
Faster S-Metric Calculation by Considering Dominated
Hypervolume as Klee’s Measure Problem

Nicola Beume and Günter Rudolph

University of Dortmund, Department of Computer Science, Chair of Algorithm Engineering,
44221 Dortmund, Germany,

{nicola.beume,guenter.rudolph}@udo.edu,
http://ls11-www.cs.uni-dortmund.de/

Abstract
The dominated hypervolume (orS-metric) is a commonly accepted quality measure for
comparing approximations of Pareto fronts generated by multi-objective optimizers.
Since optimizers exist, namely evolutionary algorithms, that use the S-metric internally
several times per iteration, a faster determination of the S-metric value is of essential
importance. This paper describes how to consider the S-metric as a special case of a
more general geometrical problem calledKlee’s measure problem (KMP). For KMP an
algorithm exists with run timeO(n logn + nd/2 log n), for n points ofd ≥ 3 dimen-
sions. This complex algorithm is adapted to the special caseof calculating the S-metric.
Conceptual simplifications of the implementation are concerned that save on a factor of
O(logn) and establish an upper bound ofO(n logn + nd/2) for the S-metric calcula-
tion, improving the previously known bound ofO(nd−1).

Key Words
Multi-objective optimization, evolutionary algorithms,performance assessment, hyper-
volume, S-metric, Klee’s measure problem.

1 Introduction

In multi-objective optimizationd objective functionsf = (f1, . . . , fd) are given with
fi to be minimized. Since these objectives typically are conflicting, we do not search for
one optimal solution, but for a set of good compromise solutions. Vectorsa andb are
assumed to bed-dimensional vectors composed of objective values ofd minimization
problems. These vectors are partially ordered according tothe component-wise order.
A vector a weakly dominates vectorb (a � b) if ai ≤ bi for all i ∈ {1, . . . , d}. If
(a � b) holds and additionallya 6= b, thena dominates b, denoted(a ≺ b). Distinct
pointsa, b are comparable if eithera � b orb � a, and incomparable otherwise. A set
M is callednon-dominated if no two elements exist that are comparable to each other
according to the dominance relation. Minimal elements of the partially ordered domain
of the d objectives are called Pareto optimal. The set of all Pareto optimal objective
vectors is calledPareto front. For a comprehensive introduction to Pareto optimization
with evolutionary algorithms see e.g. Deb [1] or Coello Coello et al. [2].

The purpose of Pareto optimization is to obtain a good approximation of the Pareto
front. Approximations are non-dominated sets, whose elements shall be near to mem-
bers of the Pareto front, be well distributed along the wholePareto front and shall con-

tain many elements. The quality of the approximation of the Pareto front can be valued
by various measures (calledmetrics). Among these metrics, the S-metric developed by
Zitzler and Thiele [3] is of exceptional interest. It is considered to be a rather fair mea-
sure, because it has nearly optimal properties concerning the outperformance relations
which transfer the partial order among vectors to sets of vectors. Considering two sets,
the S-metric is the only unary measure that always values thebetter set higher and a
higher value indicates that the set is not worse (cf. Zitzleret al. [4]).

The S-metric valuates a set of non-dominated solutions in the objective space by the
hypervolume that is dominated by the set. The dominated hypervolume corresponds
to the size of the region of the objective space (bounded by a reference point) which
contains solutions being weakly dominated by at least one ofthe members of the set.
The metric value is to be maximized. Each membery of a setM weakly dominates a
region in the objective space shaped like an infinite hypercuboid h∗(y) = [y1,∞] ×
. . . × [yd,∞] (in case the domain is infinite). These hypercuboids become finite by
bounding them with a reference pointr, which has to be dominated by each member
of the setM : h(y) = [y1, r1] × . . .× [yd, rd]. The S-metric is the hypervolume of the
union of the weakly dominated hypercuboids, whereas severally covered regions are
counted once. The formal definition is based on the Lebesgue measureΛ:

S(M, r) = Λ
({

⋃

h(y) | y ∈ M
})

. (1)

Two algorithms have been developed for calculating the S-metric, namely LebMea-
sure by Fleischer [5] and HSO described independently by Zitzler [6] and Knowles [7].
These algorithms partition the covered space into many cuboid-shaped regions, whereas
HSO is regarded as the better one. In the worst case of HSO, thespace is partitioned
into

(

n+d−2
d−1

)

cuboids (cf. While et al. [8]), resulting in a run time ofO(nd−1). Re-
cently While et al. [9] developed heuristics for HSO, which reorder the input such that
the worst possible case is avoided. Nevertheless, it is unknown how far this improves
the exponential order of the worst case upper bound. ThusO(nd−1) has been the best
known upper bound of the S-metric which is significantly improved by the algorithm
presented here.

