Tutorial for

Introduction to Computational Intelligence in Winter 2009/10

Günter Rudolph, Nicola Beume

http://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2009-10/lecture.jsp

Sheet 10, Block C

Return: 20.01.2010, 10 a.m.

Exercise 10.1: Basic Probability Theory (5 Points)

Consider standard-bit-mutation on a bitstring of length n where the probability of flipping is $p=1 / n$ for each bit.
a) Calculate the expected number of flipping bits per mutation.
b) Calculate the probability that exactly k bits of the bitstring are flipped in one mutation.
c) Calculate the probability that a certain bit is flipped at least once within t mutations.
d) Given a bitstring x, calculate the probability that a certain bitstring y is the result of one mutation of x. Hint: Use the Hamming distance to relate bitstrings to each other.

Exercise 10.2: Metric-based EA for Natural Numbers (5 Points)

We represent natural numbers $z \in\left\{0,1, \ldots, 2^{n}-1\right\}$ by their standard binary encoding with n bits. Consider an EA on the search space $S=\{0,1\}^{n}$. Let $z(x)$ be the natural number represented by $x \in\{0,1\}^{n}$.
a) Let $d: S \times S \rightarrow \mathbb{R}_{0}^{+}$be defined by $d(x, y)=|z(x)-z(y)|$. Proof that d is a metric on the search space S.
b) Check whether standard-bit-mutation here fulfills the guidelines for metric-based EA.

