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� Introduction

The main objective of this work is to make e�ort to establish the connections between

evolutionary algorithms �EA� and recursive algorithms of stochastic approximation type�

One of our hopes is that with the help of the existing results in stochastic approximation

and the bridge between evolutionary algorithms and stochastic approximation procedures�

we will eventually be able to treat many interesting theoretical questions on asymptotic

properties of evolutionary computation�

Evolutionary algorithms represent a class of stochastic optimization algorithms in which

organic evolution is regarded as a set of rules for optimization� These algorithms have

been applied to many problems in parameter optimization and related �elds with great

success� With simpli�cation of biological reality� based on the collective learning process

within a population of individuals� each of which is a search point of potential solutions for a

given problem� the evolutionary algorithms carry out the designed computational task using

randomized process of selection� mutation and recombination� The study of the evolutionary

algorithms has witnessed rapid progress for nearly thirty years� For some of the important

contributions� we mention the work of Rechenberg �	�
� Schwefel �	�
� �	�
� �	
� Holland

���
� De Jong ��
� Fogel ��
� Fogel ��
 among others� For an extensive review of the recent

advances� the readers are referred to B�ack and Schwefel ��
� B�ack� Rudolph and Schwefel �	
�

�	�
 and the references therein�

The method of stochastic approximation was initiated in the early ���s to �nd the root of

a function f��� and�or to locate the maxima or minima of f���� provided only noisy measure�

ments or observations are available� Owing to its wide range of applicability� such algorithms

have been studied extensively for years� We now have good understanding on the asymp�

totic behavior of the algorithms �see ���
� ���
� ���
� ��	
 and ��
 and the references therein��

Early development via martingale approach is contained in Nevelson and Khasminskii ���
�

the celebrated ODE �ordinary di�erential equation methods� are discussed in Ljung ���


and Kushner and Clark ���
� the method of weak convergence is due to Kushner and his

associates and documented in ��	
� a most recent book on stochastic approximation is the

one by Benveniste� M�etivier and Priouret ��
� It provides a comprehensive overview on the

recent development of the subject and interesting applications in control and adaptive signal

processing�

Both evolutionary algorithms �EA� and stochastic approximation are aiming at the

objective�stochastic optimization� Nevertheless� surprisingly enough� until now� there has

not been any attempt to connect these closely related �elds� to the best of our knowledge�

Taking this into account� our main e�ort in this paper is to apply some of the techniques in

	



stochastic approximation to analyze the asymptotic properties of some recursive algorithms

that have potential applications in evolutionary computation� We will make e�ort to estab�

lish the connection of these methods� We believe that the ideas to be presented below will

be of interest to the EA community as well as to people working in the systems theory and

related �elds� By and large� the current work is served as a survey on convergence and rate

of convergence issues�

The rest of the paper is arranged as follows� The precise formulation of the problem to�

gether with examples from evolutionary computation are given next� Both constant step size

algorithms and decreasing step size schemes are given� Although not all the mathematical

details are provided� appropriate references are given� Section � presents the convergence

results and Section � focuses on the rate of convergence issues� In these sections� we will

also state some of the mathematical background� Finally we close this paper with some

concluding remarks in Section ��

� Problem formulation

We present the problem formulation in a rather general form so as to accommodate many

potential applications in evolutionary computation�

Let x� � � IRr� G��� �� � IRr�r �� IRr� where G�x� �� denotes the noisy gradient estimate

of a real�valued function f�x�� Our e�ort is to develop recursive algorithms to carry out the

optimization task� Suppose the initial estimate x� is selected� We then generate a sequence

of estimates fxng by means of the following recursion�

xn�� � xn � anG�xn� �n�� ���

or

xn�� � xn � aG�xn� �n�� �	�

where an and a are known as step size or gain sequences� In ���� we assume that

an � �� an
n��� and

�X
n��

an ���

whereas in �	�� a is a constant step size� In the asymptotic analysis� however� we assume that

a � �� To see the connection of the above algorithms with the evolutionary computation�

we consider the following example�

Example 	��� Suppose that we are employing a ��� �� strategy to solve an optimization

problem� Select random vectors z�i�n � � � i � �� We then use the current estimate xn to

evaluate f�xn � z�i�n �� for � � i � �� After the evaluation� compare the corresponding values
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and select the vector xn � z�j�n such that f�xn � z�j�n � � minf�xn � z�i�n �� for � � i � �� In

short�

xn�� � argminff�xn � z���n �� � � � � f�xn � z���n �g� ���

Clearly� the algorithm can be thought of as a recursive procedure�

Comparing ��� with that of ��� or �	�� a �rst glance may lead to the conclusion that they

do not have much in common� At least ��� does not involve step sizes� However� a closer

examination reveals that there is a hidden step size in the algorithm� Suppose that fz�i�n g is

a sequence of independent and normally distributed random variables such that the mean of

z�i�n is zero and the covariance matrix is ��nI� where �
�
n � � ���n can be either varying with n

or equal to a constant ��� We note that ��n here is simply the scale factor of the distribution�

Then we can rewrite z�i�n as z�i�n � �n�z�i�n � Now �z�i�n has a normal distribution with mean �

and covariance I� the identity matrix� Thus ��� can further be written as�

xn�� � xn � �n
�X
i��

�z�i�n I
ff�xn�z

�i�
n ��minu��n f�u�g

�

where �n � fxn � z�i�n � i � �� � � � � �g� and IA denotes the indicator function of the set A� In

evolution strategy� one often chooses �n that is proportional to � �
r
H�rf�xn��� where r is the

dimension of the problem andH��� � IRr �� IR is an appropriate real�valued function such that

H��� � � and the only root of H��� is �� For example� one may choose H�rf�x�� � jrf�x�j�
With either a or an denoting the proportional constant �multiplied by ��r�� the recursive

formula can be written as

xn�� � xn � aH�rf�xn��
�X
i��

z�i�n I
ff�xn�z

�i�
n ��minu��n f�u�g

�

or

xn�� � xn � anH�rf�xn��
�X
i��

z�i�n I
ff�xn�z

�i�
n ��minu��n f�u�g

�

In the next section� we argue that for �xed x� the average of the random part in the iteration

is not equal to zero� Algorithm ��� now becomes a constant step size or a decreasing step

size recursive algorithm of stochastic approximation type� The constant a or an is the step

size of the corresponding stochastic approximation algorithm�

To proceed� a word about the notation is in order� In the sequel� K denotes a generic

positive constant� Its value may be di�erent for di�erent appearances� Thus� K �K � K�

KK � K are understood in an appropriate sense� z� denotes the transpose of z and fx

denotes the �rst partial derivatives of the function with respect to x� Similar notation is

used for the second order derivatives�

�



� Convergence of the algorithms

In this section� we study the convergence of the algorithms ��� and �	�� We include the with

probability one convergence and that of weak convergence in two subsections� In the third

subsection� we discuss related problems in EA computation�

��� W�p�� convergence

In general� dealing with discrete iterations is very hard and requires much more restrictive

conditions� In the late ��s� an approach known as ODE �ordinary di�erential equation�

methods was invented by Ljung ���
 and further developed by Kushner and his colleagues

���
� The essence is that in lieu of examining the discrete iterations directly� one takes the

continuous time interpolation of the estimate� Then combining the theory of analysis and

probability� one shows that a suitably scaled sequence of functions is uniformly bounded and

equicontinuous� Thus one may extract convergent subsequence in accordance with the Ascoli�

Arzela�s lemma� and identify the limit of the sequence as a solution of an ordinary di�erential

equation� To give some heuristic argument� consider a special case� G�x� �� � rf�x� � ��

the additive noise setting� For large n� we expect the noise term to be averaged out owing

to the law of large numbers type of conditions� Thus�

xn�k 	 xk �
n�k��X
i�k

airf�xk��

or equivalently�
xn�k � xkPn�k��

i�k ai
	 rf�xk��

which leads to the connection to the ODE �x � �rf�x��
To proceed� we work with the decreasing step size algorithm� and de�ne tn �

Pn��
i�� ai

and m�t� � maxfn� tn � tg� De�ne the piecewise linear �denoted by x��t�� and piecewise

constant �denoted by  x�t�� interpolations of the iterates as�

x��tn� � xn�

x��t� �
tn�� � t

an
xn �

t� tn
an

xn�� in �tn� tn����

 x�t� � xn for t � �tn� tn����

���

We also de�ne a shifted sequence xn��� by xn�t� � x��t� tn��

Now� we are in a position to give a set of conditions that yields the w�p�� convergence of

the algorithms�
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�A�����
P

n a
�
n 	��

P
n an ��� fan���ang is bounded� G�x� �n� � G��x� 
n� �G��x��n

such that G��x� �� is bounded on bounded x�set and is continuous� G���� is a continuous and

bounded function� f
ng is a sequence of uniformly bounded random variables and f�ng is a

sequence of independent random variables with � mean and �nite second moment�

�A���	� There is a twice continuously di�erentiable Liapunov function � � V �x� such

that Vxx��� is bounded� V �x� �� as jxj � �� Let En denote the conditional expectation