The following section illustrates the relationship between the dominated hypervol-
ume or S-metric and KMP. In Section 3, the main ideas of the fastest known algorithm
for KMP are described and the simplified, adapted algorithm is presented. Section 4
explains lower and upper bounds for KMP and the S-metric calculation with the men-
tioned algorithms. Finally, the last section summarizes the main results and gives hints
on the application of the algorithms and topics of future research.

2 Conversion of S-Metric to KMP

Klee’s measure problem (KMP) (Klee [10]) has originally been formulated as calculat-
ing the size of the union of a set ofn real-valued intervals. Generalized tod dimensions,
the intervals becomed-dimensional axis-parallel hypercuboids (Bentley [11]).

Beume [12] describes the trivial conversion of the dominated hypervolume to KMP
as the dominated region of each point of a non-dominated set is a hypercuboid.1 To
transform a non-dominated set to a valid input set of KMP, each objective vector is
replaced by its weakly dominated cuboid. Speaking in perception of intervals, the ob-
jective vector provides the lower bounds of thed-dimensional intervals and the refer-
ence point the upper ones. Independent of its dimension, a hypercuboid is completely
defined by providing two corners on a space diagonal. Here, wedefine the ’lower left’
(the former objective vector) and the ’upper right’ (the former reference point) corners.

For KMP, the cuboids may be positioned arbitrarily. For the considered special case
of calculating the S-metric, some properties of the set of cuboids can directly be derived
from the definitions above:

– All cuboids have the same upper bounds (upper right corner),namely the coordi-
nates of the reference point.

– No cuboid is completely contained within others since the lower bounds stem from
non-dominated points. We assume that the input set does not contain copies of
points.

Next, we transfer the vocabulary of relations of partially ordered points into terms
of geometry. A pointcovers a region if it weakly dominates its lower boundary, thus the
region is completely contained in the cuboid induced by the point. A pointpartially cov-
ers a region if its induced cuboid intersects the region. The point may weakly dominate
the region’s lower bound, be incomparable to it, or be dominated by it while dominating
its upper bound. Beware that during the algorithm, points ofdifferent dimension have
to be considered. The non-dominated points ared-dimensional and the regions in the
orthogonal partition tree are(d− 1)-dimensional as described in the following section.
For the definitions above only the first(d − 1) components of a point are considered.

3 S-Metric Algorithm adopted from KMP Algorithm

3.1 Basic Concept and Decisive Especialness

Overmars and Yap [13] developed a sweep-line algorithm thatuses a specific data struc-
ture to calculate a(d−1)-dimensional volume and performs a sweep along the remain-
ing dimension to get thed-dimensional measure. For the partitioning of the(d − 1)-
dimensional space into regions, a data structure calledorthogonal partition tree is used,
that is a binary space partition tree whose splitting lines are extensions of the axis-
parallel cuboids. An example of a non-dominated set is pictured in Figure 1.

The significant idea of Overmars and Yap’s algorithm is to notpartition the space
into empty and covered regions, but stopping the partitioning as soon as a region con-
tains atrellis. In a trellis, the cuboids that intersect the region, cover it completely in
each of the(d − 1) dimensions except one. An example of this structure is shownin
Figure 2. A cuboid that does not cover theith dimension completely is called ani-pile.
For each dimensioni, the 1-dimensional KMP of the projection of thei-piles on the

1 For convenience we will omit the prefix ’hyper’ and talk of ’volume’ and ’cuboid’ in arbitrary
dimension.

f2

f1

f3

b

c

d

e

f h

i

g

r

a

Fig. 1.The figure displays a non-dominated set of nine 3-dimensional points. The dominated vol-
ume is bounded by the reference pointr. Along eachdth coordinate, thed-dimensional space is
cut into(d−1)-dimensional slices that are stored in the orthogonal partition tree. In the example,
the 2-dimensional slices are shown by the dashed lines. Thed-dimensional volume is calculated
by computing the(d − 1)-dimensional volume with the help of the orthogonal partition tree and
sweeping along the slices in dimensiond.

