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Abstract� The standard choice for mutating an individual of an evolu�
tionary algorithm with continuous variables is the normal distribution	 It
is shown that there is a broad class of alternative mutation distributions
o
ering local convergence rates being asymptotical equal to the conver�
gence rates achieved with normally distributed mutations	 Such mutation
distributions must be factorizing and the absolute fourth moments must
be �nite	 Under these conditions an asymptotical theory of the conver�
gence rates of simple evolutionary algorithms can be established for the
entire class of distributions	

� Introduction

The standard choice to represent mutations in evolutionary models dealing with
continuous quantities is the normal distribution� This choice is usually justi�ed
by the central limit theorem� Since mutations in nature are caused by a variety
of physical and chemical in�uences that are not identi�able or measurable to
a degree that allows for a deterministic model� these in�uences are considered
as independent random perturbations whose normed sum approaches a normal
random variable in the limit� provided that the �rst two absolute moments of
the distributions of these random perturbations are �nite and that the so�called
Lindeberg condition is obeyed� Therefore it is not surprising that evolutionary al	
gorithms with continuous search space model mutations by normally distributed
random variables as well� But the biological original needs not necessarily be
the best choice when mutations play the role of an exploration operator
as it
is the case in evolutionary algorithms �EAs�� It was noted several times 
�� �� ��
that mutation distributions with slowly �i�e�� not exponentially� decreasing tails
should o�er a larger probability to escape from local optima �also see �g� � �
��� Although this claim is certainly correct if the variance is held �xed� it is still
an open question whether this theoretical property carries over to practical EAs
employing an auto�adaptive adjustment of the variances� But this question will
not be addressed here� Instead� it is investigated to which extent non�normal
mutation distributions may a�ect the local convergence behavior of evolutionary
algorithms�

Two simple evolutionary algorithms will be studied here� The ������EA and
the ��� ���EA� The �rst one generates a single o�spring by mutation and accepts
the o�spring only if it is better than the parent� whereas the latter one generates



Fig� �� The shape of some symmetrical univariate distributions with zero mean and
unit variance	
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Table �� Probability density functions of some symmetrical univariate distributions
with zero mean and unit variance	

� � � o�spring independently with the same mutation distribution and chooses
the best o�spring among the � o�spring to serve as new parent �regardless of
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Fig� �� The decay of the right tails of the symmetric Normal� Logistic� Laplace� and
Student distribution	 The tails of the �rst three distributions decline exponentially
whereas the tail of the Student distribution �with � degrees of freedom
 follows a
power law	

the quality of the old parent�� If � � IRn denotes the current position of the EA
in the search space� then a mutation is modeled by adding a random vector Z
that must ful�ll some conditions �details will follow shortly�� Thus� an o�spring
X is represented by the random variable X � � � Z�

The test problem is the minimization of the objective function f�x� � x� x

with x � IRn� It will be assumed that n is large �n � ����� This test function
re�ects to some extent the case of a local optimum� and it is usually used to assess
the local convergence behavior of evolutionary algorithms� To be comparable to
previous work� this common practice is followed here�
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� Asymptotical Results

The fundamental assumption made in the remainder is that it will be postulated
that the product moments of random vector Z do exist up to order �� Further
conditions on Z are given in the de�nition below which speci�es the distribution
class of random vector Z�

De�nition�� The distribution of random vector Z is termed a mutation distri�
bution if E
Z � � �� In this case� random vector Z is called a mutation vector�
A mutation distribution is said to be factorizing if the joint probability density
function of the mutation vector Z can be written as

fZ�z�� � � � � zn� �
nY
i��

fZi
�zi�

with fZ�
��� � � � � � fZn

��� where n denotes the dimension� �

Let Z possess a factorizing mutation distribution� Since the random objective
function value of an o�spring is given by

f�� � Z� �
nX
i��

��i � Zi�
�

each of the summands above is mutually independent to the remaining ones�
As a consequence� the objective function value is representable by a sum of
independent random variables� If such a sum is appropriately normed� then its
distribution converges to some limit distribution as n � �� This fact will be
exploited to develop an asymptotical theory with regard to the convergence rates�
In order to obtain the desired norming constants some preparatory results are
necessary�

Lemma�� Let Z be a symmetrical random variable with E
Z�k�� � � � for
k � IN and set X � � �Z with � � IR� Then E
X� � � �� � E
Z� � and V
X� � �
� �� E
Z� � � V
Z� �� �

The proof of this lemma is trivial and therefore omitted while the next result is
an immediate consequence of the lemma above�

Proposition�� Let Z�� � � � � Zn be independent and identically distributed sym	
metrical random variables with E
Z�k��

i � � � for i � �� � � � � n and k � IN� If
Xi � �i � Zi and Sn �

Pn
i��X

�
i then

E
Sn � � k�k� � nE
Z�
� �

V
Sn � � � k�k� E
Z�
� � � nV
Z�

� �

where � � IRn and k � k denotes the Euclidean norm� �

�



The central limit theorem �see 
��� p� ���� ensures that the distribution of the
appropriately normed random scalar product Sn � X�X � kXk� converges
weakly to the standard normal distribution� Thus� since