on the ��algebra Fn generated by fx�� �i� i � ng� W�p��������
�X
i�n

aiV
�
x�x�En�G�x� �i��rf�x��

����� � Kan�� � jV �
x�x�rf�x�j�������

�X
i�n

ai�V
�
x�x�En�G��x� 
i��rf�x�
x

����� � Kan�� � jV �
x�x�rf�x�j�����

The bounds above also hold with V ��� replaced by a twice continuously di�erentiable function

with a compact support� For some � � �� some �� � � and compact set Q� � fx� V �x� �
��g� V �

x�x�rf�x� � � for all x 
� Q��

�A����� EnjG�x� �n�j� � K�� � jV �
x�x�rf�x�j� � K�� � V �x��� For � � s � �� EnjV �

x�x�

sanG�x� �n��rf�x� sanG�x� �n��j � K�� � jV ��x�rf�x�j��
Theorem ���� Suppose the conditions �A�������A����� are satis�ed� Then fxng is bounded
w�p��� If �V �

x�x�rf�x� � � for all x	 then xn � fx�V �
x�x�rf�x� � �g w�p��� In general fxng

converges to the largest bounded invariant set of

�x � �rf�x�� x��� � x�� ���

If x� is an asymptotically stable solution of �
� with domain of attraction DA�x�� and if

x � A � DA�x�� in�nitely often	 where A is a compact set	 then xn
n��x� w�p���

The proof of this theorem uses the idea of perturbed Liapunov function methods �see

��	
�� The argument is analogues to ���
� Rather than going through all the technical details�

we consider a simpler problem�the approximation scheme with additive structure�

����� Discussion on a simpler problem�

Consider the following simpli�ed problem�

xn�� � xn � an�rf�xn� � �n��

De�ne the interpolations as before� and de�ne also

B��tn� �
n��X
i��

ai�i

B��t� �
tn�� � t

an
B��tn� �

t� tn
an

B��tn��� in �tn� tn����

�



Assume that�

� rf��� is a continuous function�

� lim
n
P

�
sup
m�n

�����
mX
i�n

ai�i

�����  

�
� � for each  � � or simply

Pn
i�� ai�i converges w�p���

� fxng is bounded w�p���

� There is a twice continuously di�erentiable Liapunov function V ��� such that

V �
x�x�rf�x� � � for all x 
� S � fx� rf�x� � �g�

Then xn � S w�p��� i�e�� limn ��xn� S� � � w�p��� where � denotes the usual distance function�

In particular� if S � fx�g a singleton set� then xn
n��x� w�p���

The proof of the assertion goes as follows� By means of the boundedness of fxng� it can
be veri�ed that the sequence fxn���g is uniformly bounded and equicontinuous� By virtue

of Ascoli�Arzela�s lemma� we can extract convergent subsequences� Select such a sequence

but still denote the index by n� Using the recursive formulae� it is not di!cult to see that

xn � xn����
Z t

�
rf�xn�s��ds�Bn�t� � en�t��

where en�t�
n��� uniformly on �nite time intervals� In addition� by virtue of the averaging

condition on the noise sequence� Bn�t� also goes to �� As n��� the limit of the equation

above gives us

x � x����
Z t

�
rf�x�s��ds�

which is the desired equation� Finally the assertion follows from the LaSalle�s invariance

principal and some detailed probabilistic argument �see e�g�� ���
 Chapter 	��

Remark� The boundedness of fxng above can be obtained via the use of perturbed Liapunov

function methods� We assumed it for simplicity� The average condition of the noise or

the summability of
P

i ai�i is a rather general condition� It is veri�ed by a large class of

random processes� For example� i�i�d� noise� martingale di�erence sequences� some ARMA

models� mixing processes etc� can be shown to possess such properties �see Kushner and

Clark ���
� Yin ��	
 and the references therein�� The conditions used here �even in the setting

of Theorem ���� are not the most general one� Weaker conditions are possible� For ease of

discussion� we selected the simple forms�

The signi�cance of the limiting ODE ��� is that the stationary points of it corresponds

to the stationary points we are searching for� The ODE method gives us an analytic way to

convert the problem into one that can be relatively easily handled�





��� Weak convergence

First we recall the de�nition of weak convergence� A sequence of random variables fwng is

said to converge to w weakly� if for any bounded and continuous function g���� Eg�wn� �
Eg�w� as n � �� Weak convergence is a substantial generalization of the concept of

convergence in distribution� It can be used not only for random variables living in a Euclidean

space� but also for random processes taking values in function spaces as well� In the process

of getting weak convergence result� one often needs to verify that the sequence involved

is tight� A sequence fwng is tight� if for any  � �� there is a compact set S�� such that