ith coordinate axis is solved. Thereby the exact position of thecuboids is neglected.
Let Ki denote the value of the 1-dimensional KMP of thei-piles, andLi denote the
size of the region in dimensioni, respectively. The contained volume of the region is
calculated by the inclusion-exclusion principle (cf. Overmars and Yap [13]) in constant
time, assumingd is a constant:

∑

1≤a≤d−1

(−1)a+1

∑

1≤j1<...<ja≤d−1

∏

1≤i≤a

Kji

∏

l∈{j1,...,ja}∧l6=ji

Ll

 . (2)

For clarification, we consider a 3-dimensional KMP with 2-dimensional volume in the
regions. Then the volume is calculated as:L1K2 + L2K1 − K1K2.

L2

L1

K1

K1

K1

K1

K2 K2 K2 K2

L2

L1

K1

K2

Fig. 2.The left figure shows an example of a trellis for the general KMP. The structure on the right
arises for the specific problem of calculation the S-metric,whenever the condition of a trellis is
fulfilled.

3.2 Progression of the Algorithm

Overmars and Yap [13] describe two variants of their algorithm. On the one hand the
orthogonal partition tree is build up completely in a preprocessing step and the sweep is
performed afterwards, inserting beginning cuboids into the data structure and removing
enclosed ones. On the other hand, the data structure is buildon the fly by splitting the
current node if necessary. By recursing on the left child before the right, the partition
tree is traversed in pre-order and the sweep is simulated whenever a leaf node is reached.
This technique refers back to Overmars and Edelsbrunner [14] and is calledstreaming.
The orthogonal partition tree requiresO(nd/2) storage, whereas the streaming variant
works with linear space as only one node is considered at one time. Thus it is to be
preferred, easier to implement, and even more efficient because some special cases can
be handled easier. Here, the algorithm based on the streaming variant and adapted to the
S-metric calculation (cf. Algorithm 1) is described in detail with remarks to differences
to the original one by Overmars and Yap [13].

The main procedure of the algorithm has the following parameters.

double[][] region The current region is represented by a two-dimensional array
containing the vectors of the lower bounds and the upper bounds.

list points Points whose induced cuboids partially or completely coverregion
are stored in a listpoints.

int split The dimension at whichregion is cut to generate two child regions is
calledsplit.

double cover The value of thedth coordinate of the first cuboid that covers the
parent node’s region is stored incover.

Inputs of the algorithm are a set of non-dominated points anda reference point, thus
the cuboids are represented implicitly. The reference point r, the initial sizen of the
input set, and the dimensiond are assumed to be known globally. Before the main
procedurevolumeOY starts, the list of points is sorted ascending according to thedth

component of the vectors. This sorting will be maintained stable in all recursive calls of
volumeOY. The procedure is initially called with the whole(d−1)-dimensional space
asregion, the non-dominated input set aspoints, split= 1 andcover as the
dth coordinate of the reference pointr. A small example withn = 9 points ind = 3
dimensions is pictured in Figure 3.

The algorithm recursively splits the region, whereas the two resulting regions cor-
respond to the children nodes within the binary tree. The splitting ends when the region
contains a trellis, thus a leaf node is reached and the volumecan be calculated. The
procedurevolumeOY consists of three parts. First it is checked if a cuboid covers
region. If the remaining cuboids form a trellis, their hypervolumeis calculated. Oth-
erwise the region is further partitioned and the volume is calculated in recursive calls.

Thedth coordinate of the first covering point is saved ascoverNew and the corre-
sponding index inpoints ascoverIndex. The volume is increased by the region’s
complete(d − 1)-dimensional volume multiplied with the distance ofcoverNew to
cover. Since the listpoints is sorted according to thedth coordinate component,
the points behindcoverIndex do not add volume. These and the point itself are
discarded in the remainder of this call of the procedure by consideringpoints only

coverNew = cover; coverIndex=1; allPiles = true; bound = -1

/* is the region completely covered? */
while (coverNew == cover && coverIndex!= points.length) do

if covers(points[coverIndex], region) then
coverNew = points[coverIndex][d]
volume += getMeasure(region) * (cover - coverNew)

else coverIndex++

if coverIndex==1 then return

/* do the cuboids form a trellis? */
for i=1 to coverIndex-1 do

if !isPile(points[i], region) then allPiles = false

if allPiles then
/* calculate volume by sweeping along dimensiond */
i = 1; for j=1 to d-1 do trellis[j] = r[j]
repeat

current = points[i][d]
repeat

pile = getPile(points[i], region)
if points[i][pile] < trellis[pile] then trellis[pile] = points[i][pile]
i++
if i<coverIndex-1 then next = points[i][d] elsenext = coverNew

until current != next
volume += measure(trellis, region) * (next - current)

until next == coverNew

else
/* split region in two children regions */
repeat

intersect =∅; nonIntersect =∅
for i=1 to coverIndex-1 do

intersection = intersects(points[i], region, split)
if intersection == 1 then add(points[i][split], intersect)
if intersection == 0 then add(points[i][split], nonIntersect)

if intersect 6= ∅ then bound = median(intersect)
else ifnonIntersect.length >

√
n then bound = median(nonIntersect)

else split++
until bound != -1

/* recurse on the two children regions */
regionC = region; regionC[1][split] = bound; pointsC =∅
for i to coverIndex-1 do

if partCovers(points[i], regionC) then move(points[i], pointsC)
if pointsC 6= ∅ then volumeOY(regionC, pointsC, split, coverNew)
reinsert(pointsC, points);

regionC = region; regionC[0][split] = bound; pointsC =∅
for i to coverIndex-1 do

if partCovers(points[i], regionC) then move(points[i], pointsC)
if pointsC 6= ∅ then volumeOY(regionC, pointsC, split, coverNew)
reinsert(pointsC, points)

Algorithm 1 : volumeOY(region, points, split, cover)

f2

f1

a

b

c

d

e

f h

i

g

r

Fig. 3. Illustration of the 2-dimensional orthogonal partition tree for a 3-dimensional KMP. The
non-dominated set of Figure 1 is projected on the first two dimension. The lines show the par-
titioning of the 2-dimensional space, which is upper bounded by the gray reference pointr and
lower bounded by the contained points. The dotted lines adumbrate their induced dominated
cuboids. The orthogonal partition tree is depicted, whereas the nodes are placed alongside their
associated region. The sweep is performed along the third dimensionf3.

to index (coverIndex−1). The rear points are still required on higher levels of re-
cursion. IfcoverIndex=1, volumeOY is aborted because no points are left. In the
original description, only covering cuboids are removed. We added here, that covered
cuboids are also discarded. This is a valid supplement to thealgorithm for the general
KMP, too.

In the second part ofvolumeOY, it is checked if the induced cuboids form a trellis.
If so, the sweeping along thedth dimension is performed to calculate the contained
volume. The points with the firstdth coordinate (equal values may occur) are considered
and(d−1) 1-dimensional KMP are solved for them. The(d−1)-dimensional volume is
calculated by the inclusion-exclusion-principle according to Eq. 2 and multiplied with
the distance to the nextdth coordinate. This is done for all consecutived-boundaries
and the last distance in dimensiond is calculated as difference tocoverNew.

To solve a 1-dimensional KMP on piles, Overmars and Yap invoked a segment tree
to calculate the union of the 1-dimensional intervals. For the special case of the S-metric
calculation, this can be done significantly faster and segment trees are not necessary. In
case the cuboids fulfill the condition of a trellis, they actually form an even simpler
structure. An example is shown in Figure 2 (right). Since each cuboid extends to the
reference point in each dimension, no upper bounds of cuboids are contained inside of
the current region. A region may only contain lower boundaries and the remainder of
the region is covered from thereon. Thus, only the minimalith coordinate of thei-piles
has to be identified. The result of the 1-dimensional KMP is the difference of this value
to the region’s upper bound, respectively in each dimension. The minimal values are
stored in a(d − 1)-dimensional array calledtrellis. Cuboids that become active
during the sweep procedure are checked if they undercut the current values in trellis.
Thentrellis is updated in constant time by just one comparison. The update of

the originally applied segment tree takes timeO(log n). This factor is saved on by this
adapted algorithm.

If the cuboids do not form a trellis, the region is split in twoand the algorithm
proceeds on the two emerged regions. The partitioning aspires that no points are con-
tained inside of a region. To this end, the dimension that is cut by the splitting hy-
perplane is to be determined. As the cuboids are axis-parallel, theith coordinate of a
point induces a so-calledi-boundary that is a hyperplane which cuts through theith

coordinate axis and is parallel to all others. The sub-procedureintersects detects
those points that induce asplit-boundary inside of the region. Points that addition-
ally induce ani-boundary withi <split are stored in a listintersect, the others
in nonIntersect. By recursion, the region will be split along each of thesplit-
boundaries of the points inintersect. In each call ofvolumeOY, the median of
thesesplit-boundaries is chosen as the splitting hyperplane. This choice takes time
O(coverIndex). If intersect is empty, butnonIntersect contains more than√

n split-boundaries the region is split along the median of these.2 If intersect is
empty and there are not more than

√
n split-boundaries innonIntersect,split

is increased and the search for the splitting line is tried again, beginning with the sub-
procedureintersects.

In the example of Figure 3, the space is split once along the median 1-boundary.
Afterwards, each region contains not more than

√
9 = 3 1-boundaries andsplit is

increased. The left region is split along the median 2-boundary of those points that
establish a 1-boundary within the region. Concerning the left child region, the pointd
is a 1-pile and no further partitioning is required. The right child region is split again
because the pointd is located inside of it.

Knowing the splitting line, the left child region is defined accordingly. Points that
partially cover the child’s region are sent down to recursion, together with the child
region itself, the split value, and the value ofcoverNew of the current region. Af-
terwards, the points are reunited with the listpoints and the recursion on the right
child’s region is performed analogously.

Note that points are never copied, but moved frompoints to other lists if neces-
sary. Thus, recursion does not cause any increase of storage, since each point is stored
at only one place. Invoking pointers to the elements inpoints would also be possible
as their amount of storage is marginal. All lists of points are sorted, since this is done
in the pre-processing step. Whenever a list is to be reunitedwith points, this can be
done in linear time, whereas the sorting is maintained.

In Overmars and Yap’s algorithm, the listsintersect andnonIntersect are
considered as sets, thus without copies. Here, we do not reject copies for reasons of
efficiency. The median can be chosen in linear time, whereas the rejection of copies
requires timeO(n logn). The search for copies could be afforded in the original algo-
rithm since a sorting is done anyway which requiresO(n logn) and enables the deletion
of copies in linear time.

Details on the implementation of the sub-procedures invoked duringvolumeOY
(Algorithm 1) are described in Appendix A.

2 The listintersect is especially empty forsplit=1. Thus, the points are partitioned into
subsets of sizeO(

√
n) during the beginning phase.

4 Runtime Analysis

4.1 Lower Bounds

Klee’s measure problem has a lower bound ofΩ(n logn) for d ≥ 1 shown by Fredman
and Weide [15]. The S-metric has a complexity ofΘ(n) in case ofd = 1 as only the
minimal element has to be determined. As the S-metric is a quality measure for results
of a multi-objective optimization process, its definition only makes sense ford ≥ 2.
Obviously, calculating the S-metric is not harder than solving KMP as it is a special
case of it, though it is unknown if it is significantly easier.It remains an open question,
if the S-metric has a lower bound which is smaller than the oneof Klee’s measure
problem.

4.2 Upper Bounds

In case ofd = 2, the S-metric can be calculated in timeO(n logn). The input set
is sorted according to one objective. Afterwards, the covered area can be divided into
rectangles bounded by the neighboring point in one dimension and by the reference
point in the other dimension. The S-metric value of a setM = {y(1), . . . ,y(n)} can be
calculated as:

S(M, r) = (r1 − y
(1)
1)(r2 − y

(1)
2) +

n
∑

i=2

(r1 − y
(i)
1)(y

(i−1)
2 − y

(i)
2) (3)

For d ≥ 3, the algorithm of Overmars and Yap is applicable, which provides an
upper bound ofO(n log n+nd/2 log n) for the calculation of the S-metric. This adapted
algorithm (Algorithm 1) for computing the S-metric has a runtime of O(n logn +
nd/2). The factorlogn is saved on omitting the segment trees and calculating the one-
dimensional KMPs of a trellis in constant time as described afore.

The two variants—the classical one and the streaming technique (cf. Section 3.2)—
of the algorithm by Overmars and Yap [13] have the same run time. Actually the
same operations are done, though in different order. They describe the analysis for
the variant which completely builds the orthogonal partition tree before the sweep.
The pre-processive sorting requiresO(n log n). It is shown that a cuboid is stored in
O(n(d−2)/2) leaves of the partition tree as the partitioning ensures that this is an upper
bound for the number of partially covered regions.3 The contained volume within these
leaves has to be updated when the cuboid is inserted or removed from the orthogonal
partition tree during the sweep. Thus, over all cuboids there areO(n(d−2)/2 · n) =
O(nd/2) updates. Updating means computing the measure in the trellis which takes
time O(log n) with the help of the segment trees. The adapted algorithm (Algorithm
1) computes an update in constant time. Thus, the original algorithm has a run time of
O(n logn + nd/2 log n) and the adapted one onlyO(n logn + nd/2).

3 Details of the proof are described in Appendix B.

5 Summary and Outlook

Klee’s measure problem (KMP) is characterized as the hypervolume of intersecting
axis-parallel hypercuboids. It is similar to the S-metric that is defined as the domi-
nated space of a non-dominated set. Since the dominated regions of points actually are
axis-parallel hypercuboids, algorithms for KMP can be applied almost directly. The
hypercuboids form a certain structure that makes the S-metric easier to calculate than
the general KMP. The fastest known algorithm for KMP from Overmars and Yap has
been adapted to that special case resulting in an upper boundof O(n log n + nd/2) for
the S-metric calculation. The algorithm performs a partitioning of the space and the
calculation of the hypervolume within the cells allows for faster computation due to
the special configuration of the hypercuboids. The description of the original algorithm
is rather complex, the deduced algorithm is completely presented in pseudo code and
requires only fundamental data structures.

In the scope of multi-objective optimization, the S-metricis not only used as a
quality measure but also as a component of evolutionary multi-objective optimization
algorithms (EMOA). The S-Metric Selection EMOA (SMS-EMOA)by Emmerich et
al. [16,17] integrates the maximization of the population’s S-metric value into the
EMOA to guide it during the optimization process. The run time of this algorithm is
O(µ logµ + µ(d/2)+1) based onµ S-metric calculations per generation to determine
the following population, withµ denoting the population size. Other EMOA invoke an
approximation of the S-metric such as Zitzler and Künzli’sIBEA (Indicator-based evo-
lutionary algorithm) [18] and the ESP (Evolution Strategy with Probabilistic mutation)
developed by Huband et al. [19]. A topic of future research isthe question whether
the run time of the SMS-EMOA can be further reduced by an efficient update of the
information of the hypervolume in consecutive iterations.

Studies on test data of differently structured non-dominated sets are to be accom-
plished providing numerical comparison of the CPU time of hypervolume algorithms.
Additionally, it is planned to design an approximation algorithm for the S-metric based
on the algorithm of Overmars and Yap and the adapted one presented here.

A Details on Sub-procedures of the Adapted Algorithm

Details of the sub-procedures invoked byvolumeOY are described in the following. A
mathematical description of the used variables are given next to a possible solution of
implementation, which is maybe not optimally efficient but easy to understand. Beware
the sequence of the sub-procedures withinvolumeOY. Conditions that are assured by
previous sub-procedures can be assumed without repeated checks.

The procedurepartCovers determines the points that partially cover the con-
sidered child region. It is called bypartCovers(points[i], regionC), with
i = 1 to coverIndex-1 and the currently considered child region. The resulting set
pointsC is defined as:

pointsC = {points[i] | ∀j : points[i][j] < region[1][j]} (4)

for j=1 to d-1 do
if points[i][j] >= region[1][j] then return false

return true
Algorithm 2 : partCovers(points[i], region)

The variablescoverNew andcoverIndex are calculated with the information
provided by the procedurecovers which decides whether a point covers the region.
It is called bycovers(points[i], region), with i = 1 to |points| and the
current region.

coverNew = min
i∈{1,...,|points|}

{points[i][d] | ∀j : points[i][j] ≤ region[0][j] ; cover}
(5)

