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Abstract— Robotic manipulation of daily-life objects is an
essential requirement in service robotic applications. In that
context image based visual servoing is a means to position the
end-effector in order to manipulate objects of unknown pose.
This contribution proposes a 6 DOF visual servoing scheme
that relies on the pixel coordinates, scale and orientation of
SIFT features. The control is based on geometric moments
computed over an alterable set of redundant SIFT feature
correspondences between the current and the reference view.
The method is generic as it does not depend on a geometric
object model but automatically extracts SIFT features from
images of the object. The foundation of visual servoing on generic
SIFT features renders the method robust with respect to loss of
redundant features caused by occlusion or changes in view point.
The moment based representation establishes an approximate
one-to-one relationship between visual features and degrees of
motion. This property is exploited in the design of a decoupled
controller that demonstrates superior performance in terms of
convergence and robustness compared with an inverse image
Jacobian controller. Several experiments with a robotic arm
equipped with a monocular eye-in-hand camera demonstrate that
the approach is efficient and reliable.

I. INTRODUCTION

This paper advocates SIFT features for 6-DOF visual ser-
voing of a robotic manipulator with an eye-in-hand cam-
era configuration. The increasing availability of inexpensive
cameras and powerful computers opens a novel avenue for
integrating image processing systems as a sensor for real-
time control of robotic manipulators. Image and position based
visual servoing grows in visibility due to its importance for
robotic manipulation and grasping [1].

Our point of departure is the conventional visual servoing
paradigm developed for an eye-in-hand vision guided ma-
nipulation task originally introduced in [2]. The visual point
features are defined directly in the 2D image plane, therefore
a geometric object model or an explicit reconstruction of the
object pose becomes obsolete. The motion of a feature with
image coordinates f = (u, v)T is related to the camera motion
via the image Jacobian or sensitivity matrix Jv according to

ḟ = Jv(r)ṙ. (1)

Image based visual servoing builds upon this relationship by
an error proportional control law in which the feature error
f̂ − f is compensated by a camera motion

ṙ = −K · J+
v (r)(f̂ − f), (2)

in which J+
v denotes the pseudo-inverse of the image Jacobian

and K is a gain matrix. The computation of the analytical
image Jacobian requires knowledge about the depth of the
scene and the intrinsic camera parameters.

Image based visual servoing with point features suffers from
the handicap that exclusive control of features in the image
might result in an inferior or infeasible camera motion. The
underlying problem is caused by the coupling between trans-
lational and rotational degrees of freedom and is particular
imminent in the presence of substantial errors in orientation.
As a remedy to these shortcomings [3] proposes a visual
servoing scheme based on image moments rather than point
features. Low-order moments represent geometric properties
of projected objects such as areas, centroids or principal axes.
Moments describe generic geometric entities that do not refer
to a specific object shape or appearance. They are easily com-
puted from a segmented image or as in our case from a discrete
set of distinguishable feature points. The key idea is to define
visual moments in a way that renders them invariant under
certain translations or rotations. These invariance properties
are then exploited to decouple visual features across different
degrees of motion. A substantial amount of research has been
devoted to identify such invariant moments [4], [5], [6].
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Fig. 1. Task space

Visual servoing with scale invariant feature transformation
(SIFT) [7] was first introduced by [8]. Their approach focuses
on the robust feature extraction and view point reconstruction
based on the epipolar geometry. Our contribution emphasizes
the design of a novel image-based controller that augments
conventional point features by the additional attributes scale
and keypoint orientation of SIFT features. The visual features
scale and keypoint orientation turn out to be widely indepen-
dent of translation and rotation along the other axes which



makes them suitable to control the distance to the object and
the rotation around the optical axis. The pixel coordinates,
scale and orientation of multiple SIFT features are aggregated
into six generic visual moments for 6-DOF motion control.

