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��� Di�culties

The vast and steadily increasing number of optimization methods necessarily raises the
question of which is the best strategy� There seems to be no unique answer� If indeed
there were an optimal optimization method all the others would be super�uous and would
have been long ago forgotten�

Because of the strong competition between already existing strategies it is necessary
nowadays that whenever any proposal for a new method or variant is made� its advantages
and improvements compared to older strategies be displayed� The usual way is to refer to
a minimum problem for which the known methods fail to �nd a solution whereas the new
proposal is successful� Or it is shown with reference to chosen examples that computation
time or iterations can be saved by using the new version� The series of publications
along these lines can in principle be continued inde�nitely� With su�cient insight into
the working of any strategy a special optimization problem can always be constructed for
which the strategy fails� Likewise for any problem a special method of solution can be
devised that is superior to the other procedures� One simply needs to exploit to the full
what one knows of the problem structure as contained in its mathematical formulation�

Progress in the �eld of optimization methods does not� however� consist in developing
an individual method of solution for each problem or type of problem� A practitioner
would much rather manage with just one strategy� which can solve all the practically
occurring problems for as small a total cost as possible� But as yet there is no such
universal optimization method� and some authors doubt if there ever will be �Arrow and
Hurwicz� ��	
�� All the methods presently known can only be used without restriction
in particular areas of application� According to the nature of the particular problem�
one or another strategy o�ers a more successful solution� The question of which is the
best strategy is itself a kind of optimization problem� To be able to answer it objectively
an objective function would have to be formulated for deciding which of two methods

�	
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was best from the point of view of its results� So long as no generally recognized quality
function of this kind exists� the question of which optimization method is optimal remains
unanswered�

��� Theoretical Results

Classical optimization theory is concerned with establishing necessary and su�cient exis�
tence criteria for maxima and minima� It provides systems of equations but no iterative
methods of �nding their solutions� Not even Dantzig�s simplex method ���� for solving
linear programming problems can be regarded as a direct result of theory�theoretical con�
siderations of the linear problem only show that the extremum sought� except in special
cases� must always lie in a corner of the polyhedron de�ned by the constraints� With n
variables and m constraints �together with n non�negativity conditions� the number of
corners or points of intersection of the hypersurfaces formed by the constraints is also
limited to a maximum of

�
m�n
n

�
� Even the systematic inspection of all the points of

intersection would be a �nite optimization method� But not all the points of intersec�
tion are also within the allowed region �Saaty� ��		� ����� M�uller�Merbach ���
�� gives
mn � m � � as an upper bound to the number of feasible corner points� The simplex
method� which is a method of steepest ascent along the edges of the polyhedron only
traverses a tiny fraction of all the corners� Dantzig ���� refers to empirical evidence
that the number of necessary iterations increases as n� the number of variables� if the
number of constraints m is constant� or as m if �n � m� is not too small� Since� in
the least favorable case� between m and �m exchange operations must be performed on
the tableau of �m � ���n � �� coe�cients� the average computation time increases as
O�m� n�� In so�called degenerate cases� however� the simplex method can also become
in�nite� The repeated cycling through the same corners must then be broken by a rule
for randomly choosing the iteration step �Dantzig�� From a theoretical point of view the
ellipsoid method of Khachiyan ���
�� and the interior point method of Karmarkar ������
do have the advantage of polynomial time consumption even in the worst case�

The question of �niteness of iterative methods is also a central theme of non�linear
programming� In this case the solution can lie at any point on the border or interior
of the enclosed region� For the special case that the objective function and all the con�
straint functions are convex and multiply di�erentiable Kuhn and Tucker ���	�� and John
������ have derived necessary and su�cient conditions for extremal solutions� Most of
the iteration methods that have been developed on this basis are designed for problems
with a quadratic objective function and linear constraints� Representative of quadratic
programming are� for example� the methods of Beale ���	� and Wolfe ���	�a�� They
make extensive use of the algorithm of the simplex method and thus belong� according to
Hadley ������ to the class of neighboring extremal point methods� Other strategies can
move into the allowed region in the course of the iterations� As far as the constraints per�
mit they take the direction of the gradient of the objective function� They are therefore
known as gradient methods of non�linear programming �Kappler� ��
�� As their name
may suggest� however� they are not suitable for all non�linear problems� Their conver�
gence can be proved at best for di�erentiable quasi�convex programs �K�unzi� Krelle� and
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Oettli� ����� For these conditions the number of required iterations and rate of conver�
gence cannot be stated in general� The same is true for the methods of Khachiyan ���
��
and Karmarkar ������� In the following chapters a short summary is attempted of the
convergence properties of non�linear optimization methods in the unconstrained case �hill
climbing methods��

����� Proofs of Convergence

A proof of convergence of an iterative method will aim to show that a sequence of iteration
points x�k� tends monotonically with the index k towards the point x� which is sought�

lim
k��

kx�k� � x�k � �

or
kx�k� � x�k � �� � � �� for K��� � k ��

If a �nite accuracy of approximation is required� e�g�� in terms of a distance from the
solution measured by the Euclidean norm� the number of necessary iterations is usually
�nite�

In the case of optimization strategies it is shown that the �rst partial derivatives
vanish at the point x��

rF �x�� � �

This necessary condition for an extremum of a continuously di�erentiable function F �x�
is at the same time the termination criterion of the procedure� There are numerous
convergence proofs of this kind covering a very wide range of minimization methods� A
good survey is given by Polak ���
��� It contains convergence proofs for� among others

� The Newton�Raphson method
Assumption� F �x� is twice continuously di�erentiable� r�F �x� has an inverse

� A generalized gradient method based on the method of steepest descent
Assumption� F �x� is once continuously di�erentiable

� A derivative�free method with local variation of the variables� similar to the Gauss�
Seidel iteration method
Assumption� F �x� is continuously di�erentiable

In many optimization methods that deal with a function of several variables� each
iteration consists of a number of one dimensional minimizations� For such a procedure to
be �nite it is not enough to show that the sequence of iteration points tends monotonically
to the desired solution� The number of arithmetic operations in each iteration must also
be �nite� However� a line search may only become exact in the limit of in�nitely many
steps� while for the overall procedure to be �nite� each one dimensional minimization must
be terminated� This can result in the loss of convergence� Polak therefore distinguishes
between conceptual algorithms� with an arbitrary number of calculation steps in one iter�
ation� and practical algorithms in which this number is �nite� To ensure the convergence
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of a practical method� one must usually introduce adaptive rules for the termination of
subroutines that would in principle run forever �Nickel� ��
� Nickel and Ritter� ��
���

A further limitation to the predictive power of proofs of convergence arises from the
properties of the point x� referred to above� Even if confusion of maxima and minima
is eliminated� the approximate solution x� can still be a saddle point� To exclude this
possibility� the second and sometimes even higher partial derivatives must be constructed
and tested� It still always remains uncertain whether the solution that is �nally found
represents the global minimum or only a local minimum of the objective function� The
only possibility of proving the global convergence of a sequential optimization method
seems to be to require unimodality of the objective function� Then only one local opti�
mum exists that is also a global optimum� Some global convergence properties are only
possessed by a few simultaneous methods� such as for example the systematic grid method
or the Monte�Carlo method� They place no continuity requirements on the objective func�
tion but the separation of the trial points must be signi�cantly smaller than the distance
between neighboring minima and the required accuracy� The fact that its cost rises expo�
nentially with the number of variables usually precludes the practical application of such
a method�

How does the convergence of the evolution strategy compare� For �xed step lengths� or
more precisely for �xed variances ��

i � � of the normally distributed mutation steps� there
is always a positive probability of going from any starting point �e�g�� a local minimum�
to any other point with a better objective function value� provided that the separation of
the points is �nite� For the two membered method� Rechenberg ���
�� gives necessary
and su�cient conditions that the probability of success should exceed a speci�ed value�
Estimates of the computation cost can only be made for special objective functions� In
this respect there are problems in determining the rules for controlling the mutation step
lengths and deciding when the search is to be terminated� It is hard to reconcile the
requirements for rapid convergence in one case and for a certain minimum probability of
global convergence in another�

����� Rates of Convergence

While it may be of importance from a mathematical point of view to show that under
certain assumptions a particular method leads with certainty to the objective� it is even
more important to know how much computational e�ort is required� or what is the rate
of convergence� The question of how fast an optimal solution is approached� or how many
iterations are needed to reach a prescribed small distance from the objective� can only be
answered for a few abstract methods and under even more restrictive assumptions� One
distinguishes between �rst and second order convergence� Although some authors reserve
the term quadratic convergence for the case when the solution of a quadratic problem is
found within a �nite number of iterations� it will be used here as a synonym for second
order convergence� A sequence of iteration points x�k� converges linearly to x� if it satis�es
the condition

kx�k� � x�k � c �k
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where � � � � � and c � �� constant� All methods which progress to the objective
as a geometric progression in this way are said to display �rst order convergence� For
a suitable choice of step lengths� e�g�� following Polak ���
��� the strategy of steepest
descents satis�es this condition if the objective function is at least twice continuously
di�erentiable and strictly convex in the neighborhood of the local minimum x��

A sequence x�k� is said to be quadratically convergent if it satis�es the condition

kx�k��� � x�k � c� kx�k� � x�k� � �

where c� � �� constant� Strategies providing iteration points such that the error after a
step is proportional to the square of the preceding error exhibit second order convergence�
The number of exact signi�cant �gures approximately doubles at each iteration�

If a Newton method converges� then it converges quadratically either if the objective
function is four times continuously di�erentiable or if it is three times di�erentiable and
the Hessian matrix of second partial derivatives is de�nite� Under the second condition
it can be shown that the method of conjugate gradients with cyclic restart converges
quadratically� If furthermore the objective function can be treated as convex� second order
convergence can also be proved for the variable metric method� Polak ���
�� shows that
under the weaker assumption of a bounded Hessian matrix and an only twice continuously
di�erentiable objective function� quadratic convergence can no longer be proved for the
Newton�Raphson method� Its rate of convergence is still however greater than linear� i�e��

lim
k��

kx�k� � x�k
�k

� �� for � � ��� ��

Quadratic convergence makes an optimization method attractive from a mathematical
point of view� Unfortunately this desirable property is coupled with a tendency to diverge
if the objective function is of higher than second order and the search is not started near
the solution� For this reason combinations have often been proposed of a �rst order
strategy at the start of an optimum search followed by a second order strategy in the
neighborhood of the minimum�

����� Q�Properties

While it is to be expected that a quadratically convergent strategy will take fewer iter�
ations to locate a minimum than one that only converges linearly� it is still of interest
to know the explicit number of calculation steps required� This can only be given in
a general form for the simplest case of a non�linear minimization problem� namely for
quadratic objective functions

F �x� � xT Ax� b x� c

with a positive de�nite matrix of coe�cients A� Since all second order methods also
employ a quadratic function as an internal model of the objective function for the purpose
of predicting suitable directions and sometimes also step lengths� they can at least in
principle �nd the exact solution within a �nite number of steps� They are referred to by
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their so�called Q�properties� Thus if a strategy takes p iteration steps for locating exactly
the quadratic optimum it is said to have the property Q p�

The Newton�Raphson method� for example� takes only a single step because the second
partial derivatives are constant over the whole IRn and all higher order derivatives vanish�
If the iteration rule is followed exactly it gives the position of the minimum right at the
�rst step without the necessity of a line search� As no objective function values need to
be evaluated explicitly one also refers to it as an indirect optimization method� It has the
property Q ��

A conjugate gradients method� e�g�� that of Fletcher and Reeves ������ requires up
to n cycles before a complete set of conjugate directions is assembled and a line search
leads to the minimum� It therefore has the property Q n�

Powell�s ����� derivative�free search method of conjugate directions requires n � �
line searches for determining each of the n direction vectors and thus has the property
Q n�n� �� or Q O�n�� in terms of the number of one dimensional minimizations�

The variable metric strategy of Davidon ���	�� in the formulation of Fletcher and
Powell ����� can be interpreted both as a quasi�Newton method and as a method with
conjugate directions� If the objective function is quadratic� then the iteratively improved
approximate matrix agrees with the exact inverse of the Hessian matrix after n iterations�
This method has the property Q n�

Apart from the fact that any practical algorithm can require more than the theo�
retically predicted number of iterations due to the e�ect of rounding errors� for peculiar
types of coe�cient matrix in the quadratic problem the algorithm can fail completely�
For example Zangwill ���
� demonstrates such a source of error in the Powell method if
no improvement is achieved in one direction�

����� Computing Demands

The speci�cation of the Q�properties of individual strategies is only the �rst step to�
wards estimating the computing demands� In di�erent procedures an iteration or a cycle
comprises various di�erent operations� It is useful to distinguish ordinary calculation op�
erations like additions and multiplications from the evaluation of functions such as the
objective function and its derivatives� The number of variables is the basic quantity that
determines the computation cost� A crude but adequate measure is therefore given by
the power p of n� the number of parameters� with which the expected computation times
increase� For the case of many variables� since the highest powers are dominant� lower
order terms can be neglected� In the Newton�Raphson method� at each iteration the gra�
dient vector rF and the Hessian matrixr�F must be evaluated� which means n �rst and
n

� �n � �� second partial derivatives� Objective function values are not required� In fact
the most costly step is the matrix inversion� It requires in the order of O�n�� operations�
A cycle of the conjugate gradient method consists of a line search and a gradient determi�
nation� The one dimensional minimization requires several calls of the objective function�
Their number depends on the choice of method but it can be regarded as constant� or at
least as independent of the number of variables� The remaining steps in the calculation�
including vector multiplications� are composed of O�n� elementary arithmetical opera�
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tions� Similar results apply in the case of the variable metric strategy� except that there
are an additional O�n�� basic operations for matrix additions and multiplications� The
direct search method due to Powell evaluates neither �rst nor second partial derivatives�
After every n � � line searches the direction vectors are rede�ned� which requires O�n��
values to be assigned� But since each one dimensional optimization counts as an iteration
step� only O�n� direct operations are attributed to each iteration� A convenient summary
of the relationships is given in Table ��� For simplicity only the terms of highest order in
the number of parameters n are accounted for� without their coe�cients of proportionality�

So far we have no scale for comparison of the di�erent function evaluations with each
other� Fletcher ���
�a� and others consider an evaluation of the Hessian matrix to be
equivalent to O�n� gradient determinations or O�n�� objective function calls� This type
of scaling is valid whenever the partial derivatives cannot be obtained in analytic form
and provided as functions� but are calculated approximately as quotients of di�erences
obtained by trial steps in the coordinate directions� In any case it ought to be about
right if the objective function is of higher than second order� Accordingly the following
weighting of the function evaluations can be introduced on the table�

F � rF � r�F
�
� n� � n� � n�

Before anything can be said about the overall computation cost� or time� one must
know how many operations are required for calculating a value of the objective function�
In general a function of n variables will entail a cost that rises at least linearly with n�

Table ��� Number of operations required by the most important
basic strategies to minimize a quadratic objective func�
tion in terms of the number of variables n �only orders
of magnitude�

Number of Number of operations per iteration
Function evaluations ElementaryStrategy iterations
F rF r�F operations

Newton
e�g�� Newton�Raphson

n� � n� n� n�

Variable metric
e�g�� Davidon

n� n� n� � n�

Conjugate gradients
e�g�� Fletcher�Reeves

n� n� n� � n�

Conjugate directions
e�g�� Powell

n� n� � � n�

n� n� n�

Weighting factors
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For a quadratic function with a full matrix of coe�cients� just to evaluate the expression
xT Ax requires O�n�� basic arithmetical operations� If the order of magnitude is denoted
by O�nf � then� assuming f � �� for all the optimization methods considered so far the
computation time is given by�

T � n��f � n�

The advantage of having fewer function�independent operations in the Fletcher�Reeves
method� therefore� only makes itself felt if the number of variables is small and the time
for one function evaluation is short�

All the variants of the basic second order strategies mentioned here can be �tted� with
similar assumptions� into the above scheme� Among these are �Broyden� ��
��

� Modi�ed and quasi�Newton methods

� Methods of conjugate gradients and conjugate directions

� Variable metric strategies� with their variations using correction matrices of rank
one

There is no optimization method that has a cost rising with less than the third power
of the number of variables� Even the indirect procedure� in which the equations for the
necessary conditions for an extremum are set up and solved by conventional methods�
does not a�ord any basic reduction in the computational e�ort� If the objective function
is quadratic� a system of n simultaneous linear equations is obtained� To solve for the
n unknowns the Gaussian elimination method requires �

�
n� basic operations �multiplica�

tions and divisions�� According to Zurm�uhl ���	� all the other direct methods� meaning
here non�iterative methods� are more costly� except in special cases� Methods involving
a stepwise approach to the solution of systems of linear equations �relaxation methods�
require an in�nite number of iterations to reach an absolutely exact result� They converge
linearly and correspond to �rst order optimization strategies �single step or Gauss�Seidel
methods and total step or gradient methods� see Schwarz� Rutishauser� and Stiefel� �����
Only the method of Hestenes and Stiefel ���	�� converges after a �nite number of calcu�
lation steps� assuming that the calculations are exact� It is a conjugate gradient method
for solving systems of linear equations with a symmetrical� positive�de�nite matrix of
coe�cients�

The main concern here is with direct� i�e�� derivative�free� search strategies for opti�
mization� Finiteness of the search in the quadratic case and greater than linear con�
vergence can only be proved for the Powell method of conjugate directions and for
the Davidon�Fletcher�Powell variable metric method� which Stewart reformulated as a
derivative�free quasi�Newton method� Of the coordinates strategy� at best it can be said
that it converges linearly� The same holds for the simple gradient methods� There are also
versions of them in which the partial derivatives are obtained numerically� Since various
comparison tests have shown them to be rather ine�ective in highly non�linear situations�
none is considered here� No theoretically founded statements about convergence rates
and Q�properties are available for the other direct strategies� The rate of progress de�
�ned by Rechenberg ���
�� for the evolution strategy with adaptive step length control
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represents an average measure of convergence� It could� however� only be determined
theoretically for two selected model objective functions� The one with concentric contour
lines� or contour hypersurfaces� can be regarded as a special case of a quadratic objective
function� The formula for the local rate of progress in both the two membered and the
multimembered strategies has the form

��r� � c
r

n
� c � const�

r is the current distance from the objective�

r � kx�k� � x�k
and � is the change in r at one iteration or mutation

��r� �	r � kx�k� � x�k � kx�k��� � x�k
Rearrangement of the above formulae gives

kx�k��� � x�k � kx�k� � x�k
�
� � c

n

�

or

kx�k� � x�k � kx��� � x�k
�
� � c

n

�k
which because

� � �� c

n
� � � for � � n ��

proves the linear convergence property of the evolution strategy�

��� Numerical Comparison of Strategies

While the statements about convergence and rates of convergence derived from theory
are not without value� they can say little about the capability of optimization methods
in the general non�linear case because of the frequently rather limiting assumptions or
restrictions� The computational e�ort for example could only be speci�ed for quadratic
objective functions� The need therefore arises for numerical tests even for mathematically
based methods in the case of non�linear optimization� Many of the direct strategies are
only heuristic in nature anyway� They owe their success simply to the experimental
evidence of their usefulness in practical situations�

Iteration methods usually require a considerable number of calculation steps� Without
mechanical assistance they frequently cannot be applied at all� There is thus an evident
parallel between the development of rapid digital computers and optimization methods�
The use of such systems entails� however� one di�culty� The possibly unpleasant con�
sequences of �nite accuracy in line searches have already been pointed out� The �nite
number of decimal places to which data are stored implies that all calculation operations
are subject to rounding errors� unless they are dealing with integers� Proofs of conver�
gence� however� assume that the calculations are performed exactly� They therefore only
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hold for the idealized concept of an algorithm� not for a particular computer program�
The susceptibility of a strategy to rounding errors depends on how it is coded� Thus� for
this reason too there is a need to check the convergence properties of numerical methods
experimentally�

Because of the �nite word length of a digital computer the number range is also
limited� If it is exceeded� the program that is running normally terminates� Such fatal
execution errors ��oating over�ow� �oating divide check�� are usually the consequence of
rounding errors in previous steps� if the error is in going below the absolutely smallest
number value ��oating under�ow� it is not regarded as fatal� Only few algorithms� e�g��
Brent ���
��� take special account of �nite machine accuracy�

In spite of the frequent mention of the importance of numerical comparisons of strate�
gies� few publications to date have reported results on several di�erent test problems us�
ing a large number of minimization methods� By virtue of its scope� the work of Colville
����� ��
�� stands out among the older studies by Brooks ���	��� Spang ������ Dick�
inson ������ Leon ���a�� Box ����� and Kowalik and Osborne ������ It included
�� strategies and � di�erent problems� but not many direct search methods compared to
gradient methods� In some other tests by Jacoby� Kowalik� and Pizzo ���
��� Himmelblau
���
�a�� Smith ���
��� and others in the collection of Lootsma ���
�a�� derivative�free
strategies receive much more attention� The comparisons of Gorvits and Larichev ���
��
and Larichev and Gorvits ���
�� treat only gradient methods� and that of Tapley and
Lewallen ���
� deals with some schemes for the numerical treatment of functional opti�
mization problems� The huge collection of test problems of Hock and Schittkowski ������
is biased towards standard methods of mathematical programming and their capabilities
�Schittkowski� ������

����� Computer Used

The machine on which the numerical experiments were carried out was a PDP �� from
the �rm Digital Equipment Corporation� Maynard� Massachusetts� It had the following
speci�cations�

Core storage area� �K ��K � ���� words�
Word length� � bits
Cycle time� ��	 or ��� 	s

The time�sharing operating system accounted for about ��K of core� so that only
��K remained available to the user� To tackle some problems with as many variables
as possible� the computations were generally worked only to single precision� The main
program� which was the same for all strategies� occupied about

�
	 � �n

����

�
K words�

and the FORTRAN library a further 	K� The consequent maximum number nmax of
parameters is given for each search method under test in Table ��� The �nite word length
of a digital computer means that its number range is limited� The absolute bounds for
�oating point arithmetic were given by�

Largest absolute number� ���	 
 ��
 � ���

Smallest absolute number� ����
 
 ��� � �����
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Only a part of the word is available for the mantissa of a number� This imposed the
di�erential accuracy limit� which is much lower and usually more important�

Smallest di�erence relative to unity� ���	 
 
�	 � ����
Accordingly the following equalities hold for this computer�

� � �� for j�j � ����


� � � � �� for j�j � ���	

These computer�speci�c data play a r�ole when testing for zero or for the equality of
two quantities� The same programs can therefore lead to di�erent results on di�erent
computers�

Strategies are often judged by the computation time they require to achieve a result� for
example� with a speci�ed accuracy� The basic quantity for this purpose is the occupation
time of the central processor unit �CPU�� It also depends on the machine� Word lengths
and cycle times are not enough to allow comparison between runs that were made on
di�erent computers� So�called MIX�times� which are average values of the duration of
certain operations� also prove to be unsuitable� since the speed of calculation is so strongly
dependent on the frequency of its individual steps� A method proposed by Colville �����
has received wide recognition� Its design was particularly suited to optimization methods�
According to this scheme� measured computation times are expressed relative to the time
required for �� consecutive inversions of a ��� �� matrix� using the FORTRAN program
written by Colville� In our case this unit was around ��� seconds� Because of the time�
sharing operation� with its rather variable load on the PDP ��� there were deviations
of ��� and above on the reported CPU times� This was especially marked for short
programs�

����� Optimization Methods Tested

One goal of this work is to compare evolution strategies with other derivative�free methods
of continuous parameter optimization� To this end we consider not only direct search
methods in the narrower sense� but also those methods that glean their required knowledge
of partial derivatives by means of trial steps and �nite di�erence methods� Altogether ��
strategies or versions of basic strategies are considered� Their names and abbreviations
used for them are listed in Table ��� All tests were run on the PDP �� mentioned in the
previous section�

Finite computer accuracy implies that in the case of quadratic objective functions
the iteration process could or should not be continued until the exact solution has been
obtained� The decision when to terminate the optimum search is a necessary and often
crucial component of any iterative method� Just as the procedures of the individual
strategies di�er� so too do their termination or convergence criteria� As a rule� the user
is given the chance to exert an in�uence on the termination criterion by means of an
input parameter de�ned as the required accuracy� It refers either to the values of the
variables �change in xi within one iteration or size of the step lengths si� or to values of
the objective function� Both criteria harbor the danger that the search will be terminated
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prematurely� that is before arriving as close to the objective as is required� This is made
clear by Figure ���

Neither 	x � �x nor 	 F � �F alone are su�cient conditions for being close to
the solution x�� The condition krFk � �g� which is often applied for gradient methods�
can lead to termination of the search near a saddle point and is in any case not always
appropriate in the presence of constraints or discontinuities� Thus the e�ectiveness of a
convergence criterion is always closely linked to the procedure of a particular strategy and
not automatically transferable to other strategies� Since each method converges to the
optimum along a di�erent path� in spite of having the same required accuracy� di�erent
methods do not �nish the search with the same result� The termination criteria are also
tested at di�erent points in time and not always with the same frequency� These factors
make it more di�cult to compare the test results of di�erent methods�

For this reason Himmelblau replaces the strategy speci�c termination criteria by the
tests

kx�k� � x�k � ��

and
F �x�k��� F �x�� � ��

after each iteration� He thereby obtains results that can be compared quite easily� but
they are valid only for strategies deprived of one of their major components�

We have retained here the original termination criteria of all the search methods� The
required accuracies were set as high as the computer permitted� The actual values used
are given in Table ��� Their meaning can be found in the description of the strategies in
Chapter ��

F (x)

x

x

x

F

*

Figure ���� The adequacy of termination criteria
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Table ��� Strategies applied� their abbreviations� maximum num�
ber of variables and accuracy parameters

Strategy Abbreviation Maximum Accuracy
number of parameter
variables

Coordinate strategy with FIBO ���� � � 
�	 � ����
Fibonacci search

Coordinate strategy with GOLD ���� � � 
�	 � ����
golden section

Coordinate strategy with LAGR �	�� � � 
�	 � ����
Lagrangian interpolation

Direct search of Hooke HOJE ���� � � 
�	 � ����
and Jeeves

Davies�Swann�Campey method DSCG 
	 � � 
�	 � ����
with Gram�Schmidt
orthogonalization

Davies�Swann�Campey method DSCP �	 � � 
�	 � ����
with Palmer orthogonalization

Powell�s method of conjugate POWE ��	 � � 
�	 � ����
directions

Stewart�s modi�cation of the DFPS ��� �a � �b � �c �
Davidon�Fletcher�Powell 
�	 � ���� y

method
Simplex Method of Nelder SIMP ��	 � � ���
 z

and Mead
Method of Rosenbrock with ROSE 
	 � � ���� z

Gram�Schmidt ortho�
gonalization

Complex method of Box COMP �	 � � ���� z

�� � �� Evolution strategy EVOL ���� � �a � �c �
� ��� � �����

���� ���� Evolution strategy GRUP ��	 �
���� ���� Evolution strategy REKO ��	 � �b � �d �
with recombination � 
�	 � ����

zValues �xed by the author�
yIn place of the values set in Lill�s program� �a � ����� �b � ������ �c � 	 � ������

The maximum number of variables refers to an available core storage area of 
�K words� which includes
the main program and the FORTRAN library�
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Besides their considerable cost in programming and computation time� numerical
strategy comparisons entail further di�culties� The e�ectiveness of a method can be
strongly in�uenced by small programming details� A number of methods were not fully
worked out by their originators and require heuristic rules to be introduced before they can
be applied� The way in which this degree of freedom is exercised to de�ne the procedure
depends on the skill and experience of the programmer� which leads to large discrepancies
between the results of investigations and the judgements of di�erent authors on one and
the same strategy�

We have therefore� as far as possible� used already published programs �FORTRAN
or ALGOL� for the algorithms or parts of them under study�

� One dimensional search with the Fibonacci method of Kiefer�

M� C� Pike� J� Pixner ���	� Algorithm �� Fibonacci search

J� Boothroyd ���	� Certi�cation of Algorithm �

M� C� Pike� I� D� Hill� Note on Algorithm �
F� D� James ���
�

� One dimensional search with the golden section method of Kiefer�

K� J� Overholt ���
� Algorithm �� Gold

� Direct search �pattern search� of Hooke and Jeeves�

A� F� Kaupe� Jr� ����� Algorithm �
�� direct search

M� Bell� M� C� Pike ���� Remark on Algorithm �
�

R� DeVogelaere ����� Remark on Algorithm �
�

F� K� Tomlin� L� B� Smith ����� Remark on Algorithm �
�

L� B� Smith ����� Remark on Algorithm �
�

� Orthogonalization method for the strategies of Rosenbrock and of Davies� Swann�
and Campey�

J� R� Palmer ����� An improved procedure for orthogonalizing the
search vectors in Rosenbrock�s and Swann�s direct
search optimization methods

� Derivative�free method of conjugate directions of M� J� D� Powell�

M� J� Hopper ���
�� Harwell subroutine library� A catalogue of sub�
routines� from which subroutine VA��A� updated
May ��� ��
� �received as a card deck��

� Variable metric method of Davidon� Fletcher� and Powell as formulated by Stewart�

S� A� Lill ���
�� Algorithm �� A modi�ed Davidon method for
�nding the minimumof a function� using di�erence
approximation for the derivatives�
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S� A� Lill ���
�� Note on Algorithm �

Z� Kov acs ���
�� Note on Algorithm �

Some of the parameters a�ecting the accuracy were altered� either because the small
values de�ned by the author could not be realized on the available computer or
because the closest possible approach to the objective could not have been achieved
with them�

� Simplex method of Nelder and Mead�

R� O�Neill ���
�� Algorithm AS �
� function minimization using a
simplex procedure

� A complete program for the Rosenbrock strategy�

M� Machura� A� Mulawa ���
�� Algorithm �	�� Rosenbrock function minimization

This was not applied because it could only treat the unconstrained case�

� The same applies to the code for the complex method of M� J� Box�

J� A� Richardson� J� L� Kuester
���
��

Algorithm �	�� the complex method for con�
strained optimization

The part of the strategy that� when the starting point is not feasible seeks a basis
in the feasible region� is not considered here�

Whenever the procedures named were published in ALGOL they have been translated
into FORTRAN� All the other optimization strategies not mentioned here have also been
programmed in FORTRAN�with close reference to the original publications� If one wanted
to repeat the test series today� a much larger number of codes could be made use of from
the book of Mor e and Wright �������

����� Results of the Tests

������� First Test� Convergence Rates for a Quadratic Objective Function

In the �rst part of the numerical strategy comparison the theoretical predictions of conver�
gence rates and Q�properties will be tested� or� where these are not available� experimental
data will be supplied instead� For this purpose two quadratic objective functions are used
�Appendix A� Sect� A���� In the �rst �Problem ���� the matrix of coe�cients is diagonal
with unit diagonal elements� i�e�� a scalar matrix� This simplest of all quadratic prob�
lems is characterized by concentric contour lines or surfaces that can be represented or
imagined as circles in the two parameter case� spheres in the three parameter case� and
surfaces of hyperspheres in the general case� The same pattern of contours but with arbi�
trary monotonic variation in the objective function occurs in the sphere model for which
the average rates of progress of the evolution strategies could be determined theoretically
�Rechenberg� ��
�� and Chap� 	 of this book��

The second objective function �Problem ���� has a matrix of coe�cients with all non�
zero elements� It represents a full quadratic problem �except for the missing linear term�
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with concentric� oblique ellipses� or ellipsoids as the contour lines or surfaces� The con�
dition number of the matrix of coe�cients increases quadratically with the number of
parameters �see Appendix A� Sect� A���� In general� the time required to calculate one
value of the objective function increases as O�n�� for a quadratic problem� because� for a
full form matrix� n

�
�n � �� distinct second order terms aij xi xj must be evaluated� The

objective function of Problem ��� has been formulated with the intention of reducing the
computation time per function call to O�n�� without it being such a particular quadratic
problem that one of the strategies could �nd it especially advantageous� The strategy
comparison for this problem could thereby be made for much larger numbers of variables
for the prescribed maximum computation time �Tmax � � hours�� The storage require�
ment for the full matrix A would also have been an obstacle to numerical tests with many
parameters�

To enable comparison of the experimental and theoretical results� the required number
of iterations� line searches� orthogonalizations� objective function calls� and the computa�
tion time were measured in going from the initial values

x
���
i � x�i �

����ip
n

� for i � ����n

to an approximation

���x�k�i � x�i

��� � �

��

���x���i � x�i

��� � for i � ����n

The interval of uncertainty of the variables thus had to be reduced by at least ����
The distance covered is e�ectively independent of the number of variables� The above
conditions were tested after each iteration� and as soon as they were satis�ed the search
was terminated� The convergence criteria of the strategies themselveswere not suppressed�
but they could not generally take e�ect as they were much stricter� If they did actually
operate it could be regarded as a failure of the method being applied�

The results of the �rst test are given in Tables �� and ��� The number of function
calls and the number of iterations or other characteristic processes involved are displayed
in Figures �� to ��� as a function of the number of parameters n on a log�log scale� As
the data show� the computation time and e�ort of a strategy increase sharply with n�
The large range in the number of variables compared to other investigations allows the
trends to be seen clearly� To facilitate an overall view� the computation times of all the
strategies are plotted as a function of the number of variables in Figures ��� and ��	�
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Table ��� Results of all strategies for test Problem ���

FIBO�Coordinate strategy with Fibonacci search
Number of variables Number of cycles Number of objective Computation time

function calls in seconds

� � ��� ����
� � 	
� ��	�
�� � ��� ����
	� � ��� ����
�� � �	�	 ���

�� � 	�	� ���

��� � ��
� 	���
	�� � 
��� ���
��� � ����	 	��
��� � 	��	� �	�
���� � ��
�� 	���
	��� � �
��� �	
�

max� 	��� � ������ �����

� cycle � n line searches

GOLD�Coordinate strategy with golden section
Number of variables Number of cycles Number of objective Computation time

function calls in seconds

� � ��� ����
� � 	
� ��		
�� � ��� ����
	� � ��� ����
�� � �	�	 ����
�� � 	�	� ����
��� � ��
� 	
��
	�� � 
��	 ���
��� � ����	 		�
��� � 	��	� ���
���� � ��
�� 	�
�
	��� � �
��� ����
	��� � ������ �����

� cycle � n line searches
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Table �� �continued�

LAGR�Coordinate strategy with Lagrangian interpolation
Number of variables Number of cycles Number of objective Computation time

function calls in seconds

� � �� ����
� � ��� ���	
�� � 	
� ����
	� � �	� ����
�� � 
�� ����
�� � ���� ����
��� � 	��� �
��
	�� � ���� ����
��� � 
	�� ���
��� � ����� ���
���� � 	���� ��	�
	��� � ����� ��	�

max� 	��� � ����� �����

� cycle � n line searches

HOJE�Direct search of Hooke and Jeeves
Number of variables Number of cycles Number of objective Computation time

function calls in seconds

� � 	� ���	
� � �� ����
�� � �� ����
	� 
 	
� ����
�� � ��� ����
�� � �
� ��
�
��� 	 ��	 	��

	�� � ���� ����
��� � ���� ���
��� 
 
��� 	��
���� �	 	���� ����
	��� � ����� �	
�
���� �� ����� ��	��

max� ���� �� ������ 	����

� cycle � n to 	n individual steps
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Table �� �continued�

DSCG�Davies�Swann�Campey method with Gram�Schmidt orthogonalization
Number of Number of Number of line Number of objec� Computation time
variables orthog� searches tive function calls in seconds

� � � 	� ����
� � � �� ����
�� � �� �� ��	�
	� � 	� ��� ����
�� � �� ��� ����
�� � �� 		� 	���

max� 
� � 
� ��� ����

DSCP�Davies�Swann�Campey method with Palmer orthogonalization
Number of Number of Number of line Number of objec� Computation time
variables orthog� searches tive function calls in seconds

max� �� � �� �	� ����

Results for n � 
� identical to those of DSCG� in addition�

POWE�Powell�s method of conjugate directions
Number of Number of Number of line Number of objec� Computation time
variables iterations searches tive function calls in seconds

� � � �� ���	
� � � 	� ����
�� � �� �	 ���	
	� � 	� �	 ���	
�� � �� �	 ����
�� � �� ��	 ����
��� � ��� 	�	 ��
	

max� ��� � ��� ��
 ����

� complete iteration � n � � line searches� included are all the iterations begun
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Table �� �continued�

DFPS�Stewart�s modi�cation of the Davidon�Fletcher�Powell method
Number of variables Number of iterations Number of objective Computation time

function calls in seconds

� � �� ���	
� � �� ����
�� � 	� ����
	� � �� ����
�� � �� ���	
�� � �	� ����
��� � 	�� ����
��� � 	
� ���	

max� ��� � ��� ����

� iteration � � gradient evaluation and � line search

SIMP�Simplex method of Nelder and Mead with restart�

Number of variables Number of restarts Number of objective Computation time
function calls in seconds

� � 	� ����
� � ��� ����
�� � ��� ����
	� � ��� ��	�
�� � ��� �
��
�� � ���	 	


��� � �
�� ��	

max� ��� � ���	 �	
�

ROSE�Rosenbrock�s method with Gram�Schmidt orthogonalization
Number of variables Number of orthog� Number of objective Computation time

function calls in seconds

� � 	
 ����
� 	 �� ���	
�� 	 �	� ����
	� � ��� 	���
�� � �	� ����
�� � 	�� ���

�� 	 ��� ����
�� 	 ��� 
���

max� 
� 	 ��� ���
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Table �� �continued�

COMP�Complex method of Box 	n vertices�

Number of variables Number of objective Computation time
function calls in seconds

� �� ��		
� 	�� ���	
�� ��� ��
	
	� ���
 
	��
�� 	�	� 	��
�� 
	�� 		��

max� �� ����	 �����

All numbers are averages over several attempts�

EVOL����� evolution strategy average values�

Number of variables Number of mutations Computation time
in seconds

� �� ���

� ��� ��
�
�� 		� ��
�
	� ��� ���

�� ��� ����
�� ���� ����
��� 	��	 ���
��� ��		 ���
	�� �	�	 ���
��� ���� ����
��� ����� ����
���� 	���
 �����

Maximum number of variables ������ not achieved because too
much computation time required�
Number of objective function calls � � � number of mutations
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Table �� �continued�

GRUP��� � ���� evolution strategy average values�

Number of variables Number of generations Computation time
in seconds

� � ����
� �� ��
�
�� �
 ����
	� �
 ����
�� �� ���
�� ��� ���
��� ��� ����
	�� �

 �
	�
��� ��� �����

max� ��� ��� 	����

Number of objective function calls�
�� � ��� times number of generations�

REKO��� � ���� evolution strategy with recombination average

values�

Number of variables Number of generations Computation time
in seconds

� � 	��

� � 
��	
�� �� 	���
	� 	� �	��
�� �� �


�� �� ���
��� �� ��	�
	�� ��� ����
��� ��� ����

max� ��� 	�� 	����

Number of objective function calls�
�� � ��� times number of generations�
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Table ��� Results of all strategies for test Problem ���

FIBO�Coordinate strategy with Fibonacci search
Number of variables Number of cycles Number of objec� Computation time

tive function calls in seconds

� � �	� ����
� 		 ��
� ����
�� �� �	��� ����
	� �
 ��	�� ��	
�� ��	 ����	� 	��
�� 		
 	�
��� �	��
�� 	�	 �		��� 	�	�
��� Search terminates prematurely

GOLD�Coordinate strategy with golden section
Number of variables Number of cycles Number of objec� Computation time

tive function calls in seconds

� � ��� ����
� 		 ���� ����
�� �� �	�		 ����
	� �� ����� ��	
�� ��� ���	�� 	�

�� 		� 	���
� ����
�� 	
� �	��
� 	���
��� Search terminates prematurely

LAGR�Coordinate strategy with Lagrangian interpolation
Number of variables Number of cycles Number of objec� Computation time

tive function calls in seconds

� � ��� ����
� 		 	�	� 	���
�� �� ��	� ����
	� �
 �	��	 �	��
�� ��� 
���� ��	
�� 	
	 	����
 ��	�
��� ��� 
����� �

�
��� Search terminates prematurely
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Table �� �continued�

HOJE�Direct search of Hooke and Jeeves
Number of variables Number of cycles Number of objec� Computation time

tive function calls in seconds

� �� �� ����
� �� ��� ����
�� 	� ��	 ���	
	� 
� ���� ��
�
�� ��� ���� ����
�� 	�	 	���� ���
��� ��
 
���� ��

	�� 
	
 	����� �	
�
��� ���
 ������ �����

DSCG�Davies�Swann�Campey method with Gram�Schmidt orthogonalization
Number of Number of Number of line Number of objec� Computation time
variables orthog� searches tive function calls in seconds

� � �� �
 ��		
� 
 �� ��� ���

�� � ��� �	� 	�
�
	� �� ��� �	�� 	��	
�� 	� ��� 	��� ���
�� �	 ���	 ���� ���
�� 	
 ���� ���� ��	
�� �� 	�		 ���� ����

max� 
� �
 ��
� 	���� �
��

DSCP�Davies�Swann�Campey method with Palmer orthogonalization
Number of Number of Number of line Number of objec� Computation time
variables orthog� searches tive function calls in seconds

� � �� �� ��		
� 
 �� ��� ��
�
�� � ��� �	� ����
	� �� ��� �	�� ����
�� 	� ��� 	��� ����
�� 	� ���� ���� ���


� 
� ��
� ����� ��


max� �� ��� ���� 	���� ����
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Table �� �continued�

POWE�Powell�s method of conjugate directions
Number of Number of Number of line Number of objec� Computation time
variables iterations searches tive function calls in seconds

� � �� 	
 ����
� � �� 

 ����
�� � �� 	�� ���

	� �
 ��� 
�� ���	
�� �� ��	� ���� 	���
�� search becomes in�nite � no convergence
�� �
� ���� 	���	 	��
�� ��� ���
 ���

 			

�
��
��
���

max� ���

�������
�����	

search becomes in�nite � no convergence

DFPS�Stewart�s modi�cation of the Davidon�Fletcher�Powell method
Number of Number of Number of objec� Computation time Fatal errors
variables iterations tive function calls in seconds

� � 	� ����
� � �� ����
�� � 
� ����
	� 
 �
� ����
�� � ��� ����
�� �� �	� ���

��� �
 	��� �
��
��� 	� ���� ���

max� ��� 		 �
�
 	
� 	 �oating
divide checks
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Table �� �continued�

SIMP�Simplex method of Nelder and Mead with restart�

Number of Number of Number of objec� Computation time
variables restarts tive function calls in seconds

� � 	� ����
� � �
� ����
�� � ��� ���

	� � 	��� 

��
�� � ��
	 �
�
�� 	 	�	�	 ����
�� � ���

 ��
�
�� � �	�
� ��
��

� � ����� 	����

ROSE�Rosenbrock�s method with Gram�Schmidt
orthogonalization
Number of Number of Number of objec� Computation time
variables orthog� tive function calls in seconds

� � �� ���	
� � ��	 ���	
�� � �
� ����
	� �	 	
�� ����
�� �� ���� ���
�� �� ����� �	�
�� 	� ����� ���
�� 	� 	���� ����

max� 
� �� ���
� ��	�

COMP�Complex method of Box 	n vertices�

Number of Number of objective Computation time
variables function calls in seconds

� �� ��	�
� ��	 	���
�� �	
 �	��
	� ���� 	��
�� 	���	 	���

Search sometimes terminates prematurely
�� Search always terminates prematurely

All numbers are averages over several attempts
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Table �� �continued�

EVOL����� evolution strategy average values�

Number of variables Number of mutations Computation time
in seconds

� �� ����
� 	�� ����
�� 
	� ����
	� 	�
� ����
�� ���� ���
�� 	���� ���
��� ����	 ����
��� ��	��� ��	��

GRUP��� � ���� evolution strategy average values�

Number of variables Number of generations Computation time
in seconds

� � 	��	
� �� ����
�� �� ����
	� ��� �	�
�� ��� ���
�� ���� ����
�� 	�

 �����
��� ���� �����

REKO��� � ���� evolution strategy with recombination average

values�

Number of variables Number of generations Computation time
in seconds

� � 	���
� �� ����
�� �	 
��	
	� ��	 ���
�� ��		 ��	�
�� �	�� �����

Figures �� to ��� translate the numerical data into vivid graphics� The abbreviations
used here are�

OFC stands for objective function calls
ORT stands for orthogonalizations

The parameters ��� and ��� refer to Problems ��� and ��� as mentioned above�
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Figure ���� Coordinate strategy with Fibonacci search

Figure ��
� Coordinate strategy with golden section
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Figure ��� Coordinate strategy with Lagrangian interpolation

Figure ��	� Strategy of Hooke and Jeeves
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.

