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Abstract� The theory of evolutionary computation has been enhanced rapidly during the

last decade� This survey is the attempt to summarize the results regarding the limit and

�nite time behavior of evolutionary algorithms with �nite search spaces and discrete time

scale� Results on evolutionary algorithms beyond �nite space and discrete time are also

presented but with reduced elaboration�
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�� Introduction

The �eld of evolutionary computation is mainly engaged in the development of optimization

algorithms which design is inspired by principles of natural evolution� In most cases� the opti�

mization task is of the following type� Find an element x� � X such that f�x�� � f�x� for all

x � X � where f � X � IR is the objective function to be maximized and X the search set�

In the terminology of evolutionary computation� an individual is represented by an element

of the Cartesian product X � A� where A is a possibly empty set collecting additional search

state information� The �tness of an individual �x� a� � X �A is given by the objective function

value f�x�� A population consists of n � � individuals and is thus an element of the product

space �X �A�n� During each iteration of an evolutionary algorithm the population is modi�ed

by a number of successive probabilistic transformations� At the beginning of each iteration the

n members of the population are called the parents which produce n� �� o	spring by random

variation� For each o	spring two or more parents are selected and they are used to generate

a preliminary o	spring by recombination� Subsequently� each preliminary o	spring is mutated

at random yielding a �nal o	spring� After all n� o	spring have been produced in this manner

the current population consist of n 
 n� individuals� To keep the population at constant size



n� a selection method decides which parents and�or o	spring will serve as parents in the next

iteration� Now the process repeats until some stopping criterion is ful�lled�

Evidently� the resulting new population only depends on the state of the current population in

a probabilistic manner� This fact� known as the Markov property� reveals that Markov processes

are appropriate models for the probabilistic behavior of evolutionary algorithms� The well�

developed theory of Markov processes may be divided into twelve sub��elds according to the

following characteristics of the true process under consideration�

� The state space may be �nite� denumerable or not denumerable�

� The evolution may happen in discrete or continuous time�

� The transition probabilities may depend on the time parameter or not�

Since the population size is �nite the state space of the associated Markov process is �nite

�denumerable or not denumerable� if the search set is �nite �denumerable or not denumerable��

Therefore the Markov theory of evolutionary algorithms may be classi�ed analogously� Most

results are available for evolutionary algorithms with time�homogeneous transitions and ���

�nite search space in discrete time� �� not denumerable search space IR� in discrete as well as

continuous time�

This survey will concentrate on the �rst class including the case of time�inhomogeneous

transitions�

�� Limit Behavior in Finite Space and Discrete Time

Let Xk � �Xk��� Xk��� � � � � Xk�n� be the random population of size n � � at step k � � and

Fk � maxff�Xk�i� � i � �� � � � � ng the best �tness value within the population at step k � ��

As soon as the random variable Fk attains the value of the global maximum f� it is ensured

that the population contains an individual representing the global solution of the maximization

problem� Ideally� this event should happen after a �nite number of steps with probability one

and regardless of the initialization of the evolutionary algorithm� This desirable property can

be formalized as follows�

De�nition ����

Let random variable T � minfk � � � Fk � f�g denote the �rst hitting time of the global

solution� An evolutionary algorithm is said to visit the global optimum in �nite time with

probability one if PfT ��g � � regardless of the initialization� ut

Since it may be generally supposed that in practical implementations of evolutionary algorithms

the best solution found in the course of the evolution is kept in memory� the property above

guarantees that the global optimum will be found in �nite time and never be lost although the

population itself may loose the global solution once it was found� Thus� the property above

alone does not exclude that the random sequence �Fk � k � �� oscillates freely without tending

to a limit� There are evolutionary algorithms that show exactly such a behavior� But it can

also be observed that there exist versions of evolutionary algorithms for which the random



sequence �Fk � k � �� �converges� to the limit f�� Notice that the deterministic concept of the

�convergence to the optimum� is not appropriate because the state transitions of an evolutionary

algorithm are of stochastic nature� In order to clarify the exact semantic of a phrase like �the

EA converges to the global optimum� one has at �rst to distinguish between the various modes

of stochastic convergence ����

De�nition ����

Let D�� D�� � � � be non�negative random variables de�ned on a probability space ���A�P�� The

sequence �Dk � k � �� is said to converge completely to zero if
P�

k�� PfDk � � g � � for any

� � �� to converge with probability � �w�p��� or almost surely �a�s�� to zero if Pf limk��Dk �

� g � �� to converge in probability to zero if PfDk � � g � o��� as k � � for any � � �� and to

converge in mean to zero if E�Dk � � o��� as k ��� ut

Complete convergence implies convergence with probability � while both convergence with prob�

ability � and convergence in mean implies convergence in probability� The reverse implications

are wrong in general ���� But if the sequence �Dk � k � �� is upper bounded by some �nite

constant then convergence in probability implies convergence in mean� With these de�nitions

one can assign a rigorous meaning to the notion of the convergence of an evolutionary algorithm�

De�nition ����

Let �Xk � k � �� be the sequence of populations generated by some evolutionary algorithm and

let Fk � maxff�Xk���� � � � � f�Xk�n�g denote the best objective function value of the population

of size n � � at generation k � �� An evolutionary algorithm is said to converge completely


with probability �� in probability� in mean� to the global maximum f� � maxff�x� � x � Xg

of objective function f � X � IR if the nonnegative random sequence �Dk � k � �� with

Dk � f� � Fk converges completely �with probability �� in probability� in mean� to zero� ut

At this point it should be noted that the property of visiting the global solution with probability

one is a precondition for convergence but that the additional property of convergence does not

automatically indicate any advantage with respect to �nding the global solution�

���� Time�Homogeneous Transitions

In principle� the question whether some evolutionary algorithm will visit the global optimum

in �nite time and� if so� whether it will converge in some mode to the optimum or not may be

answered by modeling the speci�c evolutionary algorithm under consideration as a �nite Markov

chain so that the existing powerful results from Markov chain theory �� �� can be exploited�

Completely speci�ed Markov chain models of a certain evolutionary algorithm were derived �ap�

parently independently� in ��� and ��� ��� But it is not necessary to build a quantitatively exact

Markov model for each variant of an evolutionary algorithm in order to investigate the limit

behavior� Instead� qualitative models are su�cient for this purpose� The idea to characterize

the limit behavior of the evolutionary algorithm by the properties of the variation and selection

operators was realized in ���� This approach is adopted here� Actually� almost all results pre�

sented in this subsection are already given in ��� ��� Subsequent publications o	ered some minor



extensions in case of speci�c combination of variation and selection operators ��� ��� ��� �� or

from a more abstract point of view ���� ���� In retrospective� one may say that the intensive

elaboration of these issues during the past years has �nally led to simple proofs which do not

require Markov chain theory any more� This is demonstrated next�

Let �x�� x�� � � � � xn� � X n denote the population of parents� An o	spring is produced as

follows� At �rst� � parents are selected to serve as mates for the recombination process� This

operation is denoted by

mat � X n � X �

where  � � � n� These individuals are then recombined by the procedure

reco � X � � X

yielding a preliminary o	spring� Finally� a mutation via

mut � X � X

yields the complete o	spring� After all m o	spring have been produced in this manner the

selection procedure

sel � X k � Xn

decides which o	spring and possibly parents �k � n� will serve as the new parents in the next

iteration� Thus� a single iteration of the evolutionary algorithm can be described as follows�

	i � f�� � � � � mg � x�i � mut�reco�mat�x�� � � � � xn���

�y�� � � � � yn� �

�
sel�x����� � � � � x��q�� x

�
�� � � � � x

�
m� �parents and o	spring�

sel�x��� � � � � x
�
m� �only o	spring�

where � � q � n and ����� � � � � ��n� is a permutation of the indices �� � � � � n such that f�x����� �

f�x����� � 
 
 
 � f�x��n��� This formulation includes selection methods that choose from the

o	spring and a subset of parents under the restriction that the best parent is a member of this

subset�

After this operational description of evolutionary algorithms one is in the position of de�ning

some assumptions about the properties of the variation and selection operators�

�A�� 	x � �x�� � � � � xn� � Pf x � reco�mat�x�� � � � � xn�� g � 	r � ��

�A�� For every pair x� y � X there exists a �nite path x�� x�� � � � � xk of pairwise distinct points

with x� � x and xk � y such that Pf xi�� � mut�xi� g � 	m � � for all i � �� � � � � k � ��

�A�
�� For every pair x� y � X holds Pf y � mut�x� g � 	m � � �

�A�� 	x � �x�� � � � � xk� � Pf x � sel�x�� � � � � xk�� g � 	s � ��

�A	� Let v�k�x�� � � � � xk� � maxff�xi� � i � �� � � � � kg denote the best �tness value within a

population of k individuals �k � n�� The selection method ful�lls the condition

Pf v�n�sel�x�� � � � � xk�� � v�k�x�� � � � � xk� g � � �



Assumption �A�� means that every parent may be selected for mating and is not altered by

recombination with minimum probability 	r � �� Assumption �A�� ensures that every individual

can be changed to an arbitrary other individual by a �nite number of successive mutations�

whereas assumption �A�
�� asserts the same but within a single mutation� Assumption �A��

guarantees that every individual competing for survival may survive with minimum probability

	s � �� whereas assumption �A	� makes sure that the best individual among the competitors in

the selection process will survive with probability one�

Theorem ����

If the assumptions �A��� �A��� and �A�� are valid then the evolutionary algorithm visits the global

optimum after a �nite number of iterations with probability one� regardless of the initialization�

If assumption �A	� is valid additionally and the selection method chooses from parents as well

as o	spring then the evolutionary algorithm converges completely and in mean to the global

optimum regardless of the initialization�

Proof� Let X � � fx � X � f�x� � f�g be the set of globally optimal solutions� Owing to

assumption �A�� there exists a �nite path from an arbitrary x 
� X � to some x� � X � that can

be traversed by successive mutations� Let kx be the length of the shortest path between x 
� X �

to the set X � and k� � maxfkx � x 
� X �g�

Now consider an arbitrary parent x of some population� Assumption �A�� ensures that this

parent passes the recombination process without being altered at least with probability 	r � ��

The probability that this preliminary o	spring transitions to the next point of the shortest path

towards X � by mutation is guaranteed to be at least 	m � � by assumption �A��� Owing to

assumption �A�� this o	spring will survive the selection process at least with probability 	s � ��

Thus� the probability that parent x transitions to a parent representing the next point on the

shortest path to X � is at least 	r 
 	m 
 	s � �� A kx�fold repetition of this argumentation

shows that the probability of a transition from x 
� X � into the set X � at iteration kx is at least

�	r 
	m 
	s�kx�� 
	r 
	m � �� Therefore it can be asserted that the probability of visiting a globally

optimal solution after k� iterations is at least 	 � �	r 
 	m 
 	s�
k��� 
 	r 
 	m � � regardless of the

true instantiation of x 
� X �� Consequently� the probability that a globally optimal solution has

not been found after k iterations is at most ��� 	�bk�k
�c which converges exponentially fast to

zero as k ��� This immediately implies PfT ��g� i�e�� a global optimum will be visited for

the �rst time after a �nite number of iterations with probability one� This proves the �rst part

of the theorem�

As for the second part� suppose that the global optimum was found for the �rst time at

iteration k�� Assumption �A	� guarantees that this o	spring will be a parent of the next iteration�

since neither an old parent nor another o	spring can be better than this one� Thus�

PfFk � f� g � Pf f� � Fk � � g � PfDk � � g � ��� 	�bk�k
�c � �

as k��� This proves convergence in probability� Since

�X
k��

PfDk � � g �
�X
k��

��� 	�bk�k
�c �

�

�� ��� 	���k�
��



one obtains even complete convergence to the global optimum� Finally� convergence in mean

follows from convergence in probability and the fact that the sequence �Fk � k � �� is bounded�

ut

A variation of this result is given next�

Corollary ����

Theorem �� remains valid if the assumptions �A��� �A��� and �A�� are replaced by assumption

�A�
��� ut

As can be seen from assumptions �A�� or �A�
��� the reachability of the optimum is guaranteed

solely by the properties of the mutation operators� The potential positive e	ects of recombination

are completely neglected� Notice that an EA without recombination �	r � �� will always visit

the optimum� whereas an EA without mutation but with a usual recombination operator does

not have this guarantee ����� This observation might have been the reason why Evans ����

suggested the following modi�ed EA �without� mutation�

Let X � f�� �g�� The population consist of n 
  parents� Two distinguished parents are

protected� i�e�� they pass through all stages of the life cycle with probability one� but they par�

ticipate in the mating and recombination process� In the initial population� the �rst protected

individual is chosen at random and the second protected individual is set to the binary comple�

ment of the �rst one� Suppose that the recombination process employs uniform crossover of two

parents� i�e�� each entry of the o	spring�s bit vector is independently chosen either from the �rst

or from the second parent with the same probability� Moreover� assume that the two protected

individuals can be chosen for mating with some minimum probability 	c � �� If this event occurs

then the optimal solution is assembled with probability �� � �� Notice that this is equivalent

to generating an individual uniformly at random� As a consequence� the probability to �nd the

optimum within one step is at least 	c �� � � and it is guaranteed that the optimum will be

visited in �nite time with probability one� Needless to say� the concept of protected individuals

in nothing more than a disguised method of permitting mutations�

The next result complements and partially sharpens Theorem � and Corollary ��

Theorem ����

An evolutionary algorithm visits the global optimum in�nitely often if assumption �A�
�� or the

assumptions �A��� �A��� and �A�� are valid� If the selection method only chooses from the

o	spring then the sequence �Fk � k � �� will not converge to the global optimum� even if

assumption �A	� is valid�

Proof� The proof of Theorem � has already shown that conditions �A�
�� or �A��� �A��� �A��

are su�cient to �nd the optimum in �nite with probability one� Assume that the optimum has

been visited at step k� for the �rst time and that the population looses all optimal individuals

at step k� � k�� Then the same assumptions guarantee that the optimum will be found again

in �nite time with probability one at step k� � k�� and possibly lost again and found again and

so forth ad nauseam� This proves the �rst part of the theorem�

As for the second part� let the selection method only choose from the o	spring and assume

that the optimum is contained in the current population �possibly several times�� Even if all



optimal parents pass through the recombination process without being altered� assumption �A��

as well as �A�
�� ensures that each individual is mutated with some minimum probability� As a

consequence� there is a minimum probability 	L � � that all individuals being optimal before

mutation are mutated to non�optimal individuals� Since the probability of this event is strictly

bounded from zero� the population will loose the optimum in �nite time with probability one�

But the optimum will be found again� and lost again ��� in short� The sequence �Fk � k � �� of

the best �tness value within a population at step k � � oscillates forever preventing the property

of stochastic convergence� ut

The assumptions and their implications presented so far are valid for the vast majority of

evolutionary algorithms with �nite search space and time�homogeneous transitions� But every

conference on evolutionary computation gives birth to new versions of evolutionary algorithms

that do not necessarily �t in this framework� In this case� the assumptions and proofs must be

adapted� For example� it was recently shown that Corollary � can be generalized to situations

in which the set of �tness values is only partially in lieu of totally ordered ����� Actually� only

the assumptions regarding the selection methods were generalized�

���� Time�Inhomogeneous Transitions

The development of evolutionary algorithms with time�inhomogeneous transitions was motivated

by the observation that a speci�c popular evolutionary algorithm ful�lling the preconditions of

Theorem  did apparently not converge� and by the fact that there existed convergence proofs for

stochastic optimization algorithms with time�inhomogeneous transitions ��� ���� The previous

subsection has already disclosed the reason for non�convergence of the sequence �Fk � k � ���

The optimum is found and lost in�nitely often� Needless to say� stochastic convergence with

time�inhomogeneous transitions also requires the precondition that the optimum will be found in

�nite time with probability one� But if the optimum is not guaranteed to stay in the population�

then it is necessary that it will be found again� In order to prevent everlasting oscillation of the

sequence �Fk � k � �� it must be ensured that the event of �nding the optimum happens in�nitely

often whereas the event of loosing the optimum happens only �nitely often� Actually� this is

the decisive property that must be shown when proving global convergence of an evolutionary

algorithm�may the transitions be time�homogeneous or not�

The Borel�Cantelli Lemma and its extension are actually su�cient to establish conditions for

stochastic convergence of an evolutionary algorithm� Since EAs have the Markov property the

condition is as follows� Let �k be the probability of loosing the optimum and �k the probability

of �nding the optimum at step k� If

X
k

�k �� and
X
k

�k � �

then the event of loosing the optimum happens �nitely often with probability � whereas the

probability of visiting the optimum happens in�nitely often with probability one� Thus� the



probability of loosing the optimum must decrease faster than the probability of �nding the

optimum�

Davis ��� ��� tried to establish this property by introducing a time�dependent decreasing

schedule for the probability of mutating an individual of an evolutionary algorithm with selection

from o	spring only� Clearly� a decreasing mutation probability leads to decreasing sequences of

both probabilities �k and �k� But there is problem� The rate of decrease is of the same order

for both sequences� As a consequence� both sequences either converge or diverge� i�e�� either the

optimum is not found with probability one or the sequence �Fk � k � �� oscillates forever� This

observation reveals that the selection mechanism must be time�dependent�

Mahfoud and Goldberg ���� used time�homogeneous mutations ful�lling assumption �A�
��

and adopted the time�inhomogeneous selection method as it is known from simulated annealing�

Assumption �A�
�� ensures �k � � � � and hence the divergence of the sequence ��k � k � �� while

the simulated annealing like selection method yields the convergence of the sequence ��k � k � ���

Cerf employed the Freidlin�Wentzel theory of dynamical perturbed systems to prove global

convergence for time�dependent schedules for recombination� mutation� and selection operators

���� �� while Suzuki ���� Lozano et al� ��� as well as He and Kang ��� came to similar results

via Markov chain theory� Since most of these results are specialized to certain combinations of

variation and selection operators� it is refrained from reproducing all assumptions here�

�� Finite Time Behavior in Finite Space and Discrete Time

The examination of the �nite time behavior of evolutionary algorithms cannot be treated in the

same general manner as it is possible for the limit behavior� Apart from the problem type under

consideration� the choice and parameterization of the variation and selection operators have a

signi�cant impact on the �nite time behavior of evolutionary algorithms� As a consequence� the

theoretical studies are restricted to certain problem classes and simple evolutionary algorithms

yet�

Most results are available for maximizing real�valued �tness functions with domain X �

IB� � f�� �g�� This problem is called the pseudo�boolean optimization problem ��� and it is

known to be NP�hard in general ���� But there are classes of pseudo�boolean optimization

problems with reduced computational complexity�

Here� it is assumed that the time of calculating the �tness value f�x� for x � IB� is bounded

by a polynomial in � Since the population size is �nite� the number of �tness evaluations is

an appropriate measure to assess the e�ciency of an evolutionary algorithm� Evidently� for

this purpose one needs a stopping rule that indicates the termination of the stochastic process�

Unless there is a e�ciently computable criterion to decide whether the optimum has been found

or not� one has to de�ne another stopping rule that may depend on the entire history of the

process� Let Hk contain the information available to the process until iteration k � �� Then the

stopping rule ��Hk� indicates termination at step k � � if it evaluates to �� and continuation

of the process if it evaluates to �� Notice that a stopping rule induces a random stopping time