The control scheme is robust as the visual features are based
upon generic weighted moments which are computed over a
variable subset of SIFT features. This property eliminates the
need of complete matching between features in the reference
and current image. Instead The visual moments are dynami-
cally adapted to the current geometric distribution of available
SIFT features. Using more SIFT features increases the ac-
curacy of the control at the cost of increased computational
complexity for extracting and matching them across different
object views. This trade-off suggests an approach that initially
employs only few SIFT features for coarse but fast control
at large image errors and gradually incorporates additional
features as the camera converges to the reference pose.

This paper compares two moment based controllers in terms
of control design complexity and convergence of the control.
The first scheme explicitly calculates the image Jacobian for
the moment based features at each control step. This method
requires knowledge about the distance between camera and
object in the reference pose in order to recover the depth of
the scene. The second approach is computationally simpler as
it neglects the undesired minor couplings between camera and
feature motion. Instead each degree of freedom is controlled
by a single visual feature, which separates the control design
into six decoupled linear control laws.

The manipulator and camera configuration are shown in
figure 1. In order to comply with the usual camera coordinate
frame, the Z-axis is aligned with the optical axis, whereas the
X-axis and the Y-axis of the manipulator span the horizontal
plane. Rotations around the X-, Y-, Z-axis are denoted by
α, β, γ. The corresponding velocities are denoted by Tx, Ty ,
Tz and ωα, ωβ , ωγ .

The paper is organized as follows: Section II provides a
brief description of the SIFT algorithm. It also introduces the
automatic feature identification with the objective to detect
stable and unambiguous SIFT features that remain visible
over a large region of the manipulator workspace. Section
III describes the integration of additional attributes scale and
keypoint orientation to complement the set of visual features.
It also explains how the primitive features are aggregated
into moments that provide the basis for visual servoing. The
derivation of the corresponding image Jacobian and the design
of two different visual servo controller are the topic of section
IV. Section V compares the two variants of the control scheme
and analyzes their convergence behaviors in experiments with
a 5-DOF robotic manipulator. The paper concludes with a
summary and outlook on future work in section VI.

II. IDENTIFICATION OF ROBUST SIFT FEATURES

Scale invariant feature transformations (SIFT) introduced
by Lowe [7] are identifiable irrespective of scale, orienta-
tion, illumination and affine transformations. SIFT features
occur frequently on textured objects and are discriminated by

their associated keypoint descriptor which contains a com-
pact representation of the surrounding image region. These
characteristics make them particular attractive for model free
image based visual servoing, as the same features are visible
and robustly related across different views. A set of SIFT
features is automatically extracted from the image of the object
captured in the demonstrated reference pose. The computa-
tional complexity for extracting and matching SIFT features
is feasible for real-time image based control. In the context of
visual servoing SIFT features include the additional attributes
scale and orientation which provide valuable information to
regulate the depth and orientation around the camera axis.

The image based controller operates with statistical first and
second order moments computed over a set of SIFT features
matched between the current and the reference view. This
approach is robust with respect to occlusion, illumination and
perspective distortions as the performance and convergence
of the controller is not jeopardized as long as some features
in the current image still match with reference features. It
is important to achieve reliable correspondences as a single
incorrect reference feature might effect the proper convergence
to the goal pose. Depending on the texture and the parameter
settings of the SIFT algorithm a typical image of size 500×500
pixels contains up to hundreds of stable SIFT features [7].
Feature identification assumes the important role to identify
optimal features in terms of discrimination, stability and
detectability across the workspace. SIFT features in the current
image are matched with their corresponding reference features
by comparison of their distinctive keypoint descriptors.

Naturally, the keypoint descriptors of the same feature in
different views are, although similar, not exactly identical. This
variation might lead to incorrect associations between features
if two actually different SIFT features share similar keypoint
descriptors. The objective of the automatic feature selection is
to establish reliable correspondences between different appear-
ances of the same feature across different poses. Candidates for
stable and unambiguous SIFT features are evaluated according
to similarity, keypoint orientation and epipolar consistency. In
a first analysis, those pairs of ambiguous SIFT features in
the reference image which are too similar to each other are
rejected to avoid later confusion between them.