The index of the minimizing argument is namedcoverIndex.

for j=1 to d-1 do
if points[i][j] > region[0][j] then return false

return true
Algorithm 3 : covers(points[i], region)

The sub-procedureintersects detects whether a pointssplit-boundary is a
candidate for the splitting line that partitions the regionin two child regions. It is called
for all points in the data structurepoints with index i = 1...coverIndex-1. At
the beginning of the procedure, it is checked whether the point’s split-boundary is
contained inside the region. It is sufficient to test whetherthe splitting boundary is
greater than the region’s lower bound. The algorithm already assured that the cuboid
partially covers the region, thus it is not necessary to check if the boundary is higher
than the region’s boundary. Thesplit-boundaries of points that induce ani-boundary
with i <split are stored in the listintersect and the others innonIntersect.

intersect = { points[i][split] | region[0][split] < points[i][split] ∧
∃j ∈ {1, .., split− 1} : points[i][j] > region[0][j] } (6)

nonIntersect = { point[i][split] | region[0][split] < points[i][split] ∧
∀j ∈ {1, .., split− 1} : points[i][j] <= region[0][j] } (7)

if region[0][split] ≥ points[i][split] then return -1
for j=1 to split-1 do

if points[i][j] > region[0][j] then return 1
return 0

Algorithm 4 : intersects(points[i], region, split)

Recalls that a cuboid is a pile w.r.t.region if is covers the region completely
in each dimension but one. The procedurecheckPile returns the sole dimension
that is not completely covered if the cuboid induced by the point is a pile. Otherwise
checkPile returns -1 as an indicator for failure.

pile =

{

j, if ∃!j ∈ {1, ..., d− 1} : points[i][j] > region[0][j]
−1, otherwise

(8)

pile = -1
for j=1 to d-1 do

if points[i][j] > region[0][j] then
if pile != -1 then return -1

pile = j
return pile

Algorithm 5 : checkPile(points[i], region)

The (d − 1)-dimensional volume formed by a trellis, is calculated by the sub-
proceduremeasure, called with the current region and the arraytrellis which
stores at indexi the minimalith coordinate of thei-piles. The volume is calculated by
the inclusion-exclusion principle according to Eq. 2. Eachsummand is composed of
(d − 1) factors corresponding to the(d − 1) dimensions. Theith factor is either the
size of the region in dimensioni or the value of a 1-dimensional KMP of the contained
i-piles. The sign of a summand depends on the number of KMP factors. The formula
(Eq. 2) containsq =

∑d−1
k=1

(

d−1
k

)

summands, whereasq accords to the variations ofk
KMP values out of(d−1) factors. A possible implementation applies an index vectorto
determine whether a factor is to be a 1-dimensional KMP of thei-piles or the size of the
region in dimensioni. In the arrayindicator of length(d−1),indicator[i]=1
corresponds to theith KMP andindicator[i]=0 to the size of the region in di-
mensioni. This way, all possible variations can be processed by assigning the indicator
vector the binary presentation of the numbers from 1 toq.

for i=1 to d-1 do indicator[i]=1
numberSummands = integerValue(indicator)
for i=1 to numberSummands do

indicator = binaryValue(i)
oneCounter = 0
for j=1 to d-1 do

if indicator[i] == 1 then
summand += region[1][j] - trellis[j]
oneCounter++

else summand += region[1][j] - region[0][j]

if oneCounter mod 2 == 0 then
volume -= summand

else volume += summand

Algorithm 6 : measure(trellis, region)

B Details on the Proof of the Run Time’s Upper Bound

The proof of the upper bound of the run time (cf. Section 4.2) is based on the number
of partially covered regions per cuboid. Here, the explanation that this number does
not exceedO(

√
n

d−2
) is given. Recall that a cuboid partially covers a region if ani-

boundary cuts through the region. This characteristic is illustrated in Figure 4. A region
that is generated by a splitting through dimensioni is termed ani-partition. There are

O(
√

n
i−1

) (i−1)-partitions. Thei-boundary of a cuboid intersects an(i−1)-partition at
most once and thereby cuts through one of itsi-partition. Thus ani-boundary intersects
O(

√
n

i−1
) i-partitions.When the partitioning is done concerning the remaining (d−1−

i) dimensions, eachi-partition is subdivided intoO(
√

n
d−1−i

) (d − 1)-partitions. The
cuboid’si-boundary cutsO(

√
n

i−1
) · O(

√
n

d−1−i
) = O(

√
n

d−2
) (d − 1)-partitions,

which corresponds to the number of leafs that contain the cuboid.

r

i-boundary
i-partition

(i-1)-partition

Fig. 4. Illustration of the number of intersected regions. The dashed lines adumbrate the induced
dominated hypercuboid. The columns show (i − 1)-partitions with their containedi-partitions.
The boldi-partitions are intersected by thei-boundary of the hypercuboid.