Figure ���� Strategy of Davies� Swann� and Campey with Gram�Schmidt or�
thogonalization

Figure ���� Strategy of Davies� Swann� and Campey with Palmer orthogonal�
ization
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no convergence

no convergence

Figure ���� Strategy of Powell with conjugate directions

Figure ���� Strategy of Davidon� Fletcher� Powell� and Stewart as formulated
by Lill �variable metric�
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Figure ����� Strategy of Rosenbrock with Gram�Schmidt orthogonalization

Figure ����� Left� Simplex strategy of Nelder and Mead�
Right� Complex strategy of Box
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Mutations 1.2

Mutations 1.1

Figure ����� ����� evolution strategy

Figure ���
� Left� ��� � ���� evolution strategy without recombination�
Right� ��� � ���� evolution strategy with recombination
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Points that deviated greatly from the trends have been omitted� To emphasize the
di�erences between the methods� instead of the computation time T the quantities T
n�

for Problem ��� and T
n� for Problem ��� have been plotted on a logarithmic scale�
For solving Problem ��� nearly all strategies require computation times of the order

of O�n��� This corresponds to O�n� objective function calls� each requiring O�n� com�
putation time� As expected� the most successful methods are the two that theoretically
show quadratic convergence� namely the method of conjugate directions �Powell� and the
variable metric method �DFPS�� They obtain the solution within one iteration and n line
searches respectively� For this simple problem� however� the same can be said for strate�
gies with cyclic variation of the variables� since the search directions are the same� Of the
three coordinate methods� the one with quadratic interpolation is a bit faster than the
two which use sequential interval division� The latter two are of equal merit� The strat�
egy of Davies� Swann� and Campey �DSC� also performs very well� Since the objective is
reached within the �rst n line searches� no orthogonalizations need to be carried out� For
this reason too both versions yield identical results for n � 
	�

The evolution strategies live up to expectations in so far as the number of muta�
tions or generations increases linearly with n� The number of objective function calls
and the computation times are� however� considerably higher than those of the previously
mentioned methods� For r���
r�M� � �� the approximate theory of the two membered
evolution strategy with optimal step length control predicts the number of mutations to be

M 
 �	 ln ���n 
 ���	n

In fact nearly twice as many objective function calls �about ��n� are required� This is
partly because of the discrete way in which the variances are adjusted and partly because
the chosen reduction factor of ���	 corresponds to a success rate below the optimal value
of ���
� The ASSRS �adaptive step size random search� method of Schumer and Steiglitz
������ which resembles the simple evolution strategy� is presently the most e�ective
random method as far as we know� According to the experimental results of Schumer
���
� for Problem ���� taking into account the di�erent initial and �nal conditions� it
requires about the same number of steps as the ����� evolution strategy�

It is noteworthy that the ��� � ���� strategy without recombination only takes about
�� times as much time as the ����� method� in spite of having to execute ��� mutations
per generation� This factor of acceleration is signi�cantly higher than the theory for a
�� � ��� version would indicate and is closer to the calculated value for a �� � ��� strategy�
In the case of many variables� recombination further reduces the required number of
generations by two thirds� This is less apparent in the computation time that is increased
by the extra arithmetic operations� compared to the relatively inexpensive calculation of
one objective function value� Thus� in the �gures showing computation times only the
��� � ���� evolution without recombination has been included�

The strategy of Hooke and Jeeves appears to require computation times rather more
than O�n�� on average� for many variables� nearer O�n����� This arises from the slight
increase with n of the number of exploratory moves� The likely cause is the �xed initial
step length� which for problems with many variables is signi�cantly too big and must �rst
be reduced to the appropriate size� Three search strategies exhibit strikingly di�erent
behavior�
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The method of Rosenbrock requires computation times on the order of O�n��� This
can be readily understood� Up to the single exception of n � ��� in each case one or two
orthogonalizations are performed� The Gram�Schmidt method employed performs O�n��
operations� If the number of variables is large the orthogonalization time is of major
signi�cance whenever the time for one function call increases less than quadratically with
the number of variables� One can see here that the number of objective function calls is
not always su�cient to characterize the cost of a strategy� In this case the DSC method
succeeds with no orthogonalizations� The introduction of quadratic interpolation proves
to give better results than the single step method of Rosenbrock�

Computation times for the simplex and complex strategies also increase as n�� or even
somewhat more steeply with n for many variables� The determining factor for the cost in
this case is calculating the centroid of the simplex �or complex�� about which the worst
of the �n � �� or �n vertices is re�ected� This process takes O�n�� additions� Since the
number of re�ections and objective function calls increases as n� the cost increases� simply
on this basis� as O�n��� Even in this simplest of all quadratic problems the simplex of the
Nelder�Mead method collapses if the number of variables is large� To avoid premature
termination of the optimum search� in the presently used algorithm for this strategy the
simplex is initialized again� The search can thereby be prevented from stagnating in a
subspace of IRn� but the required computation time increases even more rapidly than
O�n��� The situation is even worse for the complex method of Box� The author suggests
using �n vertices for problems with few variables and considers that this number could
be reduced for many variables� However� the attempt to solve Problem ��� for n � ��
with a complex of �� vertices fails in one of three cases with di�ering sequences of random
numbers� i�e�� the search process ends before achieving the required approximation to
the objective� For n � �� and 	� vertices the complex collapsed prematurely in all
three attempts� With �n vertices the complex strategy is successful up to the maximum
possible number of variables� n � �	� Here again� however� for n � �� the computation
time increases faster than O�n�� with the number of parameters� It is therefore dubious
whether the search would have been pursued to the point of reaching the maximum
internally speci�ed accuracy�

The second order methods only distinguish themselves from other strategies for solving
Problem ��� in that their required computation time

T � c n�� c � const�

is characterized by a small constant of proportionality c� Their full capabilities should
become apparent in solving the true quadratic problem �Problem ����� The variable
metric method lives up to this expectation� According to theory it has the property Q n�
which means that after n iterations� n� line searches� and O�n�� computation time the
problem should be solved� It comes as something of a surprise to �nd that the numerical
tests indicate a requirement for only about O�n��� iterations and O�n��� computation
time� This apparent discrepancy between theory and experiment is explained if we note
that the property Q n signi�es absolute accuracy within at most n iterations� while in
this example only a �nite reduction of the uncertainty interval is required�

More surprising than the good results of the DFPS method is the behavior of the



��� Comparison of Direct Search Strategies for Parameter Optimization

strategy of Powell� which in theory is also quadratically convergent� Not only does it
require signi�cantly more computation time� it even fails completely when the number of
parameters is large� And in the case of n � �� variables the step length goes to zero along
a chosen direction� The convergence criterion is subsequently not satis�ed and the search
process becomes in�nite� it must be interrupted externally� For n � 	� and n � � the
Powell method does converge� but for n � 
�� ��� ��� ���� and ��� it fails again� The
origin of this behavior was not investigated further� but it may well have to do with the
objection raised by Zangwill ���
� against the completeness of Powell�s ����� proof of
convergence� It appears that rounding errors combined with small step lengths in the one
dimensional search can cause linearly dependent directions to be generated� However�
independence of the n directions is the precondition for them to be conjugate to each
other�

The coordinate strategies also fail to converge when the number of variables in Prob�
lem ��� becomes very large� With the Fibonacci search and golden section as interval
division methods they fail for n � ���� and with quadratic interpolation for n � �	��
For successful line searching the step lengths would have to be smaller than allowed by
the �nite word length of the computer used� This phenomenon only occurs for many vari�
ables because the condition of the matrix of coe�cients in Problem ��� varies as O�n���
In this proportion the elliptic contour surfaces F �x� � const� become gradually more
extended and the relative minimizations along the coordinate directions become less and
less e�ective� This failure is typical of methods with variation of individual parameters
and demonstrates how important it can be to choose other search directions� This is
where random directions can prove advantageous �see Chap� ���

Computation times for the method of Hooke and Jeeves and the method of Davies�
Swann�Campey �DSC� clearly increase as O�n�� if Palmer orthogonalization is employed
for the latter� For the method of Hooke and Jeeves this corresponds to O�n� exploratory
moves and O�n�� function calls� for the DSC method it corresponds to O�n� orthog�
onalizations and O�n�� line searches and objective function evaluations� The original
Gram�Schmidt procedure for constructing mutually orthogonal directions requires O�n��
rather than O�n�� arithmetic operations� Since the type of orthogonalization seems to
hardly alter the sequence of iterations� with the Gram�Schmidt subroutine the DSC strat�
egy takes O�n�� instead of O�n�� basic operations to solve Problem ���� For the same
reason the Rosenbrock method requires computation times that increase as O�n��� It
is� however� striking that the single step method �Rosenbrock� in conjunction with the
suppression of orthogonalization until at least one successful step has been made in each
direction requires less time than line searching� even if only one quadratic interpolation
is performed� In both these methods the number of objective function calls� which is of
order O�n��� plays only a secondary r�ole�

Once again the simplex and complex strategies are the most expensive� From n � ���
the method of Nelder and Mead does not comewithin the required distance of the objective
without restarts� Even for just six variables the search simplex has to be re�initialized
once� The number of objective function calls increases approximately as O�n��� hence
the computation time increases as O�n�� The strategy of Box with �n vertices shows
a correspondingly steep increase in the time with the number of variables� For n � ��
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Problem ��� was actually only solved in one out of three attempts� and for n � �� not at
all� If the number of vertices of the complex is reduced to n � �� the method fails from
n � ���

As in Problem ���� the cost of the evolution strategies increases rather smoothly with
the number of parameters�more so than for several of the deterministic search methods�
To solve Problem ���� O�n�� objective function calls are required� corresponding to O�n��
computation time� Since the distance to be covered is no greater than it was in Problem
���� the greater cost must have been caused by the locally smaller curvatures� These are
related to the lengths of the semi�axes of the contour ellipsoids� Because of the regular
structure of the matrix of coe�cients A of the quadratic objective function in Problem
���� the condition number K� the ratio of greatest to least semi�axes �cf� test Problem
��� in Appendix A� Sect� A���

K �
�
amax

amin

��

can be considered as the only quantity of signi�cance in determining the geometry of the
contour pattern� The remaining semi�axes will distribute themselves uniformly between
amin and amax� The fact that K increases as O�n�� suggests that the rate of progress ��
the average change in the distance from the objective per mutation or generation� only
decreases as the square root of the condition number� There is so far no theory for the
general quadratic case� Such a theory will also look more complicated� since apart from
the ratio of greatest to smallest semi�axis a further n � � parameters that determine the
shape of the hyperellipsoid will play a r�ole� The position of the starting point will also
have an e�ect� although in the case of many variables only at the beginning of the search�
After a transition phase the starting point of mutations will always lie in the vicinity of a
point where the objective function contour surfaces are most curved� In the sphere model
theory of Rechenberg� if r is regarded as the average local radius of curvature� the rate of
progress at worst should become inversely proportional to the square root of the condition
number� The convergence rate of the evolution strategy would then be comparable to that
of the strategy of steepest descents� for which function values of two consecutive iterations
in the quadratic case are in the ratio �Akaike� ����

amax � amin

amax � amin

Compared to other methods having costs in computation time that increase as O�n���
the evolution strategies fare better than they did in Problem ���� Besides the fact that
the coordinate strategies do not converge at all when the number of variables becomes
large� they are surpassed in speed by the two membered evolution strategy� The rela�
tive performance of the two membered and multimembered evolution strategies without
recombination remains about the same�

The behavior of the ��� � ���� evolution strategy with recombination deviates from that
of the other versions� It requires considerably more computation time to solve Problem
���� This can be attributed to the fact that� although the probability distribution for
mutation steps alters� it cannot adapt continuously to the local conditions� Whilst the
mutation ellipsoid� the locus of all equiprobable mutation steps� can extend and contract
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along the coordinate directions� it cannot rotate in the space� To do so� not only the
variances but also the orientation or covariances would need to be variable �for such
an extension see Chap� 
 and subroutine KORR�� As the results show� starting from a
spherical shape the mutation ellipsoid adopts a con�guration that initially accelerates the
search process� As it progresses towards the objective the ellipsoid must become smaller�
but it should also gradually rotate to follow the orientation of the contour lines� That
is not possible because the mechanism adopted here allows no mutual dependence of the
components of the random vector� The ellipsoid �rst has to form itself into a sphere
again� or to become generally small� before it extends again with the longer axes in new
directions� This awkward process actually occurs� but it causes an appreciable delay in
the search�

There is a further undesirable phenomenon� Supposing that a single variance suddenly
becomes very much smaller� The associated variation in the variables then takes place
in an �n � ���dimensional subspace of IRn �for a more detailed analysis see Schwefel�
���
�� Other things being equal� the probability of a success is thereby greater than if
all the parameters had varied� Step length alterations of this kind are therefore favored
and� together with the resistance to rotation of the mutation ellipsoid� they enhance the
unstable behavior of the strategy with recombination� This can be prevented by having a
large population� in which there is always a su�cient supply of di�erent kinds of parameter
combinations for the variances as well� Another possibility is to allow one individual to
execute several consecutive mutations with one setting of the step length parameters�
Then the overall success depends rather less on the instantaneous probability of success
and more on the size of the partial successes� The quality of the strategy parameters is
thereby assessed more objectively� It should be noticed that Problem ��� is actually the
only one in which recombination appears troublesome� In many other cases it led to a
reduction in the computation cost� even in the simple form applied here �see second and
third test��

������� Second Test� Reliability

Convergence in the quadratic case is a minimum requirement of non�linear optimization
methods� The unsatisfactory results of the coordinate strategies and of Powell�s method
for a large number of variables con�rm the necessity of numerical tests even when conver�
gence is assured by theory� Even more important� in fact unavoidable� are experimental
tests of the reliability of convergence of optimization methods on non�quadratic� non�linear
problems� Some methods with an internal quadratic model of the objective function have
to be modi�ed in order to deal with more general problems� Such� for example� is the
method of conjugate gradients� The method of Fletcher and Reeves ����� actually ter�
minates after the relative minimum has been obtained in each of n conjugate directions�

However� for higher order objective functions the optimum will not have been reached
after n iterations� Even in quadratic problems� if they are ill�conditioned� more iterations
may be required� There are two possible ways to proceed� Either the iteration process can
be formally continued beyond n line searches or it can be repeated in a cyclic way� Fletcher
and Reeves recommend destroying all the accumulated information after each set of n � �
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iterations and beginning again� i�e�� with uncorrected gradient directions� This procedure
is said to be more e�ective for non�quadratic objective functions� On the other hand�
Fox ���
�� suggests that a periodic restart of the search can prevent convergence in the
quadratic case� whereas a simple continuation of the sequence of iterations is successful�
Further suggestions for the way to restart are made by Fletcher ���
�a��

The situation is similar for the quasi�Newton methods in which the Hessian matrix or
its inverse is approximated in discrete steps� Some of the proposed formulae for improving
the approximation matrix can lead to division by zero� sometimes due to rounding errors
�Broyden� ��
��� but in other cases even on theoretical grounds� If the Hessian matrix has
singular points� the optimization process stagnates before reaching the optimum� Bard
����� and others recommend as a remedy replacing the approximation matrix from time
to time by the unit matrix� The information gathered over the course of the iterations
is destroyed again in this process� Pearson ����� proposes a restart period of �n cycles�
while Powell ���
�b� suggests regularly adding steps di�erent from the predicted ones� It
is thus still true to say of the property of quadratic termination that its !relevance for
general functions has always been questionable" �Fletcher� ��
�b�� No guarantee is given
that Newtonian directions are better than the �anti�� gradient�

As there is no single objective function that can be taken as representative for de�
termining experimentally the properties of a strategy in the non�quadratic case� as large
and as varied a range of problem types as possible must be included in the numerical
tests� To a certain extent� it is true to say that the greater their number and the more
skillfully they are chosen� the greater the value of strategy comparisons� Some problems
have become established as standard examples� others are added to each experimenter�s
own taste� Thus in the catalogue of problems for the second series of tests in the present
strategy comparison� both familiar and new problems can be found� the latter were mainly
constructed in order to demonstrate the limits of usefulness of the evolution strategies�

It appears that all the previously published tests use as a basis for judging perfor�
mance the number of function calls �with objective function� gradient� and Hessian matrix
weighted in the ratio � � n � n

� �n���� and the computation time for achieving a prescribed
accuracy� Usually the objective functions considered are several times continuously dif�
ferentiable and depend on relatively few variables� and the results lack compatibility from
problem to problem and from strategy to strategy� With one method� a �rst minimum
may be found very quickly� and a second much more slowly� another method may work
just the opposite way round� The abundance of individual results actually makes a com�
prehensive judgement more di�cult� Hence average values are frequently calculated for
the required computation time and the number of function calls� Such tests then result
in establishing that second order methods are faster than �rst order and these in turn
are faster than direct search methods� These conclusions� which are compatible with
the test results for quadratic problems� lead one to suspect that the selected objective
functions behave quadratically� at least in the neighborhood of the objective� Thus it
is also frequently noted that� at the beginning of a search� gradient methods converge
faster� whereas towards the end Newton methods are faster� The average values that
are measured therefore depend on the chosen starting point and the required closeness of
approach to the objective�
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The assessment is tricky if a method does not converge for a particular problem but
terminates the search following its own criteria without getting anywhere near the solution�
Any strategy that fails frequently in this way cannot be recommended for use in practice
even if it is especially fast in other cases� In a practical problem� unlike a test problem�
the correct solution is not� of course� known in advance� One therefore has to be able
to rely on the results given by a strategy if they cannot be checked by another method�
Hence� reliability is just as important a criterion for assessing optimization methods as
speed�

The second part of the strategy comparison is therefore designed to test the robustness
of the optimization methods� The scale for assessing this is the number of problems that
are solved by a given method� Since in this respect it is the complexity rather than size
of the problem that is signi�cant� the number of variables ranges only from one to six�

All numerical iteration methods in practice can only approximate a solution with a
�nite accuracy� In order to be able either to accept the end result of an optimum search
as adequate� or to reject it as inadequate� a border must be de�ned explicitly� on one side
of which the solution is exact enough and on the other side of which it is unsatisfactory�
It is the structure of the objective function that is the decisive factor determining the
accuracy that can be achieved �Hyslop� ��
��� With this in mind the border values for
the purpose of ranking the test results were obtained by the following scheme� Starting
from the known exact or best solution

x� � �x��� x
�
�� � � � � x

�
n �

T

the variables were individually altered by the amounts

	xi �



�� for x�i � �
x�i �� for x�i �� �

in all combinations� For example for n � � one obtains eight di�erent test values of the
objective function �see Fig� ���� In the general case there are �n � � di�erent values�
The greatest deviation 	F ��� from the optimal value F �x�� de�nes the border between
results that approach the objective su�ciently closely and results that do not� To obtain
a number of grades of merit� four di�erent test increments �j� j � ����� were selected�

�� � ����


�� � ���


�� � ����

�� � ����

A problem is deemed to have been solved !exactly" at #x if

F �#x� � F �x�� �	F ����

is attained� On the other hand� if at the end of the search

F �#x� � F �x�� �	F ����
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Figure ����� Eight di�erent test values of the objective function in case of n � �

the strategy employed has failed� Three intermediate classes of approximation are de�ned
in the obvious way�

The maximum possible accuracy was required of all strategies� The corresponding
free parameters of the strategies that enter the termination criteria have already been
de�ned in Table ��� In contrast to the �rst test� no additional common termination rule
was employed�

A total of 	� problems were to be solved� The mathematical formulations of the
problems are given in Appendix A� Section A��� Some of them are only distinguished by
the chosen initial conditions� others by the applied constraints� Nine out of �� strategies
or versions of basic strategies are not suited to solving constrained problems� at least not
directly� Methods involving transformations of the variables and penalty function methods
were not employed� An exception is the method of Rosenbrock� which only alters the
objective function near the boundaries and can be applied in one pass� otherwise penalty
functions require a sequence of partial optimizations to be executed� The second series of
tests therefore comprises one set of �� unconstrained problems for all �� strategies and a
second set of �� constrained problems for 	 of the strategies� The results are displayed
together in Tables �	 to ��� The approximation to the objective that has been achieved
in each case is indicated by a corresponding symbol� using the classes of accuracy de�ned
above�

Any interesting features in the solution of individual problems are documented in the
Appendix A� Section A��� in some cases together with a brief analysis� Thus at this point
it is only necessary to make some general observations about the reliability of the search
methods for the totality of problems�

Unconstrained Problems

The results of the three versions of the coordinate strategies are very similar and generally
unsatisfactory� A third of all the problems cannot be solved with them at all� or only
very inaccurately� Exact solutions �� � ����
� are the exception and only in less than a
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Table �	� Results of all strategies in the second comparison test�
unconstrained problems

Problem F G L H D D P D S R C E G R
I O A O S S O F I O O V R E
B L G J C C W P M S M O U K

No� O D R E G P E S P E P L P O

	�� � � � � � � 	 �e 	n � 	 � � �
	�	 � � � � � � � 	 	a �a 	 � � �
	�� 	 	 � � � � � � �n �a � � � �
	�� � � � � � � 	 	e � � � � � �
	�� 	 	 	 	 � � 	 �e 	a � 	 � � �
	�� � � � � 	 	 � � 	a � � � � �
	�
 � � � 	 �ea �ea �e � � � � 	 � �
	�� � � � � �ea �ea �e � � � 	 � � �
	�� � � � 	 	 	 	e 	 �a � � � 	 �
	��� � � � � 	 	 �a �e �n 	 	 � � �
	��� � � � � 	 	 	 � �n 	 	 � � �a
	��	 � � � � 	 � 	 �e 	 	 	 � � �a
	��� � � � 	 	 � � 	 � � � 	 � �
	��� � � � 	 	 	 	a �e 	n 	 	 �r �r �r
	��� � � � 	 	 	 	ea � 	 	 	 �r �r �r
	��� 	 � 	 	 � � 	 	 	n 	 � � 	 	
	��
 	 	 � 	 	 	 	e 	 �a 	 � � � �
	��� � � � 	 	 	 	e 	 �an � � � � �
	��� � � � � 	 	 � 	e 	 	 � � 	 �
	�	� 	 	 	 	 � 	 	 �e �n 	 	 � � �
	�	� � � � 	 � 	 � 	e �a 	 � � � �
	�		 	 	 	 	 	 	 	 � �a 	 � � � �
	�	� � � � � � � �a �e �a �a � � � �
	�	� � � � 	 � � 	 	 	 	 	 	 	 �
	�	� � � � 	 � � 	e 	e � � � � � �
	�	� � � 	 � � � �e � �n � � � � �
	�	
 � � � 	 � � � � � � 	 � � �
	�	� � � � � � � 	 �e 	 � � � � �

Sum �� �� �� �� �� �	 
� 
� �� �� �� �� �� �


Meaning of the number and letter symbols used above�

� Accuracy achieved better than ����

	 Accuracy achieved better than ���

� Accuracy achieved better than ����

� Accuracy achieved better than ����
� Accuracy achieved worse than ����

e Fatal execution error �oating over�ow� �oating divide check�
a Termination rule ine�ective� search in�nite with no further convergence
r Computation time too long or convergence too slow� search terminated
n Concerns the simplex method of Nelder and Mead� restarts� required
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third of all cases are the end results good �� � ���
�� As already shown by the quadratic
objective function models� it appears again that progress along the directions of the unit
vectors becomes possible only in very small step lengths� The limit of smallest possible
changes in the variables� as de�ned by the �nite word and mantissa lengths of the digital
computer� is often reached before the search has come su�ciently close to the objective�

The three methods with rotating axes also behave similarly to one another� namely
the strategies of Rosenbrock and of Davies� Swann� and Campey� Although the choice
of orthogonalization method �Gram�Schmidt or Palmer� has a considerable e�ect on the
computation times it makes little di�erence to the accuracies achieved� If !exact" solutions
are required� all three methods prove useful in about � out of �� cases� This proportion
is doubled if the accuracy requirement is lowered by a grade� Two problems �Problems
��
 and ���� are not solved by any of the three variants� In the Rosenbrock method� the
search is ended a very long way from the objective� while in the DSC method a line search
becomes in�nite� To prepare for the single quadratic interpolation it uses a subroutine for
bounding the relative minimum in the chosen direction� In this case� however� the relative
minimum is situated at in�nity� thus� after some time� the range of numbers that can be
handled by the computer is exceeded� It eventually makes a fatal execution error with
the message� !�oating over�ow�" In most computers� a program would terminate at this
point� but the PDP �� continues the calculation using its largest number ���	 in place of
the value that exceeded the number range� Nevertheless the bounding procedure does not
end because in the DSC method any steps that do not change the value of the objective
function are also regarded as successful� The convergence criterion is not tested within this
subroutine� so the whole procedure becomes in�nite without any further change in value
of the objective function� It must be terminated externally� The convergence criterion of
the Rosenbrock method fails in three cases� in spite of the fact that the exact solutions
have already been found� It is noted on the tables wherever fatal execution errors occur or
the optimization does not terminate normally� With �� or �� exact results� and altogether
�� good results� these three rotating axes methods rank highly�

Fatal errors occur especially frequently in applying the more !thoroughbred" methods�
the method of Powell and the DFPS strategy� They are not always accompanied by
termination di�culties or bad �nal results� The accuracies achieved have therefore been
evaluated independently of the execution errors� Good approximations� of which there are
�� �Powell� and � �DFPS� out of ��� are also less frequent than in the orthogonalization
strategies� In many cases both of these methods that are so advantageous in theory
completely fail to approach the desired solution� usually in the same problems that present
di�culties with the much simpler coordinate methods�

Apart from failure of a line search because of a relative minimumat in�nity� the causes
are�

� The confusion of minima and saddle points because of ambiguity in quadratic inter�
polation �Problem ���� for the Powell strategy� Problem ���
 for the variable metric
method�

� Discontinuities in the objective function or its derivatives �Problems ��� ����� �����

� A singular Hessian matrix �Problem ���� in the DFPS method�
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However� even a completely regular� several times di�erentiable objective function of ��th
order �Problem ����� is not managed by either of the quadratically convergent strategies�
Their concept of using all the data that can be accumulated during the iterations to
adjust their internal quadratic model apparently leads to completely wrong predictions of
favorable directions and step lengths if the function is of appreciably higher than second
order� Not one of the other direct search methods fails on this problem� in fact they all
�nd the exact solution�

With Powell�s method one can choose between two di�erent convergence criteria� The
di�erence between the stricter one and the simple one is that the former displaces slightly
the best position obtained after the sequence of iterations has ended normally and searches
again for the minimum� The search is only �nally terminated if both results are the same
within the speci�ed accuracy� Otherwise the search is continued after a line search in
the direction of the di�erence vector between the two solutions� Because of the extreme
accuracy requirements in the present cases the search usually ends with the message that
rounding errors in the objective function prevent any closer approach to the objective� In
such cases no additional variation in the �nal result is made� Even in other cases� the
stricter convergence criterion only makes a very slight improvement of the results� the
grades of merit of the results are not changed at all� In four problems the search becomes
in�nite because the step lengths vanish and the termination criterion is no longer tested�
The search has to be terminated externally� Fatal execution errors occur very frequently�
In three cases there is a !�oating over�ow" and in seven cases a !�oating divide check�"
This concerns a total of eight problems� The DFPS strategy is even more susceptible�
There are �ve occurrences of !�oating over�ow" and eleven of !�oating divide check�"
Twelve problems are involved�

In contrast� the direct search of Hooke and Jeeves works without errors� but even this
method fails on two problems� one because of sharp corners in the pattern of contour lines
�Problem ��� and another in the neighborhood of a stationary point with a very narrow
valley leading to the objective �Problem ������ Nevertheless it yields  exact solutions
and �� good approximations�

The overall behavior of the simplex and complex strategies is similar� but there are
di�erences in detail� There are �
 good solutions together with  exact ones to set against
two failures �Problems ���� and ������ These are provoked by edges on the contour
surfaces in the multidimensional space� The restart rule in the Nelder�Mead method
is invoked during � of the solutions� The termination criterion based only on function
values at the simplex corners does not operate in � cases� The optimum search becomes
in�nite with no apparent improvement in the objective function values� The results of
the complex strategy depend strongly on the initial con�guration� which is determined
by random numbers� In this case the evaluation was made for the best of three attempts
each with di�erent sequences of pseudorandom numbers� It is especially worth noting the
performance of the complex method in solving Problem ����� for which it is better than
all the other methods�

All three versions of the evolution strategy are distinguished by the fact that in no case
do they completely fail� and they are able to solve far more than half of all the problems
exactly �in the sense de�ned above�� Since their behavior� like that of the complexmethod�
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is in�uenced by random numbers� the same rule was followed� namely� out of three tests
the one with the best end result was accepted� In contrast to the strategy of Box� however�
the evolution methods prove to be less dependent on the actual sequence of random
numbers� This is especially true of the multimembered versions� Recombination almost
always improves the chance of getting very close to the desired solutions� Fatal errors
due to exceeding the maximum number range or dividing by zero do not occur by virtue
of the simple computational operations in these strategies� Discontinuities in the partial
derivatives� saddle points� and the like have no obvious adverse e�ects� The search does�
however� become rather time consuming when the minimum is reached via a long� narrow
valley� The step lengths or variances that are set in this case are very small and impose
slow convergence in comparison to methods that can perform a line search along the
valley� The average rate of progress of an evolution strategy is not� however� a�ected by
bends in the valley� which would retard a one dimensional minimization procedure� Line
searches only a�ord a signi�cant advantage to the rate of progress if there are directions in
the space along which successful steps can be made of a size that is large compared to the
local radius of curvature of the objective function contour surface� Examples are provided
by Problems ����� ���	� and ����� In these cases� long before reaching the minimum the
optimal variances of the evolution methods have reached the lower limit as determined
by the machine accuracy� The desired solution cannot therefore be approximated to the
required accuracy� In Problems ���� and ���	 the computation time limit did not allow
the convergence criterion to be satis�ed� although it was actually progressing slowly but
surely� the search was terminated�

Di�culties with the termination rule based on function values only occurred in the
solution of one type of problem �Problems ����� ����� using the ��� � ���� evolution strat�
egy with recombination� The multimembered method selects the �� best individuals of a
generation only from the current ��� descendants� Their �� parents are not included in
the selection process� for reasons associated with the step length adaptation� In general�
the objective function value of the best descendant is closer to the solution than that
of the best parent� In the case of the two problems referred to above� this is initially
the case� As the solution is approached� however� it happens more and more frequently
that the best value occurring in a generation is lost again� This is related to the fact
that because of rounding errors in evaluating values near the minimum� the objective
function behaves practically stochastically� Thus the population wanders around in the
neighborhood of the �quasi�singular� optimal solution without being able to satisfy the
convergence criterion� These di�culties do not beset the other search methods� including
the multimembered evolution without recombination� because they do not come nearly so
close to the optimum� The fact that the third problem of the same type �Problem �����
is solved without di�culties in a �nite time� even with recombination� can be considered
a �uke� Here too the minimum was reached long before the termination criterion was
satis�ed� On the whole� the multimembered evolution strategy with recombination is the
surest and safest of all the search methods tested� In only 	 out of �� cases is the solution
not located exactly� and the greatest deviations of the variables were in the accuracy class
� � �����
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Table �� Summary of the results from Table �	

Strategy Total number of problems No solution Fatal No normal
solved in the accuracy class � � or � � ���� computation termination
����
 ���
 ���� ���� errors

FIBO � � �� �� � � �
GOLD � � �� �� � � �
LAGR 	 
 �
 	� 
 � �
HOJE � 	� 	� 	� 	 � �
DSCG �� 	� 	� 	� 	 	 	
DSCP �	 	� 	� 	� 	 	 	
POWE � 	� 	� 	� 
 � �
DFPS � �� �� 		 � �	 �
SIMP 
 �� 	� 	� 	 � �
ROSE �� 	� 	� 	� 	 � �
COMP � �
 	� 	� 	 � �
EVOLy �
 	� 	� 	� � � �
GRUPy �� 		 	
 	� � � �
REKOy 	� 	� 	� 	� � � 	

Table � presents again a summary of the number of unconstrained problems that
were solved with given accuracy by the search methods under test� together with the num�
ber of unsolved problems� the number of cases of fatal execution errors� and the number
of cases in which the termination criteria failed�

Constrained Problems

Tables �
 and �� show the results of 	 strategies in the �� constrained problems� Ex�
ecution errors such as exceeding the number range or dividing by zero did not occur in
any case� Neither were there any di�culties in the termination of the searches�

The method of Rosenbrock can only be applied if the starting point of the search lies
within the allowed or feasible region� For this reason the initial values of the variables in
seven problems had to be altered� All other methods very quickly found a feasible solution
to start with� As in the unconstrained problems� the strategies that depend on random
numbers were each run three times with di�erent sequences of random numbers� The
best of the three results was accepted for evaluation� The results of the complex method
and the two membered evolution turned out to be very variable in quality� whereas the
multimembered versions of the strategy� especially with recombination� proved to be less
in�uenced by the particular random numbers� Two problems �Problems ���� and �����
caused great di�culty to all the search methods� These are simple linear programs that
can be solved rapidly and exactly by� for example� the simplex method of Dantzig� In

ySearch terminated twice in each case due to too slow convergence
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Table �
� Results of all strategies in the second comparison test�
constrained problems