S � minfk � � � ��Hk� � �g in general� After these preparations one is in the position to o	er

a criterion for e�cient evolutionary algorithms�

De�nition ����

Let F �
k � maxfF �

k��� Fkg for k � � and F �
� � F� denote the best �tness value found until

iteration k � �� An evolutionary algorithm is said to be e�cient for a problem class C if

E�S � � poly��� and PfF �
S � f� g � �
poly��� for every instance of C� where poly��
� and

poly��
� are two polynomial functions of the problem dimension � ut

The association of the term �e�cient� with this criterion is justi�ed by the algorithmic technique

known as probability ampli�cation or probability boosting ���� Suppose there exists an e�cient

EA for some problem class with �
poly��� � PfF �
S � f� g � �� The probability that the

optimal solution is not found after r independent runs �possibly in parallel� of the EA is at

most �� � �
poly����
r� The choice r � k 
 poly��� with k � IN leads to a total expected

sequential runtime r E�S � which remains polynomial in � whereas the probability of not �nding

the optimum in r runs decreases exponentially in k�

If E�S � � poly��� and PfF �
S � f� g � �� then the evolutionary algorithm always gives

the optimal solution� The only variation from one run to another is its random running time�

whose distribution has to be studied� Theoretical work regarding evolutionary algorithms with

random stopping time is rarely available� Hulin ��� suggested a stopping rule that is optimal in

a certain Bayesian sense� but the goodness of this stopping rule in the sense of De�nition ��� was

studied empirically only� Aytug and Koehler ��� developed bounds on the number of iterations

s required to achieve the validity of the inequality PfF �
s � f� g � � for some prescribed � � ��

Their �nal results were designated to be trivial since they did not take into consideration the

function to be maximized� This omission �nally led to an optimal parameterization under which

the EA degenerates to pure random search with population size n � �� As a consequence� the

bound on s was not polynomial but exponential in the problem dimension � This observation

reveals the necessity of restricting the analysis to certain problem classes whose special properties

can be exploited in order to achieve non�trivial results�

As in the work of Aytug and Koehler ��� let the stopping rule not depend on the history

of the evolutionary process� More speci�cally� the EA is stopped after a prescribed number s

of iterations so that the random stopping time S degenerates to the constant s with E�S � � s

and V�S � � �� Moreover� it is assumed that the EA only employs mutation and elitist selection�

Notice that this assumption implies Fk � F �
k for all k � �� Two types of mutations will be

considered here�

�M�� An individual x � IB� is mutated by drawing an index uniformly at random and inverting

the associated entry in x�

�M�� An individual x � IB� is mutated by inverting each entry in x independently with proba�

bility p � ��� ���

Originally� the results to be presented shortly have been derived for an evolutionary algorithm

with population size n � �� which is usually termed the �� 
 ���EA� But it is easy to see that



an EA with larger population size cannot be worse than the �� 
 ���EA with respect to the

number of iterations� Moreover� the �positive� results are based on bounds on the expected �rst

hitting time E�T �� The relationship between T and the criterion of De�nition ��� is established

as follows�

Since PfF �
s � f� g � PfT � s g for every s � �� one may use the Markov inequality to

obtain PfF �
s �� f� g � PfT � s g � E�T �
s� Assume it can be shown that E�T � � poly���

for every instance of a speci�c problem class C� where the bound poly��� is explicitly known�

If the stopping time is set to s � c poly��� with c � � 
 �
poly��� for an arbitrary polynomial

poly���� then

PfF �
s �� f� g �

E�T �

s
�

E�T �

c poly���
�

poly���

c poly���
�

�

c

and �nally

PfF �
s � f� g � ��

�

c
�

�

poly��� 
 �

for every instance of problem class C� Thus� the development of a polynomial upper bound for

E�T � is su�cient for proving the e�ciency of the evolutionary algorithm for a speci�c problem

class�

De�nition ����

A function f � IB� � IR is said to be modular if f�x�y�
f�xy� � f�x�
f�y� for all x� y � IB��

ut

It is easy to see that a function f � IB� � IR is modular if and only if it is linear� i�e�� f�x� �

c� 

P�

i�� ci xi with ci � IR� For example� the �tness function f�x� �  � H�x� x�� based on

the Hamming distance H�x� x�� between some x � IB� and a target pattern x� � IB� is linear

and therefore modular� The special case with target vector x� � ��� � � � � ��� � IB� is known

known as the  counting ones problem�� B!ack ��� and independently M!uhlenbein ���� made the

�rst steps towards an upper bound on the expected �rst hitting time� While B!ack derived the

complete �nite Markov chain model for the ��
���EA with mutations of type �M��� M!uhlenbein

developed an approximation for the expected �rst hitting time under simplifying assumptions�

Later it was shown ���� that M!uhlenbein�s approach can be combined with B!ack�s Markov chain

model to achieve the upper bound E�T � �  �log  
 �� exp��� under mutations of type �M��

with p � �
� In general� the results are as follows�

Theorem ����

Let the �tness function f � IB� � IR be modular� If the evolutionary algorithm only uses

mutation and elitist selection then

�a� E�T � �  log  under �M���

�b� E�T � � �� log � under �M�� with p � �
�

�c� E�T � �  �log  
 �� under �M���

�d� E�T � � O� log � under �M�� with p � �
�

Proof� For part �b� and �d� see ����� for part �c� see ���� p� ���� As for part �a�� the basic

argument from the proof of part �b� may be used� In the worst case� the algorithm starts at



a point that is the binary complement of the optimum� Thus� every bit in the vector must be

inverted at least once in order to reach the optimum by successive mutations�

Assume that i �  di	erent bits are already inverted� Then there are  � i di	erent bits

that needs to be inverted� Since the index of the entry to be mutated is chosen uniformly at

random� the probability that one of these  � i bits will be inverted is �� i�
� The expected

time that such an event occurs is just 
�� i�� As soon as this event has happened� i 
 � bits

are inverted at least once and the argumentation repeats until all  bits are inverted at least

once� As a consequence� the expected number of mutations required to invert each bit at least

once is given by
���X
i��



� i
� 

�X
i��

�

i
�  log 

which proves part �a� of the theorem� ut

Thus� modular functions can be e�ciently maximized by an evolutionary algorithm with both

versions of mutations� The next class of pseudo�boolean functions strictly includes the class of

modular functions�

De�nition ����

A function f � IB� � IR is said to be pseudomodular if simultaneously

minff�x�� f�y�g � maxff�x � y�� f�x y�g

maxff�x�� f�y�g � minff�x � y�� f�x y�g

for all x� y � IB�� ut

A non�modular instance of this class is the pseudo�boolean function

f�x� �
�X

i��

iY
j��

xj � ���

It is easily seen ���� p� ���� that f�x � y� � minff�x�� f�y�g and f�x  y� � maxff�x�� f�y�g

and there are pairs �x� y� for which the inequality is strict� Thus�

minff�x�� f�y�g� f�x � y� � maxff�x�� f�y�g � f�x  y�

and hence

f�x � y� � minff�x � y�� f�x y�g � maxff�x � y�� f�x  y�g � f�x  y�

which immediately implies the pseudo�modularity of function ���� The general problem has not

been studied yet� But for this speci�c instance the following result is available�

Proposition ����

The expected �rst hitting time of the �� 
 ���EA with �tness function ��� is bounded by

�a� E�T � � � under �M���

�b� E�T � � � �exp���� �� under �M�� with p � �
�

Proof� See ����� p� ��� for part �a� and p� �� for part �b�� ut



Hammer et al� ��� presented a hierarchy of classes of pseudo�boolean functions that strictly

include each other� Therefore it may be useful to investigate the most general class of this

hierarchy since the existence of a polynomial bound on the expected �rst hitting would imply

that this bound is valid for all problem classes within this hierarchy� This top hierarchy class�

which includes injective pseudo�modular functions� is characterized as follows�

De�nition ��	�

An injective function f � IB� � IR is called unimax if there is a unique locally maximizing point

x� � IB��

In general� an element x� � IB� is a locally maximizing point of a pseudo�boolean function

f � IB� � IR if f�x�� � f�x� for all x � IB� with Hamming distance H�x� x�� � � ��� p� ����� If

the function f�
� is injective then the inequality is actually always strict� This leads to subtle

di	erences between the various de�nitions especially in the case of pseudo�boolean functions

that are termed unimodal� Even worse� these subtle di	erences in the de�nitions may have a

huge impact on the extent of the resulting class and its complexity� For example� Rudolph

���� ��� shows that the de�nition of unimodality used in ���� ��� includes the class of surjective

boolean functions f � IB� � IB for which the unique satisfying truth assignment is sought for�

In contrast� the de�nitions given in ��� ��� ��� �albeit slightly di	erent� ensure that for every

x � IB� there exists a path along adjacent vertices of the hypercube IB� with increasing function

values leading to the global optimum� This property is also valid for unimax functions� even if

they are not injective�

In any case� the problem of maximizing unimax functions is challenging task for it is known

���� that the decision version of this problem is in NP�co�NP but it is unknown whether the

the optimization problem can be solved in polynomial time or not� The di�culty associated

with this class is caused by the existence of problem instances for which the only increasing

path along the vertices of IB� may be exponentially long� Examples for such instances have been

constructed in ��� ���� Although the general case remains an open �eld of research there is a

noteworthy result�

Proposition ����

Let the unimax �tness function f � IB� � IR be the long �Root��path problem given in �����

The expected �rst hitting time of the �� 
 ���EA can be bounded by

�a� E�T � � � 
  
 ������� �   under �M���

�b� E�T � � �� � � exp���
 under �M�� with p � �
�

if the EA starts at the bottom of the increasing path�

Proof� See ���� or ����� section ������ ut

Evidently� it is not hopeless to tackle unimax problems with evolutionary algorithms provided

they employ mutations of type �M�� with p � �
� The poor performance under mutations

of type �M�� is due to the fact that the �� 
 ���EA only can move along the path of adjacent

vertices� whereas type �M�� o	er the chance of taking shortcuts along the path by inverting

several bits simultaneously� In fact� since an exponentially long path must be folded several



times to �t into the box IB� it may be speculated that the bit patterns of elements on the path

are �relatively regular�� This regularity might be exploited by a population of individuals that

produce o	spring by some kind of crossover�recombination� Horn et al� ���� provide empirical

evidence that this conjecture is not too far�fetched�

Other hierarchies of classes of pseudo�boolean function are presented in Crama ����� Here�

the top hierarchy classes are known to be solvable in polynomial time� But already at a low

level of these hierarchies there is a problem class that reveals some limitations of evolutionary

algorithms�

De�nition ��
�

A function f � IB� � IR is called almostpositive if the coe�cients of all nonlinear terms are

non�negative� ut

An instance of this problem class is the pseudo�boolean function

f�x� � �
�X

i��

xi 
 �
 ��
�Y

i��

xi � ��

Proposition ����

The expected �rst hitting time of the �� 
 ���EA with �tness function �� can be bounded by

�a� E�T � � � under �M��� unless being started at the optimum"

�b� E�T � � � under �M�� with p � �
 with worst starting point"

�c� E�T � � � �
 ��� � ��
� under �M�� with p � �
 and random starting point�

Proof� See ����� pp� �������� ut

It should be noted that lower bounds on the expected �rst hitting time that are exponential in

 do generally not imply the absence of a bound PfF �
s � f� g � �
poly�� for some stopping

time s � poly��� For this particular problem� however� this implication is unfortunately true�

Two points in conclusion� First� the behavior of evolutionary algorithms can be studied

numerically provided that the transition matrix of the associated Markov chain is known ���� ����

But this approach is manageable only for moderately large populations and problem dimensions

because of the exponentially growing transition matrices and the inevitable rounding errors

during the calculations� Moreover� this approach does not lead to theoretical results as they

were presented here� The size of the state space and hence the transition matrices can be

decreased considerably by a technique that is called lumping or grouping of states ��� This

technique in conjunction with a modi�cation of the original Markov chain to a simpler Markov

chain with either better or worse performance than the original one is extensively exploited in

the proofs cited in this section�

Second� Vit#anyi ���� suggested to seek for evolutionary algorithms whose associated Markov

chain is rapidly mixing� i�e�� Markov chains that quickly approach their stationary distribution�

Assume that the Markov chain reaches stationarity up to some small � � � in a number of

iterations that is a polynomial in � If the probability of being in an optimal state is larger

than �
poly�� then the associated evolutionary algorithm is e�cient in the sense of De�nition



���� Although the toy problem dedicated to demonstrate this �paradigm� is not convincing

�since pure random search works equally well for this problem� the idea itself deserves closer

examination�

�� Beyond Finite State Space and Discrete Time

���� In�nite Population Size

Even if the search set X is �nite� the state space of the Markov chain becomes in�nitely large

as soon as the population is assumed to be in�nitely large� Since the point of view from an

in�nitely large population implies that the de facto probabilistic trajectory of the evolutionary

algorithm is appropriately described by the iteration of the expected one�step transitions� it

is clear that these models may show a qualitative behavior that is completely di	erent to the

true behavior of an evolutionary algorithm with a �nite population� Vit#anyi ���� o	ers a nice

example of this fact� But under certain conditions� these models can lead to considerable insight

into the dynamics of evolutionary algorithms �����

The popularity of in�nite population models with �nite search space ��� �� ��� ��� ���

��� ��� ��� ��� ��� is probably due to the fact that an in�nite population in conjunction with

the smoothing e	ect of the expectation operator leads to a non�linear deterministic dynamical

system with continuous state space� Although such dynamical systems are easier to characterize

than those with probabilistic and discontinuous state transitions� much work has been devoted

to the determination of these systems� �xed points and their stability ���� �� ��� ��� ��� ��� ����

The models taken from quantitative genetics ���� ��� essentially also assume in�nite popu�

lations� And not surprisingly� in�nite population models are also present in non��nite search

spaces ���� ����

���� Continuous Space and Discrete Time

In case of search space X � IR�� the convergence theory of stochastic optimization algorithms

resembling a ��
���EA dates back to the mid���s ��� and was further developed in ���� ��� ���

��� ��� under various assumptions� Interestingly� these authors did not use the theory of Markov

processes for their proofs� Instead� their proofs are solely based on the Borel�Cantelli Lemma

and its extensions� The same observation can be made in the proof of Born ����� who developed a

population�based evolutionary algorithm with �genetic load� and proved its convergence to the

optimum with probability one� The analysis of population�based algorithms relying on mutation

and selection from a Markovian point of view was exhaustively treated in ���� chapter ��� The

extension of this theory in case of additional recombination was considered in ���� ����

The modeling and analysis of non�elitist evolutionary algorithms in terms of supermartingales

�another family of stochastic processes� was suggested in ��� and extensively used in ����" even

certain EAs for multi�objective optimization can be analyzed in this manner ����� Although

this approach only o	ers su�cient conditions for global convergence with probability one it may



have a pleasant by�product� Under certain conditions one immediately obtains bounds on the

average convergence velocity� Actually� it often su�ces to determine the average convergence

velocity� For� if the EA converges in mean with a certain minimum rate then the supermartingale

convergence theorem implies convergence with probability one �see ���� for a more detailed

discussion��

In the light of this observation� the much earlier established results regarding average con�

vergence rates are graded up instantly� For example� Rechenberg ���� proved a linear average

convergence rate towards the minimum of an �dimensional equally scaled paraboloid for the

�� 
 ���EA with normally distributed mutations� Schumer and Steiglitz ���� proved the same in

case of mutations that are uniformly distributed on the surface of an �dimensional hyperball�

These results were generalized for strongly convex objective functions under spherically symmet�

ric mutation distributions ���� ��� ��� and mutations distributions with independent marginals

�����

Linear convergence rates can also be shown for EAs with a single parents but multiple o	�

spring ����� This result was later successively generalized in various directions ���� �� ��� ���

accompanied by a steady simpli�cation of the mathematical apparatus� The convergence rate

of evolutionary algorithms with multiple parents and o	spring were investigated by Rechenberg

����� Beyer ���� ���� and Rudolph ���� under various variation operators �including recombina�

tion��

So far� the publications regarding average convergence rates tacitly presupposed that the

EA is able to determine the Euclidean length of the gradient at arbitrary positions of the search

space in order to adjust the mutation distributions appropriately�an assumption that is usually

not justi�ed in practice� In real world evolutionary algorithms this task is accomplished by a

mechanism termed  self�adaptation� �see e�g� ������ but� despite �rst steps in this direction �����

a mathematically rigorous proof of this property is still pending�

���� Continuous Space and Time

Evolutionary algorithms with continuous time may be interpreted as follows� The period between

the completion of two successive reproduction cycles is interpolated� In this case� the truly

discrete time process is embedded into continuous time� Then� combining the theory of analysis

and probability� one shows that a convergent subsequence may be extracted and identi�es the

limit of the sequence as a solution of an ordinary di	erential equation� This general approach

was developed by Ljung ���� and subsequently extended by many others� The monograph by

Benveniste et al� ���� o	ers a detailed account on this method� So�called stochastic approximation

algorithms have been extensively studied in this manner� Yin et al� ��� ��� showed that some

versions of evolutionary algorithms may be formulated as stochastic approximation algorithms

so that only few modi�cations to the existing theory for stochastic approximations algorithms

led to various conditions for global convergence with probability one or weaker modes�

Ebeling and various coauthors ���� ��� ��� ��� ��� took a more abstract point of view� They

speci�ed continuous�time models via di	erential equations that should behave similar to existing



evolutionary algorithms� For example� the FisherEigen equation

�

�t
P �x� t� � �f�x�� �f ��P �x� t� 
 D$P �x� t� ���

where D � � is a di	usion constant� $ the Laplace operator� and

�f � �t� �

R
f�x�P �x� t� dxR
P �x� t� dx

the average of the population�s �tness at generation t � �� models proportional selection by

the �rst term in equation ��� and mutations via a Gaussian di	usion process by the second

term� Under certain conditions on the �tness function f�
� the solution of equation ��� permits

the determination of the limit �t � �� of the population�s distribution P �x� t� at time t � ��

A more thorough presentation of this approach was given by A%elmeier ����� Although this

approach principally presupposes an in�nitely large population� the dynamics of P �x� t� often

characterizes the dynamics of the discrete time EA surprisingly well�

	� Concluding Remarks

This survey is an attempt to summarize �nite Markov chains results in the �eld of evolutionary

computation� The main focus was devoted to the limit and �nite time behavior of evolution�

ary algorithms� But there are of course other theoretical questions that might be of interest�

Moreover� there are also other techniques and tools that have been applied to examining speci�c

properties of evolutionary algorithms� Apart from Markov chains one can �nd methods like

schema analysis� dimensional analysis� orthogonal functions analysis� as well as approaches via

quantitative genetics� statistical physics� and quadratical dynamical systems �see ����� for a brief

introduction and key references��

But despite these enhanced activities during the last decade we currently have not more than

a �rst layer of a theoretical foundation of evolutionary computation� Needless to say� there are

many challenges that must be encountered in future�but their coverage would not only be a

contribution to the �eld of evolutionary computation but also to the more general �eld of the

analysis of complex systems�
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