Sn � E
Sn �

V
Sn ����
�� N � N ��� ��

as n�� one obtains

Sn � E
Sn � � V
Sn �
��� � N

� k�k� � nE
Z� � � �� k�k� E
Z� � � nV
Z� � ���� � N� ���

Let �� � V
Z � � E
Z� � and suppose that V
Z� � � a �� � aV
Z �� for some
a � �� Then the random variable Sn�k�k� can be written as

Sn
k�k� � � �

�

n

�
�� �

�
� �� �

a ��

n

����

� N
�

���

where � � n ��k�k� After having established this approximation one can begin
to calculate the expected asymptotical progress rates for the ������EA and the
��� ���EA provided that the objective function is f�x� � kxk�� At �rst consider
the �� � ���EA� Assume the current position is � � IRn� Since the �� � ���EA
only accepts improvements the relative progress is given by

E

�
max

�k�k� � k� � Zk�
k�k� � �

�	
� E

�
max

�
�� Sn

k�k� � �
�	

�

It will be useful to normalize the relative progress by the dimension n� This
quantity will be called normalized progress� Owing to eqn� ��� one obtains the
normalized progress

E

�
max

�
n

�
�� Sn

k�k�
�
� �

�	
� E
maxf��� � �

p
� � a ���n �N� �g � � ���

Proposition�� Let �� � V
Z � � E
Z� � and suppose that V
Z� � � a �� �
aV
Z �� for some a � �� If n	 � then the expected normalized progress rate of
the �� � ���EA is asymptotically given by

h��� a� n� � � �

r
� �

a ��

�n
	

�
�

�

r
�n

�n� a ��

�
� �� 


�
��

�

r
�n

�n� a ��

�
with � � n ��k�k and where 	��� and 
��� denote the probability density and
distribution function of the standard normal distribution� respectively�

Proof	 Let W � ��� ��
p
� � a ���n �N with N � N ��� ��� The expected nor	

malized progress as given in eqn� ��� becomes E
maxfW� �g �� Since maxfW� �g �
W � �������W �� where �A�x� is the indicator function of set A� one obtains

E
maxfW� �g � � E
W ��������W � � �

�Z
�

w

�
p
� � a ���n

	



w � ��

�
p
� � a ���n

�
dw

�



where 	��� is the probability density function of the standard normal distribu	
tion� The determination of the integral yields the desired result� �

In principle� the same kind of approximation was presented in 
�� for the special
case of normally distributed mutations� Additionally� it was argued that the term
a ���n in eqn� ��� becomes small for large n so that this term can be neglected�

As a consequence� the random variable W reduces to fW � ��� � � � � N and
the expected normalized progress becomes

�h��� � � � � 	����� � �� �
������
attaining its maximum �h���� � �������� at �� � ����� which is exactly the
same result established �� years earlier by Rechenberg 
��� Since all factoriz	
ing mutation distributions �with �nite absolute moments� in Proposition � only
distinguish from each other by the constant a� an analogous argumentation for
an arbitrary factorizing mutation distribution leads to the result that the nor	
malized improvement is asymptotically equal for all factorizing mutation distri	
butions� Evidently� this kind of approximation is too rough to permit a sound
comparison of the progress o�ered by di�erent factorizing mutation distributions�

distribution a �� h���� a� ���


Normal � �	����� �	�����

Logistic ���� �	����� �	�����

Laplace � �	����� �	�����

Student �d � �
 � �	����� �	�����

Table �� Optimal expected normalized progress rates for the �� � �
�EA for some
factorizing mutation distributions in case of dimension n � ��� under the assumption
E� maxfn ��� Sn�k�k�
� �g � � h��� a� n
	

Table � summarizes the optimal expected normalized progress rates for some
factorizing mutation distributions under the assumption that the approximation
of Proposition � is exact� The surprising observation which can be made from
Table � is that the normal distribution is identi�ed as yielding the least progress
compared to the other distributions� provided that the assumption h��� a� n� 

E
maxfn ���Sn�k�k��� �g � holds true� The validity of this assumption� however�
deserves careful scrutiny since the norming constants an � E
Sn � and b�n �
V
Sn � used in the central limit theorem do not necessarily represent the best
choice for a rapid approach to the normal distribution� In fact� there may exist
constants �n� �n obeying �n � bn and �n � an � o�bn� that lead much faster
to the limit 
�� p� ����� As a consequence� it may happen that the ranking of
the distributions in Table � is reversed after using these �unknown� constants�
Thus� unless the error of the approximation of Proposition � has been quanti�ed�
this kind of approximation is also too rough to permit a sound ranking of the

�



mutation distributions� Nevertheless� the small di�erences in Table � provide
evidence that �at least for n � ���� every factorizing mutation distribution o�ers
a local convergence rate being comparable to that of a normal distribution�

The quality of the approximation in Proposition � can be checked in case
of normally distributed mutations� As shown in 
��� the random variable Vn �
Sn�k�k� follows a noncentral 
� distribution with probability density function

fVn�v� �� �
��

�
v�n����� exp

�
��� �v � ��

�

�
In������

�pv� � �������v�

where Im��� denotes the mth order modi�ed Bessel function of the �rst kind
and where � � k�k�� is the noncentrality parameter� Since Vn � � one obtains
maxfn ��� Vn�� �g � n ��� Vn� � �������Vn� and hence

g�n� �� � E
maxfn ��� Vn�� �g � � n

�Z
�

��� v� fVn �v� �� dv � ���

This integral can be evaluated numerically for any given n and �� Since � � k�k��
and � � n ��k�k it remains to maximize the function g�n� �� � g�n� n��� with
respect to � � �� For example� in case of n � ��� a numerical optimization leads
to �� � ����� with g�n� n���� � ������� Figures � � � show that the optimal
variance factor �� and the optimal normalized progress g�n� n���� quickly stabi	
lizes for increasing dimension n� In fact� the theoretical limits are almost reached
for n � ���

A similar investigation might be made for other mutation vectors Z with
factorizing mutation distributions� if the distribution of Sn �

Pn
i����i � Zi��

were to be known� But this does not seem to be the case� For this reason and
realizing that the knowledge of the true limits is of no practical importance� it
is refrained from taking the burden of determining the density of Sn for other
mutation vectors�

Even numerical simulations do not easily lead to a statistically supported
ranking� Although the average of the outcomes of random variable

Y � maxfn ��� Sn�k�k��� �g
is an unbiased point estimator of the expectation� there is neither a standard
parametric nor standard nonparametric test permitting a statistically supported
decision which mean is the largest among the random variables Y generated from
di�erent mutation distributions� For example� the parametric t�test presupposes
at least approximative normality of Y whereas the nonparametric tests require
the continuity of the distribution function of Y � Neither of these requirements is
ful�lled� so that it would be necessary to develop a specialized test for this kind
of random variables� This is certainly beyond the scope of this paper�

Instead� the attention is devoted to the expected progress rates of the ��� ���
EA� Since this EA generates � � � o�spring independently with the same dis	
tribution and accepts the best among them� the expected progress is simply

E
 max
i��������

fk�k� � k� � Zik�g � �

�



Fig� �� The optimal variance factor �� in case of normal mutation vectors for increasing
dimension n	

Following the lines of Proposition � and owing to eqn� ��� the normalized ex	
pected progress is approximately

h��� a� n� � ��� � �
p
� � a ���n � E
N��� � ���

where N��� denotes the maximum of � independent and identically distributed
standard normal random variables� Let c� � E
N��� �� Then the optimal expected
normalized progress rate of the ��� ���EA is attained at

�� �



� c��

�� a c���n�
p
�� a c���n

����
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Fig� �� The optimal normalized progress g�n� n���
 in case of normal mutation vectors
for increasing dimension n	

which reduces to ��� � c� as n��� In general� the relation h���� a� n� � c�� is
valid� Moreover� h��� a � �� n� � h��� a� n� for arbitrary � � � and � � � which
follows easily from eqn� ���� Consequently� the expected progress becomes larger
for increasing a � �� provided that the approximation given in ��� holds with
equality� But it has been seen in case of the ��� ���EA that this approximation
does not permit a sound ranking of the distributions� At this point there might
arise the question for which purpose the approximations presented in this paper
are good for at all� The answer is given in the next section�
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� Conclusions

Under the conditions of the central limit theorem an asymptotical theory of the
expected progress rates of simple evolutionary algorithms has been established�
If the mutation distributions are factorizing and possess �nite absolute moments
up to order �� then each of these distributions o�er an almost equally fast ap	
proach to the �local� optimum� The optimal variance adjustment w�r�t� fast local
convergence is of the type �k � � kXk �x�k�n for each of the distributions con	
sidered here� This implies that the self�adaptive adjustment of the �step sizes 
originally developed for normal distributions needs not be modi�ed in case of
other factorizing mutation distributions� In the light of the theory developed in

�� it may be conjectured that these results carry over to population�based EAs
without crossover or recombination�

Finally� notice that Student!s t�distribution with d degrees of freedom con	
verges weakly to the normal distribution as d � � whereas it is called the
Cauchy distribution for d � �� All results remain valid for d � �� Lower values
of d cannot be investigated within the framework presented here� since it was
presupposed that the absolute moments of Z are �nite up to order �� If these
moments do not exist the central limit theorem does not hold true� Rather� then
there emerges an entire class of limit distributions 
�� as already mentioned in

��� But this case is beyond the scope of this paper and it remains for future
research�
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