P �wn 
� S�� �  for all n� A well�known theorem due to Prokhorov states that� in a complete

separable metric space� the tightness is equivalent to sequential compactness� In other words�

once the tightness is veri�ed� one may proceed to extract convergent subsequences�

There are reasons that weak convergence analysis is more preferable in many applications�

First� it requires much less restrictive conditions than its with probability one convergence

counter part� Secondly� dealing with the problem of rates of convergence� we often need to

obtain results similar to that of the central limit theorem� In this regard� one is forced to

treat convergence in the sense of convergence in distribution or convergence in the weak sense

any way� Third� to analyze a constant step size algorithm� we need to use weak convergence

tools since if a constant step size is used� almost sure �w�p��� convergence results cannot

generally be expected�

For technical purposes� it is easier to deal with paths than with measures� A device

known as Skorokhod representation allows one to "change� the weak convergence to w�p��

convergence on a larger space� For the detailed account on the concept of weak convergence

as well as many related materials� we refer the reader to the book of Ethier and Kurtz �


and the references therein�

In our weak convergence analysis to follow� we often work with Dr������ the space of

functions� that are right continuous� have left�hand limit endowed with some weak topology

�Skorokhod topology�� Our analysis requires that �rst the tightness is veri�ed and then the

limit process is characterized�

In what follows we provide some su!cient conditions that ensure the convergence in the

sense of weak convergence� We work with the algorithm with constant step size a� The

argument for that of the decreasing step size algorithms are virtually the same�

�B����� The function G�x� �� is bounded on bounded x�set�

lim
jx�yj��

EjG�x� �j��G�y� �j�j � ��

and for each x belongs to a bounded set and each T 	�� fjG�x� �n�j� na � Tg is uniformly

integrable�

�



�B���	� The following averaging condition holds� For each x�

�

n

m�nX
i�m

EmG�x� �i�
n��rf�x� in probability� ���

Remark� As can be seen that the conditions for the weak convergence are much weaker than

that of the corresponding one for convergence in the sense of w�p��� We do not even require

that the function G��� to be continuous� Only continuity in the weak sense is assumed� As

far as the averaging condition is concerned� it is a law of large number type of condition�

We only require the averaging take place in the sense of convergence in probability� Note

that the condition is weaker with the conditional expectation added� In case of independent

identically distributed and�or martingale di�erence type of noise �n� it is averaged out even

before taking the limit� We emphasize that the noise is averaged out in ��� while x is kept

�xed� In fact� this is one of the main ingredients of the direct averaging procedures �see

��	
�� Keep in mind that we only average out the noise� The uniform integrability condition

is veri�able for many applications� See for example Rudolph �		
 on veri�cation of the

condition for problems in evolutionary computation� To analyze the algorithm� we take the

piecewise constant interpolation de�ned by xa�t� � xn for t � �na� na� a��

Clearly xa��� is in the Dr������ Now� we proceed to state the weak convergence theorem

for the interpolated process�

Theorem ���� Under the conditions of �B����� and �B������ Assume that there is a unique

solution of �
� for each initial condition x�	 and xa� � x�� Then the sequence fxa���g is tight
in Dr����� such that any weakly convergent subsequence has a limit x��� that is a solution

of the di�erential equation �
��

Remark� Very often xa� � x�� i�e�� it does not depend on the small parameter a� Here we are

using a condition that is more general and can accommodate more complex situations�

Idea of proof� We divide the proof into several steps� First we need to show that the sequence

fxa���g is tight� We add a condition that the iterates xn are bounded initially� and discuss

how we can discard it afterward� It is easily seen that in this case

lim
A��

lim sup
a

P

�
sup
t�T

jxa�t�j  A

�
� � for each T 	�� ��

Now by virtue of �B���	�� fG�xn� �n�g is uniformly integrable� Then Lemma �� in Chapter

� of ��	
 implies that fxa���g is tight� and all limits have continuous paths with probability

one�

Without the boundedness condition on the iterates fxng� we proceed by employing a

technical device known as N �truncation �see ��	
 Page ���� For each N 	 �� de�ne SN �

�



fx� jxj � Ng� xa�N�t� is said to be an N �truncation of xa�t� if xa�N�t� � xa�t� up until �rst

exit from SN � and

lim
A��

lim sup
a

P

�
sup
t�T

jxa�N�t�j  A

�
� � for each T 	�� ���

In addition� the truncation for the discrete algorithm is de�ned as

xNn�� � xNn � aG�xNn � �n�qN�x
N
n ��

where qN��� is known as a truncation function taking the form

qN�x� �

��
	
�� x � SN �
�� x � IRr � SN �
smooth� otherwise�

We then proceed to obtain the tightness of the truncated process fxa�N���g� obtain its limit�

and get the desired result by taking limit as N � � at the end� The details are omitted�

We remark that without the boundedness� the veri�cation of �� is normally di!cult� but

the veri�cation of ��� for the truncated process is relatively simpler�

In the second step� we characterize the limit process� In the traditional approach of weak

convergence analysis� after proving the tightness� one needs to identify the limit process and

also show that the �nite dimensional distributions of the interpolated process converge� Such

an approach is simpli�ed by the direct averaging methods developed by Kushner �see ��	


and the references therein�� The direct averaging requires to characterize the limit process

only by use of the martingale problem formulation of Stroock and Varadhan �see �
�� A

process x��� is said to be a solution of a martingale problem if for any function g���� that is

twice continuously di�erentiable with compact support�

g�x�t��� g�x�����
Z t

�
Lg�x�s��ds

is a martingale� where L is an elliptic operator of the form

L �
X
i

bi�x����xi � ���	�
X
i�j

aij�x����xi�xj

corresponding to the stochastic di�erential equation dx � b�x�dt � ��x�dw�t� such that

��x����x� � a�x��

For ease of presentation� in what follows� we will not use the function g��� in our analysis�

Carrying it in the discussion makes no essential changes�

We extract a convergent subsequence and without change of notation still denote the

sequence by fxa���g� and denote the limit by x���� By virtue of the Skorokhod representation�

��



�without changing notations�� it may be assumed that xa��� converges to x��� w�p�� and the

convergence is uniform on any bounded time interval�

We claim that x��� is a solution of ��� or what is equivalent that x��� is a solution of

the martingale problem with an degenerate operator �that is the part corresponding to the

Brownian motion term disappears or equivalently� a�x� � ��� De�ne

M�t� � x�t�� x����
Z t

�
��rf�x�u��du�

To prove this assertion� we need only show that M��� is a continuous martingale� Since it

can be veri�ed that M��� is Lipschitz continuous� it then follows from ��	
� M�t� �constant�

However� M��� � �� Therefore� M�t� � �� As a result� x��� is a solution of the equation ���

as claimed�

To verify the martingale property� we need only prove that for any bounded and contin�

uous function h���� any integer k� j � k and tj � t 	 t� s�

Eh�x�tj�� j � k��x�t� s�� x�t�� � �Eh�x�tj�� j � k�
Z t�s

t
rf�x�u��du�

To this end� we work with the pre�limit process xa���� Choose a sequence of real numbers

fnag such that na �� as a� �� but �a � ana � �� Detailed computation leads to

Eh�xa�tj�� j � k��xa�t� s�� x��t��

� �Eh�xa�tj�� j � k�
�t�s��aX
t�a

aG�xi� �i�

� �Eh�xa�tj�� j � k�
�t�s��aX
lna�t�a

�a

�
�

na

X
i	La

ElnaG�xi� �i�

�
�

where La � fi� lna � i � lna� na� �g� Notice that the conditioning is inserted since tj � t�

h�x�ti�� is Flna measurable�

Loosely� the outer summation in the above formula is replaced by
R t�s
t whereas the term

inside the curly bracket gives us the integrand in the limit �in the sense of in probability��

To obtain the desired result� it now su!ces to consider the term inside the curly bracket�

Sending l�a � u� we need only show that

�

na

X
i	La

ElnaG�xi� �i�
a��rf�x�u�� in probability�

Now by using condition �B������ the limit of

�

na

X
i	La

ElnaG�xi� �i�

��



is the same as that of
�

na

X
i	La

ElnaG�xlna� �i��

In fact� we can prove that

�

na

X
i	La

ElnaG�xi� �i� �
�

na

X
i	La

ElnaG�xa�l�a�� �i� � o����

where o���
a��� in probability� Since l�a � u� by the weak convergence of xa��� and the

Skorokhod representation�

�

na

X
i	La

ElnaG�xa�l�a�� �i� �
�

na

X
i	La

ElnaG�x�u�� �i� � o����

where o���
a��� in probability�

Suppose for the moment that x�u� takes �nitely many values� e�g�� #x�� #x�� � � � � #x�� We

then have

�

na

X
i	La

ElnaG�x�u�� �i� �
�X

���

�

na

X
i	La

ElnaG�#x� � �i�Ifx�u���x�g

a��
�X

���

rf�#x��Ifrx�u���x�g � rf�x�u�� in probability�

as desired� In general� what we need to do is to approximate x�u� by a function that takes

only �nitely many values� i�e�� for any  � �� choose x��u� that takes only �nitely many

values such that

lim
a���ia�u

EjG�x�u�� �i��G�x��u�� �i�j � ��

and then work out the convergence for the approximation function G�x��u�� �i�� Notice that

owing to the choice of na� when l�a � u� ia� u for all i � La� The details are omitted�

The theorem above gives us a result on arbitrarily large but still bounded time intervals�

It is of particular interest to us to see what happens when a � � and n � �� A result

concerning such a problem is recorded in the following theorem�

Theorem ���� Suppose that � is a stationary point of the equation �
�	 i�e�	 rf��� � �	

and suppose that � is globally attracting �in the sense of Liapunov stability�� Assume the

conditions of Theorem ��� are satis�ed and fxn� n 	 �� a � �g is tight in IRr� Let ftag be

such that ta �� as a� �� Then xa��� ta� converges weakly to ��

The proof of the theorem is very similar to that of Theorem ��	� Consider the joint pair

�xa�� � ta�� xa�� � T � ta�� for each T 	 �� Extract a convergent subsequence and denote

the limit by �x���� xT ����� We realize that x�T � � xT ���� By virtue of the assumption xT ���

belongs to a set which is tight� We then proceed to use the stability argument to �nish up the

�	



proof� For more details on this matter� one may wish to see a corresponding theorem in ���
�

We point out that the tightness of fxng can be proved� Since the proof uses the techniques

of perturbed Liapunov function methods and is similar to the error bound estimate to be

derived in the sequel� we simply assumed this condition holds at this point�

��� Discussion on EA related algorithms

Similar limit theorems can be obtained for the example given in the previous section� The

convergence theorems hold if rf��� is replaced by a function of rf���� For the example

discussed in the previous section� the limiting ODE reads as�

�x � �H�rf�x�� v�x��

where  v�x� 
� � is a vector �depending on the function form of f���� resulting from the

average of the sequence

�z�i�n I
ff�xn�z

�i�
n ��minu��n f�u�g

�

Note that setting the right�hand side to be � leads to the equation H�rf�x�� v�x� � � or

equivalently� H�rf�x�� � �� This in turn implies that rf�x� � � as desired� The solutions

of this gives us the stationary points of the function f����
Next we illustrate why  v�x� 
� � should hold in many cases� First� let us consider a

very simple example� Suppose f���� the function to be minimized is linear and suppose and

fz�i�n g is a sequence of i�i�d� normal random vectors� Suppose also that the components of

the random vector are independent� i�e�� the covariance matrix is a diagonal matrix� Then

essentially� we are dealing with a scalar problem� Let us consider one component of the

vector� but suppress the dependence �index� of the vector� Thus� we treat xn� z�i�n as scalars�

Using elementary statistics� the algorithm is of the form

xn�� � xn � zn�f�g�

where zn�f�g denotes the �minimum� order statistics�

Using the decomposition outlined in Example 	��� with �  	�

xn�� � xn � ��zn�f�g�

The density function of �zn�f�g is given by

#f	zn�f�g �z� � � #f �z���� #F �z�����dz�

where #f�z� and #F �z� are the density and distribution functions of a standard normal random

variable� respectively�

��



By virtue of an integration by parts� we have that

E�zn�f�g � �
Z �

��

�p
	�

z exp��z��	��� � #F �z�����dz

� ���� � ��

	�

Z �

��
exp��z���� � #F �z�����dz 
� ��

For� suppose not� i�e�� the integral above is �� Since the integrand is non�negative� the

integrand must be equal to � identically� which is a contradiction� In fact� the discussion

above shows that E�zn�f�g 	 ��

This example may seem to be over simpli�ed� but it illustrates the reason that the limit

vector  v is non�zero� In general� the situation becomes more complex� we are e�ectively

dealing with functions of order statistics� but the main idea remains the same�

If the function f��� is smooth enough� say C�� then we may wish to take a Taylor expan�

sion� This leads to

f�xn � z�i�n � � f�xn� � �f �x�xn��z
�i�
n �O�����j�z�i�n j���

provided if fxx��� is bounded� When we compare the values of f�xn � z�i�n � in the ��� ��

strategy� we are basically comparing the term f �x�xn��z
�i�
n �O�����j�z�i�n j��� Now for �xed x� we

can treat the corresponding order statistics for � � i � � �by using the weak convergence

theory�� As in the linear case� it can be shown that the expectation is non�zero for many

practically interesting functions�

Finally� we point out that for the i�i�d� sequence fz�i�n g� the average conditions in Section

��� and ��	 hold� The veri�cation can be done readily� This paper deals with a somewhat

more general setup� The speci�c problem related to the convergence of the ��� �� strategy

will be studied elsewhere�

� Rate of convergence

This section is divided into two subsections� The �rst of them gives an order of magnitude

estimate on the estimation error �or an error bound�� and the second one derives a local

limit result similar in spirit to the well�known central limit theorem or rather functional

central limit theorem� We shall concentrate on the constant step size algorithms� As for the

decreasing step size procedures� using essentially the same techniques� we get similar results�

We mention these results at the end�

��� An error bound on xn � �

The analysis to follow uses the perturbed Liapunov function methods �see ��	
 and the

references therein�� For notational simplicity� we assume � � � henceforth� This is no loss

��



of generality at all since we can always translate the origin as needed�

To proceed� we list the conditions to be used in the sequel�

�A����� There is a Liapunov function V ��� � IRr �� IR such that the function together

with its �rst and second partial derivatives are continuous� V �x�  � for all x� V �x�
jxj���� ��

Vxx��� is bounded� and V �
x�x�rf�x� � �V �x� for all x 
� � and for some � � ��

�A���	� G�x� �n� � G��x� 
n� � G��x��n such that G���� is bounded on bounded x�sets�

and G���� �� is continuous� G���� is a continuous and bounded function� f
ng is a stationary

sequence of uniformly bounded random variables satisfying EG��x� 
n� � rf�x� for each x�

and f�ng is a sequence of independent random variables with zero mean and �nite second

moment� EnjG�x� �n�j� � K�� � V �x���

�A����� The following inequalities hold������
�X
i�n

V �
x�x�En�G�x� �i��rf�x��

����� � K�� � V �x��������
�X
i�n

�V �
x�x�En�G��x� 
i��rf�x�
x

����� � Kan�� � V ����x���

Theorem ���� Under the conditions of �A������A����	 for su�ciently large n	 �i�e�	 there

is an Na such that for all n  Na�	

EV �xn� � O�a� for su�ciently small a � �� ���

Since xn is Fn measurable� and �n has mean ��

EnV
�
x�xn�G��xn��n � V �

x�xn�G��xn�En�n�

By direct computation� we get

EnV �xn���� V �xn� � �aV �
x�xn�rf�xn�

�aV �
x�xn�En�G��xn� 
n��rf�xn�


�O�a���� � V �xn��

� �a�V �xn�

�aV �
x�xn�En�G��xn� 
n��rf�xn�


�O�a���� � V �xn���

����

The second term on the right side of the inequality sign is an extraneous term� To obtain

the desired result� it needs to be eliminated� To overcome the di!culties� we introduce a

perturbation term as

V��x� n� � �a
�X
i�n

V �
x�x�En�G��x� 
i��rf�x�
�

��



By virtue of �A������ V���� is well de�ned and jV��x� n�j � Ka�� � V �x��� In addition�

EnV��xn��� n� ��� V��xn� n�

� aV �
x�xn�En�G��xn� �n��rf�xn�
 �O�a���� � V �xn���

Now de�ne the perturbed Liapunov function V ��� by
V a�x� n� � V �x� � V��x� n��

As a result�

EnV
a�xn��� n� ��� V a�xn� n� � �a�V �xn� �Ka��� � V �xn���

Using the bound on V����� we can show that the above inequality holds with V �xn� replaced

by V a�xn� n�� For su!ciently small a� Ka� � � ��� for some � 	 �� 	 � with ��a 	 �� and

hence

EnV
a�xn��� n� �� � �� � ��a�V

a�xn� n� �Ka��

Iterating on the above inequality and taking expectation yields

EV a�xn��� n� �� � �� � ��a�
nEV a�x�� �� �K

nX
i��

��� ��a�
ia�

� �� � ��a�
nEV ��x�� �� �Ka�

Using the bound on V���� again� we also have

EV �xn��� � �� � ��a�
�EV �x�� �Ka�

Select Na such that for all n  Na� �� � ��a�n � Ka� The desired result then follows�

Remark� In fact� even more general conditions can be used� In the assumption on the

function G���� we could put it as

G�x� �n� � G��x� 
n� �G��x��n �G
�x� � �n�

In this way� we deal with both additive noise and non�additive noise� Some more details

can be found in ���
 for instance�

If the Liapunov function is locally quadratic� i�e��

V �x� � x�Qx� o�jxj���
where Q is a symmetric positive de�nite matrix� then we obtain

fxn�
p
a� for n  Nag is tight�� ����

If we are dealing with decreasing step size� and if an � ��n� � for � 	 � � �� then under

similar conditions� with slight modi�cation of the proof� we obtain that EV �xn� � O�n���

for su!ciently large n� Corresponding to the remark just made above� we have the tightness

