Tutorial for

Introduction to Computational Intelligence in Winter 2009/10

Günter Rudolph, Nicola Beume
http://ls11-www.cs.uni-dortmund.de/people/rudolph/teaching/lectures/CI/WS2009-10/lecture.jsp

Sheet 5, Block B
11.11.2009

Return: 18.11.2009, 10 a.m.

Exercise 5.1: Fuzzy Sets (5 Points)

Give membership functions that define the following fuzzy sets appropriately from your point of view:
(a) A_{1} : Young people, B_{1} : middle-aged people, C_{1} : old people.
(b) A_{2} : Slow car, B_{2} : fast car, C_{2} : too fast car.
(c) A_{3} : Great weather, B_{3} : Nice weather, C_{3} : bad weather.

To do this, first define a crisp set (domain, unit) over which the fuzzy sets are defined, respectively (e.g. the crisp set $X=\{x \in \mathbb{R} \mid x \in[0,100]\}$ would be appropriate for fuzzy sets 'cold coffee; hot coffee' and the unit is temperature in ${ }^{\circ} \mathrm{C}$). Give the membership functions for the triples of fuzzy sets as a (drawn/plotted) graphic with the appropriate domain on the horizontal axis and the degree of membership on the vertical axis, and as a formula.

Perform the operations $A_{i}^{c}, B_{i}^{c}, A_{i} \cup B_{i}, A_{i} \cap B_{i}$ for all $i=\{1,2,3\}$ and give the resulting sets by drawing/plotting their membership function, respectively.

Exercise 5.2: α-cuts (5 Points)

Let A and B be fuzzy sets over the crisp set X.
The α-cut $A^{\geq \alpha}$ of A is defined as $A^{\geq \alpha}:=\{x \in X \mid A(x) \geq \alpha\}$.
Prove that the following statements are correct:
(a) $A \subseteq B \Leftrightarrow \forall \alpha \in[0,1): A^{\geq \alpha} \subseteq B^{\geq \alpha}$
(b) $A=B \Leftrightarrow \forall \alpha \in[0,1): A^{\geq \alpha}=B^{\geq \alpha}$