Problem No� ROSE COMP EVOL GRUP REKO

	�	� � � � � �
	��� � � � � �
	��� �v � � � �
	��	 �v � � � �
	��� � 	 � � �
	��� � 	 � � 	
	��� �v � � � �
	��� � � � � �
	��
 � � � � �
	��� �v � � � �
	��� � � � � �
	��� � � � � �
	��� � � � � �
	��	 � � 	 	 �
	��� �v � 	 	 �
	��� � � � � �
	��� � 	 � 	 �
	��� � 	 � � �
	��
 �v � � � �
	��� �v � � � �
	��� � 	 � � �
	��� � � � � �

Sum �	 �
 �� �� ��

The meaning of the symbols is as in Table ��� � �v� is
used in connection with the Rosenbrock method for
constrained cases� The starting point had to be
displaced since it was not feasible for this method�

each case the closest to the objective was again the ��� � ���� evolution strategy with
recombination� but even that result had to be classi�ed as !no solution�"

On the whole the evolution methods cope with constrained problems no worse than the
Rosenbrock or complex strategies� but they do reveal inadequacies that are not apparent
in unconstrained problems� In particular the �
	 success rule for adapting the variances
of the mutation step lengths in the ����� evolution strategy appears to be unsuitable for
attaining an optimal rate of convergence when several constraints become active�

In problems with active constraints� the tendency of the evolution methods to follow
the average gradient trajectory causes the search to come quickly up against one or more
boundaries of the feasible region� The subsequent migration towards the objective along
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Table ��� Summary of the results from Table �


Total number of problems
solved with accuracy class � � No solution

Strategy ����
 ���
 ���� ���� or � � ����

ROSE � � 	� 	� 	
COMP � �� �� �� �
EVOL �� �	 �� �� �
GRUP �� �� �
 	� 	
REKO �� �
 �� 	� 	

such edges takes considerable e�ort and time� In Figure ��
 the situation is illustrated
for the case of two variables and one constraint�

The contours of the objective function run at a narrow angle � to the boundary of
the region� For a mutation to count as successful it must fall within the feasible region
as well as improve the objective function value� For simplicity let us assume that all the
mutations fall on the circumference of a circle about the current starting point� In the case
of many variables this point of view is very reasonable �see Chap� 	� Sect� 	���� To start
with the center of the circle �P�� will still lie some way from the boundary� If the angle
between the contours of the objective function and the edge of the feasible region is small
and the step size� or variance of the mutation step size� is large then only a small fraction
of the mutations will be successful �thickly drawn part of the circle ���� The �
	 success
rule ensures that this fraction is raised to ���� which if the angle � is small enough can
only be achieved by reducing the variance to ��� The search point P is driven closer and
closer to the boundary and eventually lies on it �P��� Since there is no longer any �nite
step size that can provide a su�ciently large success rate� the variance is permanently
reduced to the minimum value speci�ed in the program� Depending on the particular
problem structure and the chosen values of the parameters in the convergence criteria the
search is either slowly continued or it is terminated before reaching the optimum� The
more constraints become active during the search� the smaller is the probability that the
objective will be closely approached� In fact� even in problems with only two variables
and one constraint �Problem ���� the angle between the contours and the edge of the
feasible region can become vanishingly small in the neighborhood of the minimum�

Similar situations to the one depicted in Figure ��
 can even arise in unconstrained
problems if the objective function displays discontinuities in its �rst partial derivatives�
Examples of this kind of behavior are provided by Problems �� and ����� If only a
few variables are involved there is still a good chance of reaching the objective� Other
search methods� especially those which execute line searches� are generally defeated by
such points of discontinuity�

The multimembered evolution strategy� although it works without a rigid step length
adaptation� also loses its otherwise reliable convergence characteristics when the region of
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Figure ����� The situation at active constraints

success is very much narrowed down by constraints� While the individuals are not yet at
the edge of the feasible region� those descendants whose step lengths have become smaller
have a higher probability of survival� Thus here too the entire population eventually
concentrates itself in a smaller and smaller area at the edge of the feasible region�

The theory of the rate of progress in the corridor model did not foresee this kind
of di�culty� indeed it gives an optimal success rate� almost the same as in the sphere
model� simply because the gradient vector of the objective function always runs parallel
to the boundaries� In this case the search weaves backwards and forwards between the
center and side of the corridor� The reduced probability of success at multidimensional
edges is compensated by the fact that with a uniform probability of occupation over the
cross section of the corridor� the space that counts as near to the edges represents a very
small fraction of the total� Provided that the success rate is obtained over long enough
periods the �
	 success rule does not lead to permanent reduction of the variances but to
a constant near optimal step size �it really �uctuates� that depends only on the width of
the corridor and the number of variables�

The situation is happier than in Figure ��
 if the constraints are given explicitly as

xi � ai or xi � bi

For any one variable� the region of success at a boundary is reduced by one half� If at some
position m variables are each bounded on one side� then on average it costs �m mutations
before one lands within the feasible region� Here again� the �
	 success rule for m � �
will continuously reduce the variances until they reach their minimum value� Depending
on the route chosen by the search process the limiting values of the variances� which are
individually adjustable for each variable� will be reached at di�erent times� Their relative
values thereby alter� and with the new combination of step lengths the convergence can
be faster�

The extra �exibility of the multimembered evolution strategy with recombination�
in which the variances of the changes in the variables are individually adaptable during
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the whole of the optimization process� is a very clear advantage in solving constrained
problems� Suitable combinations of variances are set up in this case before the smallest
possible step lengths are reached� Thus the total computation time is reduced and the
�nal accuracy is better� The recombination option also appears to have a bene�cial e�ect
at boundaries that are not explicit� it clearly improves the chance that descendants� even
with a larger step size� will be successful near the boundary� In any case the population
clusters more slowly together than when there is no recombination�

Global Convergence Properties

Among the 	� test problems there are � having at least a second local minimum besides
the global one� In the reliability test� the accuracy achieved was only assessed with respect
to the particular optimum that was being approximated� What now is the capability of
each strategy for locating global minima� Several problems were speci�cally designed to
investigate this question by having very many local optima� namely Problems ���� ����
����� and ����� In Table �� this aspect of the test results is evaluated�

Except for one problem �Problem ������ whose global minimum was found by all the
strategies under test� the method of Rosenbrock only converged to local optima� The
complex method and the ����� evolution strategy were only better in one case� namely�
in Problem ���	 they both approached the global minimum�

Table ��� Results of all strategies in the second comparison test�
global convergence properties

Problem F G L H D D P D S R C E G R
I O A O S S O F I O O V R E
B L G J C C W P M S M O U K

No� O D R E G P E S P E P L P O

	�� L� L� L� L� L
 L
 L� L� L� L� L� Lm G G
	��� L� L� L� L� L� L� L� L� L� L� L� L� G G
	��� L� L� Lm G G
	��	 G G G G G
	��� L� L� L� G G
	��� L G G G G
	��
 L� L� L	 G G
	��� L	 Lm Lm GL GL

Meaning of symbols�

L Search converges to local minimum�
L� Search converges to the �rd local minimum in order of decreasing objective

function values��
Lm Search converges to various local minima depending on the random numbers�
G Search converges to global minimum�
GL Search converges to local or global minimum depending on the random numbers�
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The multimembered evolution strategy displays much better global convergence prop�
erties� with or without recombination� Although its actual path through the space was
determined by chance� it always found its way to the absolute minimum� Only in Problem
���� was the global optimum not always approached� In this case the feasible region is
not simply connected� Between the starting point and the global minimum there is no
connecting line that does not pass through the region excluded by constraints� The path
of the simple evolution strategy and the initial condition of the complex method are also
both dependent on the particular sequence of pseudorandom numbers� however� the main
di�erence between the results of three trials in each case was simply that di�erent local
minima were approached� In one case the ����� evolution rejected �� local optima only
to converge at the ��th �Problem �����

In spite of the good convergence properties of the multimembered evolution manifested
in the tests� a certain measure of scepticism is called for� If the search is started with only
small step lengths in the neighborhood of a local minimum� while the global minimum
is far removed and is surrounded by only a relatively small region with small objective
function values� then the probability of getting there can be very small�

If in addition there are very many variables� so that the step sizes of the mutations
are small compared to the Euclidean distance between two points in IRn� the search for
a global optimum among many local optima is like the proverbial search for a needle in
a haystack� Locating singular minima� even with only a few variables� is a practically
hopeless task� Although the multimembered evolution increases the probability of �nding
global minima compared to other methods� it cannot guarantee to do so because of its
basically sequential character�

������� Third Test� Non�Quadratic Problems with Many Variables

In the �rst series of tests we investigated the rates of convergence for a quadratic objective
function� and in the second the reliability of convergence for the general non�linear case�
The aim of the third test is now to study the computational e�ort required for non�
quadratic problems� Because of their small number of variables� the problems of the second
test series appear unsuitable for this purpose� as rates of convergence and computation
times are only of interest in relation to the number of variables� The construction of
non�quadratic objective functions of a type that can also be extended to an arbitrary
number of variables is not a trivial problem� Another reason� however� for this third
strategy comparison being restricted to only �� di�erent problems is that it required a
large amount of computation time� In some cases CPU times of several hours were needed
to test just one strategy on one problem with a particular number of variables� Seven
of the problems are unconstrained and three have constraints� Appendix A� Section A��
contains the mathematical formulation of the problems together with their solutions�

The procedure followed was the same as in the �rst test� Besides the termination
criterion speci�c to each strategy� which demanded maximum accuracy� a further con�
vergence criterion was applied in common to all strategies� According to the latter the
search was to be ended when a speci�ed distance had been covered from the starting point
towards the minimum� The number of variables was varied up to the maximum allowed
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by the storage capacity� taking the values �� ��� ��� ���� ���� and ����� Of course� if a
problem with� for example� �� variables could not be solved by a strategy� or if no result
was forthcoming at the end of the maximum computation time of � hours� the number of
variables was not increased any further�

As in the �rst test� the initial conditions were speci�ed by

x
���
i � x�i �

����ip
n

� i � ����n

Two exceptions are Problem ��� with

x
���
i � x�i �

 ����i
��
p
n

to ensure that the search always converged to the desired minimum and not to one of the
many others of equal value� and Problem ���� with

x
���
i � x�i �

�p
n

to start the search within the feasible region� Problems ��� and ���� whose minima are at
in�nity� required special treatment of the starting point and termination conditions �see
Appendix A� Sect� A����

The results are presented in Table ���� For comparison� some of the results of the
�rst test �Problem ���� are also displayed� The numbers enable one to assess critically
on the one hand the reliability of a strategy and on the other the computation times it
requires�
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Table ���� Results of all strategies in the third comparison test

The following notation is used in the tables�
n� Number of variables
Case� A label for the convergence behavior� taking the values�

� Normal end of search� required approximation to the objective
was achieved�

� The search was ended before reaching the desired accuracy�
� The search became unending without converging� it had to be

terminated externally�
� The maximum computation time of � hours was insu�cient

to end the search successfully �occasionally more computation
time was invested in trials with the multimembered evolution
strategy that promised to be successful��

� No trial was undertaken�
���� