analy-
sis is based on the NDHV-measure introduced in paragraph
3.2. Note, that all figures of the fitness development are
presented on a logarithmic scale.

4.2.1 ZDT1
The table 2 shows the results of the hybrid SMS-EMOA

and the hybrid NSGA-II taken from Sindhya et al. [20].
ZDT1 is a convex multiobjective optimization problem. The
experimental results are shown in figure 3. The SMS-EMOA
hybrids are faster than the stand-alone SMS-EMOA. Sur-
prisingly, the hybrid with a constant probability function
pls shows one of the best approximation abilities. In com-
parison to NSGA-II and its hybrid variant by Sindhya et al.
[20] in table 2 the SMS-EMOA variants turn out to be much
faster.

ZDT1 Min. Median Max.
H-SMS-EMOA (const.) 0.0001 0.0001 0.0002
H-SMS-EMOA (linear) 0.0001 0.0001 0.0001
H-SMS-EMOA (quadr.) 0.0001 0.0001 0.0001
SMS-EMOA 0.0002 0.0001 0.0072
H-NSGA-II 0.0034 0.0042 0.1630
NSGA-II 0.0043 0.0047 0.0054

Table 2: Comparison of NDHV-Values between hy-
brid SMS-EMOA and hybrid NSGA-II on ZDT1.

4.2.2 ZDT2
On the non-convex problem ZDT2 the experimental re-

sults are even clearer than the results on ZDT1, see figure
3. We observe a clear superiority of the hybrid variants in
comparison the stand-alone SMS-EMOA. Again, the con-
stant variant belongs to the best hybridization techniques.
Table 3 reveals a clear superiority of the SMS-EMOA hy-
brids in comparison to the results of NSGA II and its hybrid
variants.

ZDT2 Min. Median Max.
H-SMS-EMOA (const.) 0.0001 0.0001 0.0002
H-SMS-EMOA (linear) 0.0001 0.0001 0.0001
H-SMS-EMOA (quadr.) 0.0001 0.0001 0.0002
SMS-EMOA 0.0005 0.0008 0.0940
H-NSGA-II 0.0037 0.0070 0.0499
NSGA-II 0.0044 0.0053 0.0064

Table 3: Comparison of NDHV-Values between hy-
brid SMS-EMOA and hybrid NSGA-II on ZDT2.

4.2.3 ZDT3
The fractional Pareto front of ZDT3 is a hard problem for

the Newton method. Newton converges into local optima
and terminates very fast. Consequently, the exploration be-
havior is quite poor, but an excellent exploration behavior is
necessary for the detection of the various Pareto front frac-
tions. Thus, the hybridizations are not clearly superior, see
figure 3. Even worse, the variant with logarithmic probabil-
ity function fails in comparison to the other variants. The

logarithmic variant exhibits the highest probability function
density and thus the highest probability for local search.
Nevertheless, in comparison to NSGA-II the SMS-EMOA
hybrids are still superior, see table 4.

ZDT3 Min. Median Max.
H-SMS-EMOA (const.) 0.0001 0.0271 0.0271
H-SMS-EMOA (linear) 0.0001 0.0001 0.0001
H-SMS-EMOA (quadr.) 0.0001 0.0001 0.0271
SMS-EMOA 0.0001 0.0002 0.0940
H-NSGA-II 0.0007 0.0009 0.0010
NSGA-II 0.0012 0.0016 0.0023

Table 4: Development of NDHV metrics of the SMS-
EAMO and NSGA-II hybrids on problem ZDT3.

4.2.4 ZDT4
ZDT4 is a multiobjective problem with multiple local op-

tima. As stated in the previous paragraph, Newton gets
stuck in local optima very fast, thus the exploration abili-
ties are quite poor in multimodal solution space. The ex-
perimental results, see figure 3, confirm this assumption. All
variants show an equivalent behavior. At least, no deterio-
ration can be observed. In comparison to NSGA-II and its
hybrid variants – see table 5 – no consistent picture can be
drawn. NSGA-II achieves the best median and maximum
fitness, while the H-SMS-EMOA achieves the best fitness at
all. We conclude, that Newton’s local search is not useful in
multimodal fitness landscapes. We left out the experimen-
tal analysis on ZDT5 as it is no continuous multiobjective
optimization problem.

ZDT4 Min. Median Max.
H-SMS-EMOA (const.) 0.0001 0.0271 0.0271
H-SMS-EMOA (linear) 0.0202 0.0327 0.0424
H-SMS-EMOA (quadr.) 0.0142 0.0288 0.0345
SMS-EMOA 0.0224 0.0150 0.0472
H-NSGA-II 0.0037 0.0106 0.2230
NSGA-II 0.0042 0.0047 0.0055

Table 5: Comparison of NDHV-Values between hy-
brid SMS-EMOA and hybrid NSGA-II on ZDT4.

4.2.5 ZDT6
A clear superiority of SMS-EMOA hybridizations can be

observed on the non-convex problem ZDT6, see figure 3 and
table 6. Although the approximation behavior of the hybrids
resembles the SMS-EMOA’s optimization process in the first
3,000 generations, the search of the hybrids accelerates and
outperforms the SMS-EMOA clearly. Again, the constant
hybrid belongs to the best optimization methods. Further
results for the constant probability function are shown in
figure 3. The plot shows the outcome of a single run of
the concurrent hybrid SMS-EMOA with constant probabil-
ities pls = {0.001, 0.01, 0.1}. It can be observed that a high
local search probability (pls = 0.1) can have a negative ef-
fect on the development of the Pareto front approximation.
A too high probability for local search prevents the proper
exploitation of the solution space at the beginning of the
search and leads to a slower approximation in comparison to
pls = 0.01. A same behavior can be observed for pls = 0.001,

607



 0.0001

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
D

H
V

 m
e

tr
ic

function evaluations

SMS-EMOA
hybrid (constant)
hybrid (linear)
hybrid (log)
hybrid (quadratic)

ZDT 1

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
D

H
V

 m
e

tr
ic

function evaluations

SMS-EMOA
hybrid (constant)
hybrid (linear)
hybrid (log)
hybrid (quadratic)

ZDT 2

 0.0001

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
D

H
V

 m
e
tr

ic

function evaluations

SMS-EMOA
hybrid (constant)
hybrid (linear)
hybrid (log)
hybrid (quadratic)

ZDT 3

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
D

H
V

 m
e

tr
ic

function evaluations

SMS-EMOA
hybrid (constant)
hybrid (linear)
hybrid (log)
hybrid (quadratic)

ZDT 4

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
D

H
V

 m
e

tr
ic

function evaluations

SMS-EMOA
hybrid (constant)
hybrid (linear)
hybrid (log)
hybrid (quadratic)

ZDT 6

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  2000  4000  6000  8000  10000

N
D

H
V

 m
e

tr
ic

function evaluations

SMS-EMO A

p  =0.01
p  =0.1

p  =0.001
ls

ls

ls

ZDT 6

Figure 3: Development of NDHV metric values of SMS-EMOA and the concurrent hybrid on ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6 (from left to right and top to bottom). The bottom right figure shows the results
on ZDT6 for concurrent hybrids with constant probability of applying local search.
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where the development of the hybrid resembles the stand-
alone SMS-EMOA for a long time. But all three local search
variants show phases of significant speedup and very fast
convergence to the optimum. As no results are available for
NSGA-II a comparison is not possible.

ZDT6 Min. Median Max.

H-SMS-EMOA (const.) 3.1 · 10−5 3.2 · 10−5 3.4 · 10−5

H-SMS-EMOA (linear) 3.1 · 10−5 3.8 · 10−5 3.9 · 10−5

SMS-EMOA 8.0 · 10−3 1.2 · 10−2 1.5 · 10−2

Table 6: A comparison of NDHV-Values on problem
ZDT6.

5. CONCLUSIONS
What can we conclude from the experimental results? In

general, hybridization seems to make sense as a speedup can
be achieved on many problems, in particular on the non-
convex ones. With one exception the hybrids were at least
as good as the stand-alone optimization methods. Neverthe-
less, the question for proper hybridizations and parameter
settings, e.g. adequate settings for the balance parameter ϕ,
is not easy to answer. For concurrent hybridizations Sudholt
[22] has shown that wrong parameterizations can deteriorate
the approximation capabilities and that finding a good pa-
rameterization can be as difficult as solving the problem.

The introduction of an oscillating probability for starting
local search is an intuitive idea: Alternating emphasis on
local search and on non-local stochastic search may prevent
the optimizer from getting stuck into local optima. But
surprisingly, a constant probability for local search shows
the most stable approximation capabilities. And the more
local optima the solution space exhibits, the worse are the
hybridization results: Newton’s method gets stuck in local
optima and terminates.

The analysis at hand is a first step into the concurrent
hybridization of the SMS-EMOA with local search. In the
future we will investigate hybridizations with other local
search techniques and extend the analysis on further multi-
objective problems, also from practice.
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