In the second stage the remaining candidate SIFT features
are extracted and matched across different views uniformly
distributed over the entire workspace. The new correspon-
dences are verified by means of the consistent keypoint
rotation and the epipolar constraint. The keypoint criterion
compares the relative keypoint orientations between matched
features. A rotation around the camera axis causes an equiva-
lent rotation of the keypoint descriptors. Matched feature pairs
for which the change in keypoint orientation is not consistent
with the overall rotation are eliminated from the database. The
keypoint orientation criterion is applied online during control
to continuously verify the consistency of matched feature
pairs.

The epipolar constraint provides an additional criterion to
eliminate incorrectly matched SIFT features. For the verifi-



cation views the relative pose and orientation of the camera
with respect to the reference pose are calculated based on
the manipulator kinematics. In conjunction with the cameras
intrinsic parameters this information is sufficient to estab-
lish the epipolar geometry between the two views expressed
through the essential matrix [9]. A feature in the current view
is constrained to the epipolar line defined by the epipolar
geometry and the location of the corresponding reference
feature in the other image. If the orthogonal distance between
the feature and its corresponding epipolar line exceeds a
threshold the match is presumably incorrect and the feature is
rejected. Depending on the texture of the object, the parameter
settings of the SIFT algorithm and the distance to the object at
the reference pose about 10-100 verified SIFT features succeed
on all tests and are included in the database of reference
features. The robustness of the feature selection is confirmed
as false correspondences of the verified features did not occur
during the experiments.

Figure 2 illustrates the set of extracted and verified features
in the reference view. The dots represent the initial set of can-
didate SIFT features. From this initial set, twenty-six features
indicated by crosses exhibit sufficiently distinctive keypoint
descriptors to pass the similarity test. The circles correspond to
the final set of sixteen features in compliance with the epipolar
constraint and the consistent keypoint criterion. SIFT feature
extraction and matching runs at a rate of approximately 7Hz
for a camera resolution of 320 × 240 pixels on a Pentium 4
running at 2.8 GHz.

Fig. 2. Extracted and verified SIFT-Features

III. GENERIC VISUAL FEATURES

This section describes the generation of moment based
visual features from the primitive attributes pixel coordinates,
scale and orientation of SIFT-features. A single SIFT-feature
Fi contains four attributes, namely the pixel coordinates ui and
vi, the canonical orientation of the keypoint φi and its scale
σi. In the following, the desired appearance of SIFT-features
in the reference position is denoted by F̂i = (ûi, v̂i, φ̂i, σ̂i) and
the current SIFT-features are denoted by Fi = (ui, vi, φi, σi).
The rotation of the camera along the optical axis is recovered
from the change in keypoint orientation fγ . The remaining
visual features fx, fy , fz , fα and fβ are computed after the

current image has been aligned with the reference image by
a counterrotation according to fγ . The conventional image
based visual servoing with point features suffers from the
shortcoming that the coupling between translational and ro-
tational components might result in singularities or infeasible
camera trajectories [10],[11]. The approach in [10] is based
on a cylindrical coordinate system in order to achieve a better
decoupling of the Tz and the ωγ component. The approach
in [11] employs line features which orientation decouples the
rotation ωγ from the translational components.

In our approach the rotation around the camera axis is
regulated by the canonical orientation φi of SIFT-features
and is therefore decoupled from the translation. A rotation
of the camera by γ causes an equivalent rotation of the
keypoint orientations φi by the same amount. The reference
view is defined by the SIFT-features selected during the
automatic feature extraction stage. A set of SIFT-features is
extracted from the current view from which n matches with
the reference features are established. The visual feature fγ is
defined by the average keypoint orientation

fγ =

∑n
i=1

φi

n
. (3)

in which the φi are represented by their sine and cosine in
order to compute a proper angular mean. The feature error for
the γ correction ∆fγ is defined as:

∆fγ = f̂γ − fγ (4)

The original SIFT feature locations ui and vi are aligned
with the camera orientation in the reference view by applying
the inverse rotation by an amount of ∆fγ :

[

u′
i

v′
i

]

=

[

cos(∆fγ) − sin(∆fγ)

sin(∆fγ) cos(∆fγ)

]

·

[

ui

vi

]

. (5)

The corrected pixel coordinates u′
i and v′

i become independent
of the camera rotation and form the basis for the computation
of the remaining visual moments.