of fn���xng�

��



��� Asymptotic normality

Theorem ��� above exploits the dependence of the iterates on a by giving an upper bound

on the estimation error� In this subsection� we shall derive another local limit theorem that

is similar to the functional central limit theorem�

The idea is that we linearize the function G��� around its stable point� and obtain a

suitably scaled sequence� Owing to ����� the appropriate scaling here is
p
a� For simplicity�

we will treat G�x� �� as one term without separating it as G����� G���� etc� Starting with �	��

and assuming that Gx��� �� and Gxx��� �� exist and are continuous� and Gxx��� �� is bounded�
we arrive at

un�� � un � aGx��� �n�un �
p
aG��� �n� �O�a
��junj��� ��	�

To obtain the asymptotic normality� again� we take a continuous time interpolation as

follows� For n  Na� de�ne ua��� by ua�t� � un for t � �a�n � Na�� a�n � Na � ���� As

in Section ��	� ua��� lives in Dr������ Notice that the last term in ��	� is asymptotically

negligible� so we discard it henceforth� Suppose that

t��X
i�Na

p
aG��� �i�� w�t� a Brownian motion with covariance $t�

�

na

X
i	La

ElnaGx��� �i�
a��fxx��� in probability�

����

Using the weak convergence methods as described in the previous sections� we can shown

that ua��� converges weakly to u��� such that u��� is a solution of the stochastic di�erential

equation

du � �fxx���udt� dw� ����

Remark� Eq� ���� has a unique solution for each initial condition since it is linear� The

assumption of the convergence to a Brownian motion can be veri�ed in a wide variety of cases�

Suppose the noise is a sequence of i�i�d� random variables with � mean and �nite variance�

Then this condition is veri�ed by the well�known result of Donsker�s invariance principle �see

�
�� It also holds for more general noise structure such as ��mixing type of random processes

which allow correlated noise with the correlation diminishing asymptotically� Many forms of

su!cient conditions guarantee the existence of the limit can be found in �
 and the references

therein� For stochastic approximation related problems see Kushner ��	
� Yin ��	
� Yin and

Yin ���
 among others�

�



� Concluding remarks

In this work� we exploited the connection of evolutionary computation and stochastic approx�

imation� As it is explained that both of them have the objective of carrying out stochastic

optimization tasks� By studying some appropriate stochastic recursive algorithms� we re�

viewed some of the recent developments in stochastic approximation� We also investigated

the possible applications to evolutionary algorithms� Limit theorems are obtained by taking

suitable scaling and continuous time interpolations�

For the problems studied in this paper� we assumed that the noisy gradient estimate

is available� If one has to use� for example a �nite di�erence method to get the gradient

estimates� then the convergence rate will be slower as is the case for the classical KW

procedures� Nevertheless� there are some recent advances to speed up the convergence for

the gradient estimates� We refer the readers to Ho and Cao ���
 for further details� A survey

on the recent progress in this direction in conjunction with stochastic approximation can be

found in Kushner and V�azquez�Abad ��
�

It should be mentioned that the evolutionary algorithms can deal with non�smooth objec�

tive functions� For stochastic approximation� the corresponding part is the use of non�smooth

analysis via di�erential inclusion�

Recently� there are renewed interests in improving the rate of convergence of stochastic

approximation type algorithms by utilizing post�averages of the iterates or by taking averages

of the iterates as well as the observations �see Bather ��
� Kushner and Yang ���
� Polyak

�	�
� Ruppert �	�
� Schwabe �	�
� Yin ��	
� Yin and Gupta ���
� Yin and Yin ���
 and the

references therein�� It is conceivable that such an attempt will be bene�cial for the EA

related procedures� In addition to the algorithms considered in this paper� various variants

of the recursive algorithms such as projection and other modi�cations �see Chen and Zhu

��
� Kushner and Clark ���
� Kusner ��	
� Kushner and Yin ���
� Yin and Zhu ���
� Yin ���


and the references therein� can also be studied�

This paper deals with a somewhat more general setup� As was mentioned� our main

objective is to see the connection of the EA�s and SA�s� Although they have many simi�

larities� they also have very distinguished features� In the SA setting� the function under

consideration is normally either not known explicitly or the form is very complex� For the

EA algorithms� however� the function f��� under consideration is known� i�e�� the computed

output of a simulation model� In a subsequent work� we shall treat the ��� �� strategy in

detail and obtain the desired asymptotic properties by using the stochastic approximation

approach�

At this point� the study is only preliminary in nature with respect to the applications to

��



evolutionary algorithms� Our current e�ort lies in carrying out in depth study further� and

gain a basic understanding of the asymptotic properties of evolutionary algorithms�
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