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Abstract. The takeover time is the expected number of iterations of some selec-
tion method until a population consists entirely of copies of the best individual
under the assumption that only one best individual is contained in the initial popu-
lation. This quantity may be used to assess and compare the ‘selection pressures’
of selection methods used in evolutionary algorithms. Here, the notion is gener-
alized from spatially unstructured to structured populations. Lower bounds are
derived for arbitrary connected neighborhood structures, lower and upper bounds
for array-like structures, and an exact closed form expression if the neighborhood
structure is a ring.

1 Introduction

The notion of the takeover time of selection methods used in evolutionary algorithms
was introduced by Goldberg and Deb [1]. Suppose that a finite population of size n
consists of a single best individual and n � � worse ones. The takeover time of some
selection method is the expected number of iterations of the selection method until the
entire population consists of copies of the best individual. Bäck [2] has remarked that
the calculations in [1] for spatially unstructured (i.e., panmictic) populations implicitly
assume a guaranteed survival of at least one copy of the best individual in order to
avoid extinction of the best individual by chance. Without this assumption the takeover
time may become infinite for some selection methods. Therefore, Chakraborty et al. [3]
have calculated the takeover probability of such selection methods numerically via a
Markovian base model.

Thierens and Goldberg [4], Bäck [5], as well as Blickle and Thiele [6, 7] deter-
mined the selection intensity of selection methods, a notion adopted from quantitative
genetics [8] and introduced in the field of evolutionary computation by Mühlenbein and
Schlierkamp-Voosen [9]. This quantity may be used to derive the takeover time if the
initial population’s distribution differs from the original definition given above. This
approach also neglects extinction by chance.

In case of spatially structured populations Sarma and De Jong [10, 11] postulated
that the growth of the number of copies of the best individual obeys a logistic law and
they fitted their empirical growth curves with a logistic function. Gorges-Schleuter [12]
also investigated those growth curves numerically and she approximated the takeover
time under the assumption of an infinitely large population. Sprave [13] modeled spa-
tially structured populations by means of hypergraphs and developed a method to esti-
mate growth curves and takeover times by replacing transition probabilities by expected



transition rates. Needless to say, neither of these approaches took potential extinction
by chance into account.

Here, the analysis focuses on those selection methods in spatially structured popu-
lations in which extinction by chance is excluded. Section 2 presents the graph-based
model whereas section 3 contains the main results: Some bounds on the takeover time
for general population structures, upper bounds and an approximation for array-like
population structures, and an exact closed form expression if the population structure is
a ring. Section 4 contains a conjecture that points to future work.

2 Spatially Structured Populations

Before the presentation of the model of selection in section 2.2, the basic terminology
regarding graphs is briefly recalled in section 2.1 because these terms will be used
frequently throughout the paper.

2.1 Graphs

A graph G � �V � E� consists of a finite nonempty set V of vertices (or nodes) and a
collection E of pairs of vertices from V . Each pair e � E � V �V is termed an edge. If
�u� v� is an edge then u and v are adjacent or neighboring vertices and �u� v� is said to
be incident to u and v. An edge �v� v� for some v � V is called a self-loop. The degree
deg�v� of a vertex v is the number of edges that are incident to v. A graph is termed
regular if each of its vertices has the same degree.

A path in a graph G is a finite sequence of distinct vertices �v�� v�� � � � � vk� such
that �v�� v��� �v�� v��� � � � � �vk��� vk� are edges in G. A graph G is connected if for each
vertex u there is a path �u � v�� v�� � � � � vk � v� to each other vertex v. The length of
a path �v�� v�� � � � � vk� between v� and vk is k � �, i.e., the number of edges along the
path. The distance dist�u� v� between vertices u and v is the length of the shortest path
between u and v. The diameter diam�G� � maxfdist�u� v�ju� v � Vg of a graph is the
maximum of the distances between all pairs of vertices.

According to Babai [14] isomorphism of undirected graphs are bijections of vertex
sets preserving adjacency as well as non-adjacency. Consequently, automorphisms are
G � G isomorphisms. An undirected graph G is said to be vertex-transitive if for each
pair of vertices u and v there is an automorphism � of G such that ��u� � v. Notice
that each vertex-transitive graph is regular whereas the converse is wrong in general.
Vertex-transitive graphs have the property that “the graph looks the same” viewed from
each vertex. Those graphs are frequently used to define the neighborhoods in spatially
structured populations.

2.2 Modeling Selection on Graphs

Let G � �V � E� be an undirected connected graph with jVj � n. Each vertex i � V
is associated with an individual of the evolutionary algorithm, i.e., individual i may
be seen as the value of vertex i � V . The spatial structure of the population is de-
fined by the set of edges: The neighborhood of individual/vertex i consists of all those
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individuals/vertices that are adjacent to i. Notice that vertex i may belong to its own
neighborhood if self-loops are allowed.

Since there exist numerous selection procedures in the field of evolutionary compu-
tation, it is useful to abstract from specific methods. For this purpose assume that the
selection procedure is split into two stages: In the first stage an individual is chosen from
the neighborhood of each individual according to some method. In the second stage for
each individual it is decided whether the previously chosen individual will be adopted
or not. Now all selection procedures can be characterized by the following probability
values: Let ci�k� be the probability that an individual with best fitness is chosen from
the neighborhood of individual i at step k, whereas a i�k� denotes the probability that
individual i adopts the previously chosen individual if it is worse than individual i. Ev-
idently, if the second stage is not present for some selection procedure then a i�k� � �
for all i � �� � � � � n and k � �; this situation occurs frequently since local selection
methods that have been actually programmed in some spatially structured evolutionary
algorithm are usually simple adaptions of the programmer’s favorite global selection
method that is only occasionally equipped with an explicit second stage.

For example, one obtains ci�k� � ��� �� for proportional and ranking selection
whereas ci�k� � � for stochastic universal sampling (SUS) selection. In case of tour-
nament selection (without replacement) one has to distinguish between two cases: If
the tournament size is equal to the neighborhood size then c i�k� � � and otherwise
ci�k� � ��� ��.

3 Takeover Time on Graphs

3.1 Definitions

Let G = (V,E) with jVj � n be an undirected connected graph representing the neigh-
borhood structure. The random variables Vi�k� � f�� �g are the value of vertex i � V
at iteration k � � where the value � indicates a copy of the best individual whereas the
value � indicates a copy of a worse one. Random variable Nk �

Pn

i�� Vi�k� denotes
the number of copies of the best individual at iteration k � �. Initially, V i��� � � for
some i � V and Vj��� � � for all j �� i such that N� � �. Notice that the stochas-
tic process fNk � k � �g is not necessarily Markovian since it is a function of the
Markov chain f�V��k�� V��k�� � � � � Vn�k�� � k � �g. In general, fNk � k � �g has
absorbing states at � and n. The random time until absorption is called the absorption
time A � minfk � � � Nk � � 	 Nk � ng. Absorption at state n occurs with prob-
ability PfNA � n g and absorption at state � with probability PfNA � � g. Clearly,
PfNA � � g�PfNA � n g � �. In [3] PfNA � n g was termed the takeover proba-
bility and we may call PfNA � � g the extinction probability in the context considered
here. If the extinction probability is not zero then the definition of a takeover time is
problematic. Moreover, in publications of numerical experiments it is usually undoc-
umented which quantities have been estimated actually: Candidates are the absorption
time E�A 	, the absorption time E�A jNA � n 	 conditioned by the event of absorption
at state n, and even PfNA � n g 
 E�A jNA � n 	. These quantities are related via

E�A 	 � E�A jNA � � 	 
 PfNA � � g� E�A jNA � n 	 
 PfNA � n g �
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Evidently, if the extinction probability PfNA � � g is zero such problems disappear
and the notion of the takeover time is clear without ambiguity.

Definition 1. Let the random sequence fNk � k � �g with N� � � represent the
number of copies of the best individual at iteration k � � of some selection method
acting on a population of size n. If the extinction probability is zero then E�T 	 with
T � minfk � � � Nk � ng is called the takeover time of the selection method.
In case of spatially structured populations the quantity E i�T 	, denoting the takeover
time if vertex i contains the initial �, is termed the takeover time with initial vertex
i. The takeover time is then given by E�T 	 � �

n

P
i�V Ei�T 	 assuming a uniformly

distributed emergence of the first � among all vertices.

Finally, it must be specified how the selection method affects the value of each vertex.

Definition 2. Let ci�k� be the probability that the selection method chooses the best
individual in the neighborhood of vertex i � V at step k � � and a i�k� the probability
that individual i adopts the previously chosen individual if it is worse than i. Then
PfVi�k � �� � � jVi�k� � �g � ci�k� is termed the upgrade probability of vertex i at
step k whereas PfVi�k � �� � � jVi�k� � �g � �� � ci�k�� 
 ai�k� is the downgrade
probability.

The theoretical analysis presented here will be restricted to selection methods where
either ci�k� � � or ci�k� � ��� �� � ai�k� � �. This will be the general assumption
hereinafter. As a consequence, the downgrade probability is always zero which in turn
implies that the extinction probability is zero as well.

3.2 General Results

The derivation of sharp lower bounds on the takeover time is almost trivial:

Proposition 1. Let G be an undirected connected graph. Then

E�T 	 �
�

n

X
i�V

maxfdist�i� j� � j � Vg

for all selection methods with downgrade probability zero. If the upgrade probability is
1 then the inequality becomes an equality.
Proof: Evidently, the fastest spread of �s over arbitrary connected graphs is achieved if
the upgrade probability is 1 (which implies a zero downgrade probability). In this case
exactly maxfdist�i� j� � j � Vg iterations are necessary to fill all nodes with �s from
initial vertex i. If the upgrade probability is less than one then additional iterations may
be required.

This results can be sharpened for a special family of graphs.

Proposition 2. Let G be a vertex-transitive graph. Then E�T 	 � diam�G� for all selec-
tion methods with downgrade probability zero. If the upgrade probability is 1 then the
inequality becomes an equality.
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Proof: Since G is vertex-transitive the takeover times are identical regardless of the
initial vertex. Again, the fastest spread of �s is obtained if the upgrade probability is 1.
In this case the takeover time is

�

n

X
i�V

maxfdist�i� j� � j � Vg � maxfdist�i� j� � i� j � Vg � diam�G��

If the upgrade probability is less than 1 then additional iterations may be required.

3.3 Array

Let G � �V � E� be an array with jVj � n and E � f�i� i � �� � i � �� � � � � n � �g.
In this case the upgrade probability is identical for each vertex. Suppose that the initial
vertex is i � �. Vertex 2 upgrades from 0 to 1 with (upgrade) probability p, whereas
vertices 
� � � � � n will keep the value �. As soon as vertex � has upgraded, vertex 

will upgrade with probability p, whereas vertices �� � � � � n will stay at value �. And so
forth until vertex n is upgraded. Thus, the random time required for upgrading vertex
i � � if vertex i has value � is a geometrically distributed random variable G i with
E�Gi 	 � ��p and V�Gi 	 � ���p��p�. Since G�� � � � � Gn�� are mutually independent
it follows that

E��T 	 �
n��X
i��

E�Gi 	 �
n� �

p
and V��T 	 �

n��X
i��

V�Gi 	 �
�n� �� ��� p�

p�
�

Clearly, E��T 	 � En�T 	 and V��T 	 � Vn�T 	. Now suppose that the initial vertex
is i � f�� � � � � n � �g. In this case there are two independent processes starting at i,
one process upgrades the vertices to the left until vertex �, the other one upgrades the
vertices to the right until vertex n. If H� and H� are the independent absorption times
of the two processes then Ei�T 	 � Ei�maxfH��H�g 	 � maxfEi�H� 	�Ei�H� 	g �
maxfi� �� n� ig�p. This leads to the lower bound

E�T 	 �

�����
����


n� �

� p
, n even


n� �

� p

�
��

�

n

�
, n odd

that reduces to the lower bound in Proposition 1 if p � �. To obtain the exact value
for Ei�maxfH��H�g 	 one needs the distribution of the random variables H� and H�.
Since they are sums of independent geometric random variables they have a negative
binomial distribution with

PfH � k g �

�
k � �

m � �

�
pm ��� p�k�m

where m � fi��� n� ig denotes the number of necessary upgrades until absorption. If
i� � � n� i then H� and H� have the same distribution and one may use the result of
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Young [15] who derived a formula for the expectation of the minimum of independent
and identically distributed negatively binomial random variables. One obtains the ex-
pectation of the maximum via the identitymaxfH��H�g � H��H��minfH��H�g.
Alternatively, one may use the asymptotical expression developed in [16] for the ex-
pectation of the maximum. But in the situation considered here the random variables
H� and H� are generally not identically distributed. Although there is no problem in
calculating the exact values via

E�minfH��H�g 	 �
�X
k��

PfminfH��H�g � k g �
�X
k��

PfH� � k g 
 PfH� � k g

a closed form expression is difficult to achieve. Therefore an upper bound will be
derived now. Notice that Ei�H� 	 � �i � ���p, Ei�H� 	 � �n � i��p, Vi�H� 	 �
�i������p��p� and Vi�H� 	 � �n� i����p��p� . Owing to the identity maxfa� bg �
�a� b� ja� bj��� the expectation of the random variable jH��H�jmust be bounded.
Since

Ei� jH��H�j 	
� � Ei� �H� �H��

� 	 � Vi�H��H� 	 � Ei�H��H� 	
�

� Vi�H� 	 � Vi�H� 	 � �Ei�H� 	� Ei�H� 	�
�

�
�n� �� ��� p�

p�
�

�
� i� n� �

p

��

one immediately obtains

Ei�maxfH��H�g 	 �
n� �

� p
�

�

� p

p
�n� ����� p� � �� i� n� ���

�
n� �

� p
�

�

� p

p
n �n� ��

�
n� �

� p
�

n� ���

� p

and finally E�T 	 � ��n� 
���� p�.

3.4 Ring

If the spatial structure is a ring then the upgrade probabilities are identical for each
vertex. Since a ring is vertex-transitive the takeover time does not depend on the initial
vertex.

Proposition 3. Let G be a ring of size n � �. The takeover time of a selection method
with upgrade probability p � ��� �� and downgrade probability zero is recursively de-
terminable via

E�Tn�� 	 �
�

p ��� p�
�

� ��� p�

�� p
E�Tn 	 �

p

�� p
E�Tn�� 	 (1)

for n � 
 where E�T� 	 � ��p and E�T� 	 � �
� � p���� p� p��.

6



Proof: If n � � the only empty vertex is reached with probability p in one step. Thus,
T� is geometrically distributed with E�T� 	 � ��p. Let n � 
. At the beginning, exactly
one empty vertex is reached in one step with probability � p ���p� whereas both empty
vertices are reached simultaneously in one step with probability p�. Thus, the probabil-
ity to reach at least one empty vertex in one step is � p ��� p� � p� � p �� � p�. This
happens after ���� p� p�� steps on average. Assume the event has happened. Then a
single empty vertex has been reached with probability � p ��� p���� p ��� p�� p�� �
� ��� p����� p�. The mean time to reach the last empty vertex is again ��p so that

E�T� 	 �
�

p ��� p�
�

� ��� p�

�� p


�

p
�


� � p

p ��� p�
�

The argumentation for E�T� 	 is easily generalized: E�Tn�� 	 consists of the time to
“leave” the initial vertex plus either the time E�Tn 	 if only one vertex has adopted the
� or the time E�Tn�� 	 if two vertices have adopted the �. The first event happens with
probability� ���p�����p� and the second one with probability��� ���p�����p� �
p���� p�. Putting altogether one immediately arrives at the equation (1) and the proof
is completed.

The recurrence in equation (1) can be solved by means of generating functions (see e.g.
[17], ch. 7.3). The result itself is easily verified by induction.

Proposition 4. Let G be a ring of size n � �. The takeover time of a selection method
with upgrade probability p � ��� �� and downgrade probability zero is

E�Tn 	 �
n

� p
�

�

�

�
�� ����n��

�
p

�� p

�n�� 	
� (2)

Proof: (by induction)
Insertion of n � � and n � 
 in equation (2) yields the same values for the takeover
times that have been proven in Proposition 3. Assume that the hypothesis is true for
n � 
. Insertion of the hypothesis (2) into the recursion (1) proves that the result is true
for n� � and hence for all n � �.

4 A Conjecture ... and Future Work

The results developed so far seem to indicate that the takeover time depends to a smaller
extent on the selection method itself than on the diameter of the underlying neighbor-
hood structure. A careful examination of this conjecture is desirable.
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