In the following we analyze the accuracy of the rotation es-
timate and its robustness with respect to changes in viewpoints
caused by camera rotations along the other axes. The camera
is rotated around the optical axis over the entire range −π to
π in discrete steps of π

64
. The distribution of the error between

the estimated mean computed over all SIFT-features and the
true rotation is shown in Figure 3. The upper graph depicts
the error estimate εγ in degrees as a function of the rotation γ,
with a reference orientation of 0°. The maximum error of about
1.3° occurs at a rotation of about 100°. The lower graph shows
the distribution of the error εγ across the 128 rotation steps.
The mean absolute error amounts to |εγ | = 0.52° the standard
deviation σγ of the error distribution εγ is about 0.4°. Notice,
that the absolute error in the estimated orientation is smaller
for rotations close to the reference orientation which eventually
determines the residual orientation error for the visual control.
This accuracy in orientation is confirmed in the closed-loop
control visual servoing experiments.
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Fig. 3. Estimation error for γ across absolute orientations from π to −π

∆α 0 5 10 15 20 25 30
|εγ | 0.52 0.26 0.36 1.05 0.88 0.92 1.13
σ 1.13 1.50 1.10 2.60 3.11 3.44 4.59

TABLE I
ERROR OF THE ROTATION ESTIMATE AS A FUNCTION OF CAMERA

ROTATION ∆α ALONG THE ORTHOGONAL AXIS.

The average SIFT-feature keypoint orientation coincides
with the camera orientation, which guarantees a unique min-
imum and the stability of visual control of γ by the feature
∆fγ .

Even if the image and feature plane are not parallel the
perspective distortion of the SIFT feature caused by a camera
rotation along an orthogonal axis hardly hampers the rota-
tion estimate ∆fγ which still accurately captures the camera
orientation. Table I shows that orthogonal rotations along α
only have a minor effect on the accuracy of ∆fγ . Rotations
of more than 30° cause affine deformations for which the
SIFT keypoint descriptors in different views are no longer
compliant. For rotations of up to 30° the mean absolute error
increases to |εγ | = 1.13° which is still accurate enough for
the application at hand. The visual features for the remaining
translational and rotational degrees of freedom are computed
as geometric moments over the distribution of SIFT feature
pixel coordinates u′

i and v′
i and average scale σi. Visual

features fx and fy are expressed by the centroid of matched
SIFT features.

fx =

∑n
i=1

u′
i

n
, fy =

∑n
i=1

v′
i

n
(6)

The centroid primarily captures the horizontal translation of
the camera but also varies with motions in z, α and β. The
vertical translation Tz is coupled with the average distance
between pairs of feature points

fzd =

∑n
i=1

∑n
j=i+1

√

(u′
i − u′

j)
2 + (v′

i − v′
j)

2

n
2
· (n − 1)

(7)

that captures the average scale of the scene. Computing the
scale from the distance between point features that fzd is

not invariant with respect to perspective distortions caused by
rotations along the other two axes. Therefore, the feature fzd

is replaced by the inherent scale of SIFT-features. Figure 4
depicts the variation of scale σ for typical SIFT-features as a
function of the distance z between the object and the camera.
The scale of SIFT-features is given by K

z
. The constant gain

K depends on the focal length of the camera multiplied by the
initial scale of the feature. The visual feature fzσ is defined
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Fig. 4. Scale versus distance

as the average scale:

fzσ =

∑n
i=1

σi

n
(8)

Notice, that in principle a single SIFT feature is sufficient
to compute fzσ . The actual distance z is recovered from the
scales σi under the assumption that the initial distance ẑ at
the reference image is known.

z = ẑ

∑n
i=1

σ̂i

σi

n
(9)

The feature fzσ is largely decoupled from the other degrees of
motion. Figure 5 shows the estimation error in z as a function
of the absolute distance and the camera rotation α. Notice,
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that the reference scale is captured at a nominal distance
z = 130mm. The absolute error increases with distance



and tilt angle of the camera. Again, the feature error in the
vicinity of the reference pose determines the residual task
space error, which is less than 1mm at the correct pose. This
level of accuracy is confirmed in the closed-loop control visual
servoing experiments.

The 6-DOF visual control is completed by the visual
features fα and fβ that capture the rotations along the x-
and y-axis. Both features represent the effect of perspective
distortions on lines caused by the yaw and pitch motion
of the camera. Figure 6 illustrates the effect for a square
configuration of four feature points that form six lines. The
left hand side depicts the image of the square for parallel
feature and image plane, the right hand side the image with
the camera is tilted around the x-axis and a compensation of
the shift along the y-direction. The distortion increases the
length of line 1 and simultaneously decreases the length of
line 3. This dilation and compression of lines is captured by
the feature

fα =

∑n
i=1

∑n
j=i+1

(−v̂i − v̂j) · (‖~pj − ~pi‖ − fzd)
n
2
· (n − 1)

(10)

The term ‖~pj − ~pi‖ denotes the length of the line connecting
the two pixels which is multiplied by the weight factor (−v̂i−
v̂j). Its sign indicates whether the line is above or below the
u-scan-line through the cameras principal point. The absolute
magnitude of the weight increases with the vertical distance
from the image center. The lines 2, 4, 5, 6 possess a weight
factor of zero as v̂i and v̂j cancel each other. In case of the
square the product of the weight factor and variation in length
has the same sign for lines 1 and 3. The term fzd according to
equation 7 captures the variation in pixel pair distances caused
by changes in depth. Its subtraction partially compensates the
effect of dilations caused by zooming in along the z-direction
on fα. The visual feature

fβ =

∑n
i=1

∑n
j=i+1

(−ûi − ûj) · (‖~pj − ~pi‖ − fzd)
n
2
· (n − 1)

(11)

represents the equivalent effect of dilations and compressions
of lines caused by rotations along the y-axis. Notice, that
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Fig. 6. Perspective distortion caused by camera tilt

for the configurations in 6 the feature fβ remains constant
although the length of vectors |~pj − ~pi‖ changes.

IV. CONTROLLER DESIGN

The visual control scheme refers to the image Jacobian
for the set of visual features defined in the previous section.

In the following two different controllers are designed and
analyzed. The first design is based on the exact inversion of
the image Jacobian, whereas the second decoupled controller
controls each degrees of motion by a single feature and ignores
the remaining cross-couplings between feature and camera
motion. Both controllers share an independent linear control
of the rotation around the camera axis ∆γ based on the visual
feature fγ . The exact controller employs the visual feature fzd,
whereas the decoupled control scheme generates fzσ from the
average scale of SIFT-features. The controllers map the error
between the features in the goal and the current view

∆f = [f̂x, f̂y, f̂z, f̂α, f̂β ]T − [fx, fy, fz, fα, fβ ]T (12)

to a camera motion in five degrees of freedom ∆r =
[∆x,∆y,∆z,∆α,∆β]T . The first control design utilizes
equation 1 and requires the online calculation and inversion of
the image Jacobian for the set of visual features. The centroid
feature [fx, fy]T behaves like a virtual point feature and the
Jacobian is simply obtained by the averaging the individual
point feature Jacobians stated in [1].

Jfx,fy
=

∑n
i=1

[

λ
z

0 −ui

z
−uivi

λ

λ2
+u2

i

λ

0 λ
z

−vi

z

−λ2−v2
i

λ
ui·vi

z

]

n

The main difference with respect to a point feature is the
simplifying assumption that all SIFT-features share the same
depth, which is extracted from their scale by means of equation
9. This assumption is reasonable as long as the depth of the
scene is small compared to distance to the camera.

The image Jacobian for the remaining visual features
fz, fα, fβ becomes

Jfz
=

∑n
i=1,

j=i+1

pji ·
[

0 0 1

z
−

vij

λ

uij

λ

]

n
2
· (n − 1)

Jfα
=

∑n
i=1,

j=i+1

pij ·
[

0 0 −
2·v̂ij

z

2·v̂ij ·vij

λ
−

2·v̂ij ·uij

λ

]

n
2
· (n − 1)

+

∑n
i=1,

j=i+1

2 · v̂ij

n
2
· (n − 1)

· Jfz

Jfβ
=

∑n
i=1,

j=i+1

pji ·
[

0 0 −
2·ûij

z

2·ûij ·vij

λ
−

2·ûij ·uij

λ

]

n
2
· (n − 1)

+

∑n
i=1,

j=i+1

2 · ûij

n
2
· (n − 1)

· Jfz

in which the center point of the feature pair (i, j) is defined
by vij = (vi + vj)/2, uij = (ui + uj)/2 , v̂ij = (v̂i + v̂j)/2,
ûij = (ûi + ûj)/2 and its length by pij = ‖pi − pj‖.

The camera motion results from the product of the feature
error with the inverse of the image Jacobian and the diagonal
gain matrix

∆r = −K · J−1
v · ∆f (13)



The proportional gains in the matrix K are designed by means
of linear controller design considering the time delay of the
image processing and servoing loop. The visual features are
specifically designed such that they are sensitive to one par-
ticular degree of motion and relatively invariant with respect
to the remaining motions. This property suggests a simplified
controller design in which the off-diagonal elements of the
Jacobian Jv are neglected and the control assumes a one-
to-one scalar relationship between features and degrees of
motion. The sensitivity matrix
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(14)
is largely decoupled. The off-diagonal terms K̃xz and K̃yz

correspond to the variation of the feature centroid (fx, fy)
with the translation Tz . Neglecting this dependency causes a
slight over-compensation of the centroid error. Nevertheless,
as the camera attains the correct reference distance z, the
centroid error eventually converges to zero. The control of
the centroid purely by Tx and Ty contributes to the robustness
as image features are less likely to disappear from the field
of view. On the other hand, the motion Tz itself becomes
independent of the features fx, fy and is solely controlled
by the more reliable scale estimate fzσ . In comparison with
the classical Jacobian for point features the moment based
sensitivity matrix in equation 14 exhibits a sparser coupling
of features and degrees of freedoms. The off-diagonal terms in
the image Jacobian in equation 14 are neglected to establish six
independent scalar relationships between feature and camera
motion. The gains Kx,Ky,Kz,Kα,Kβ and Kγ vary with
the distance between camera and object and depend on the
focal length. The proportional visual control law ignores this
dependency as it operates with constant gains which does not
effect the stability. The camera motion Tx, Ty, Tz, ωα, ωβ and
ωγ is calculated according to:

Tx = −kx · ∆fx, Ty = −ky · ∆fy, Tz = −kz · ∆fz,

ωα = −kα · ∆fα, ωβ = −kβ · ∆fβ , ωγ = −kγ · ∆fγ

The constant controller gains kx, ky, kz, kα, kβ and kγ are
determined based on the nominal values of the diagonal
elements Kx,Ky,Kz,Kα,Kβ ,Kγ at the reference pose and
stability considerations with regard to the time delay in the
closed loop system. In our implementation as set of suitable
gains was determined manually with kx = ky = 100, kz =
10, kα = kβ = 10, kγ = 1. The control signals are subject
to saturation in order to guarantee stability in the presence of
delays in the image processing and manipulator axes control.

Ideally, the features fx and fy should only vary with Tx

and Ty (J11 6= 0, J22 6= 0 whereas the remaining elements Jij

should be zero. Notice that J13 and J23 depend on the centroid
of features and disappear if the centroid coincides with the

principal point
∑

ui =
∑

vi = 0. We have the freedom
to define arbitrary moments of SIFT-features, for example in
terms of a weighted centroid.

fx =
∑

i

wiui fy =
∑

i

wivi (15)

The weights wi are determined in a way that eliminates the
undesired off-diagonal elements in the Jacobian. For the sake
of simplicity we illustrate the weight computation for a single
constraint on the element

J{fx,z} =
∑

i

wi

−ui

z
= 0 (16)

that represents the impact of a motion Tz on the change
of feature fx. In general, this constraint is violated for the
geometric centroid calculation with equal weights wi = 1/n.
Now, the weights are slightly alter in order to satisfy the
constraining equation 16. The minimal variation of wi = 1/n
satisfying 16 is obtained by minimizing the following cost
function in conjunction with a Lagrange multiplier λ1.

E = 1/2
∑

i

(wi −
1

n
)2 + λ1

∑

i

wiui (17)

Minimization provides the least squares solution

wi =
1

n
−

uiū
∑

i u2
i

, ū =
∑

i

ui (18)

Intuitively, the weight of SIFT features which pixels possess
the opposite sign as the geometric centroid ū =

∑

i ui/n
is increased, whereas those with the same sign are down-
weighted. Notice, that by definition the weighted centroid
is always located at the origin of the current image thus
fx = fy = 0. However, the reference features f̂x =

∑

i wiûi

and f̂y =
∑

i wiv̂i are no longer constant, but indirectly
depend on the current image via the dynamic weights wi and
are therefore implicitly susceptible to motions along multiple
degrees of freedom. Nevertheless, this susceptibility of the
image Jacobian vanishes as current and reference features con-
verge. Ultimately, the Jacobian is decoupled at the reference
pose.

V. EXPERIMENTAL RESULTS

The two control schemes are compared in experiments
with a KATANA manipulator with an eye-in-hand camera
configuration. The robotic manipulator only possesses five
degrees of freedom and the orientation along the x- and y-axes
can not be controlled independently. Therefore, the control
signals ωα, ωβ related to the features fα and fβ are aggregated
into a common command for motions along the x-axis in the
robocentric end-effector frame. The experimental restriction
to 5-DOF motions is a mere limitation of the KATANA
kinematics rather than the visual servoing scheme itself. Both
controllers successfully converge to the reference pose in a
virtual reality simulation with a camera moving freely in 6-
DOF.

The manipulator is initially moved to the reference pose
shown in figure 2 and an image of the object is captured.



The automatic feature selection retrieves about thirty stable,
unambiguous SIFT-features. Afterwards, the manipulator is
dislocated from the reference pose by an initial displacement
∆x = −50mm, ∆y = −60mm, ∆z = 50mm, ∆α = 23°
and ∆γ = −60°. Substantially larger displacements are not
feasible in the experiments due to the restricted workspace of
the KATANA manipulator and the eye-in-hand constraint of
keeping the object in view of the camera. However, in virtual
reality simulations both controllers demonstrated their ability
to compensate substantially larger task space errors.

The computational demands for SIFT-feature extraction and
matching enable a closed loop bandwidth of about 7Hz, which
is sufficient to support continuous motion within a look-
and-move scheme. However, the current implementation of
differential kinematics on the KATANA manipulator suffers
from a communication delay between the host and the on-
board micro-controllers of about 300ms. Therefore, the axis
control proceeds in discrete steps regulated by a look-then-
move scheme at a rate of 3Hz. The performance of the
visual controller that relies on the explicit computation of the
Jacobian is compared with the decoupled controller with a
one-to-one correspondence between features and degrees of
motion.

Figures 7 and 8 illustrate the evolution of the image and task
space error for the exact Jacobian controller. The task space
error does not decrease monotonically due to the inherent
coupling between feature errors to multiple degrees of motion.
Both feature and task space error converge to a small residual
error attributed to the image noise. The final task space error
after 150 iterations is about ∆x = 0.75mm, ∆y = 1.2mm,
∆z = 0.5mm, ∆α = 0.65° and ∆γ = 1.5°. Figure 9
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Fig. 7. Image space error of the Jacobian based controller

and 10 illustrate the behavior for the decoupled controller.
Notice, that the decoupled controller employs a feature fzσ

based on the scale of SIFT features rather than average
distance between feature pairs. The feature errors converge
smoothly except for the fluctuations in fzσ after about 50
iterations. The rapid increase in error is not caused by the
control but the incorporation of additional SIFT features with
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Fig. 8. Task space error of the Jacobian based controller