Acknowledgments

This work was partly supported by theDeutsche Forschungsgemeinschaft (DFG) as
part of theCollaborative Research Center ’Computational Intelligence’ (SFB 531).

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester,
UK (2001)

2. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.:Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

3. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms—A
Comparative Case Study. In Eiben, A.E., et al., eds.: Parallel Problem Solving from Na-
ture (PPSN V). LNCS 1498, Springer, Berlin (1998) 292–301

4. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assess-
ment of multiobjective optimizers: An analysis and review.IEEE Transactions on Evolution-
ary Computation7(2) (2003) 117–132

5. Fleischer, M.: The Measure of Pareto Optima. Applications to Multi-objective Metaheuris-
tics. In Fonseca, C.M., et al., eds.: Evolutionary Multi-Criterion Optimization, 2nd Int’l
Conf. (EMO 2003). LNCS 2632, Springer, Berlin (2003) 519–533

6. Zitzler, E.: Hypervolume Metric Calculation. Computer Engineering and Networks Labora-
tory (TIK), Zürich (2001) ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c.

7. Knowles, J.D.: Local Search and Hybrid Evolutionary Algorithms for Pareto Optimization.
PhD thesis, University of Reading, Reading, UK (2002)

8. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervol-
ume. IEEE Transactions on Evolutionary Computation10(1) (2006) 29–38

9. While, L., Bradstreet, L., Barone, L., Hingston, P.: Heuristics for Optimising the Calculation
of Hypervolume for Multi-objective Optimisation Problems. In McKay, B., et al., eds.: Proc.
of the 2005 Congress on Evolutionary Computation (CEC 2005), Edinburgh. Volume 3.,
IEEE Press, Piscataway NJ (2005) 2225–2232

10. Klee, V.: Can the measure of
⋃

[ai, bi] be computed in less thanO(n log n) steps? In:
American Mathematical Monthly. Volume 84. (1977) 284–285

11. Bentley, J.L.: Algorithms for Klee’s rectangle problem. Unpublished notes, Department of
Computer Science, CMU (1977)

12. Beume, N.: Hypervolumen-basierte Selektion in einem evolutionären Algorithmus zur
Mehrzieloptimierung. Diploma thesis (March, 2006), University of Dortmund (2006)

13. Overmars, M.H., Yap, C.K.: New upper bounds in Klee’s measure problem. SIAM Journal
on Computing20(6) (1991) 1034–1045

14. Edelsbrunner, H., Overmars, M.H.: Batched dynamic solutions to decomposable searching
problems. Journal of Algorithms6(4) (1985) 515–542

15. Fredman, M.L., Weide, B.: The complexity of computing the measure of
⋃

[ai, bi]. In:
Communications of the ACM. Volume 21. (1978) 540–544

16. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume mea-
sure as selection criterion. In Coello Coello, C.A., et al.,eds.: Evolutionary Multi-Criterion
Optimization: 3rd Int’l Conf. (EMO 2005), Springer, Berlin(2005) 62–76

17. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of Operational Research (2006) (In print).

18. Zitzler, E., Künzli, S.: Indicator-based selection inmultiobjective search. In Yao, X., et al.,
eds.: 8th Int’l Conf. on Parallel Problem Solving from Nature (PPSN VIII). LNCS 1498,
Springer, Berlin (2004) 832–842

19. Huband, S., Hingston, P., While, L., Barone, L.: An evolution strategy with probabilistic
mutation for multi-objective optimisation. In: Proc. of the Congress on Evolutionary Com-
putation (CEC 2003), Canberra, Australia. Volume 4., IEEE Press, Piscataway NJ (2003)
2284–2291