high frequency components that suddenly emerge for the first
time as the camera zooms in onto the object. According to
figure 4 their relative scale error is large, which results in an
intermediate deterioration of the feature error that nevertheless
is compensated in subsequent control steps. This observation
is confirmed by the smooth progression of the task space
error along the z-direction. The task space error evolves more
smoothly as each degree of motion is governed by a single
feature instead of being coupled to other features as well. The
feature and task space errors converge to a final residual task
space error in ∆x = 0.15mm, ∆y = 1mm, ∆z = 1mm.
The residual orientation error amounts to ∆α = 0.2° and
∆γ = 1.5°. This level of accuracy is more than sufficient for
grasping and manipulation tasks in service robotics and even
renders the control scheme possible for fine positioning of
tools and objects in industrial applications. For the KATANA
manipulator the final task space error is actually limited by the
kinematic accuracy of the manipulator rather than the precision
of visual control. The task space error evolves monotonically
and more smoothly compared to the decoupled controller.
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Fig. 9. Image space error of the decoupled controller

We also investigated the convergence behavior for the case



in which the feature plane in the reference pose and the image
plane are no longer parallel. The computation of the image
Jacobian assumes the same average depth z for all feature
points as the centroid is considered equivalent to a single
point feature. Therefore, the Jacobian based controller fails
to converge to the reference pose for tilt angles of more than
30°. The decoupled controller is independent of a unique depth
estimate and converges properly even for tilted feature planes.
This property allows arbitrary configurations between object
and camera in the reference pose.

The experimental results demonstrate that it is possible to
control a manipulator in 5-DOF with a monocular camera
based on a decoupled controller without sacrificing robustness
and accuracy performance with respect to the exact Jacobian
based controller. It is also superior in terms of the smoothness
of task space motion. The video sequences of the feature ex-
traction and camera motion that are available at [12] illustrate
the visual control with the decoupled controller.
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Fig. 10. Task space error of the decoupled controller

VI. CONCLUSION

This paper presents a novel approach for visual servoing
based on SIFT-features. The canonical keypoint orientation
and scale of SIFT features enable direct control of the camera
rotation around the optical axis and the translational along
the z-axis. The visual features are generic as they are calcu-
lated from moments of pixel coordinates, scale and keypoint
orientation over a dynamic set of SIFT features. Thereby,
the visual servoing control becomes entirely independent of
the type of object and the visibility of specific features. The
control scheme only relies on the dynamic subset of SIFT
features that are reliably matched between the current and the
reference image. This property adds to the robustness with
respect to occlusion, change of view points and illumination.
It also enables a trade-off between computational complexity
and accuracy by adapting the number of SIFT-features that
are actually used for control. The image Jacobian for the
visual features scale, orientation and centroids of SIFT-features
is sparse with only minor couplings between the degrees of

motion. This property enables a simplified control scheme with
one-to-one correspondence between degrees of motion and
visual features. It is possible to further reduce the coupling by
computing visual features as generalized geometric moments
in which the weights are adapted in such a way that the
cross-coupling terms disappear at the reference image. The
decoupled controller operates with constant gains and does
not require the online computation of the image Jacobian
or its inverse. The computational demand for extracting and
matching SIFT-features enable real time visual control at a
frame rate of 7Hz. The experimental evaluation shows that
the approach is reliable and efficient and achieves a final task
space error in the order of a millimeter in translation and a
degree in orientation.

In future work we intend to further investigate the concept
of dynamically weighted moments proposed in section IV with
the objective to entirely decouple visual features and motions.
Currently, the operational space of visual control is limited
by the visibility and perceptibility of identical SIFT-features
across different views. In our experience SIFT-features are
still detectable at view point rotations of up to 30-40°. In
order to accomplish large view visual servoing it is necessary
to introduce additional intermediate reference views in order
to successfully navigate across the entire view hemisphere.
Future research is concerned with the identification of interme-
diate views and features and a heuristic for switching between
reference SIFT features to achieve stable, robust and time-
optimal camera motions in task space.
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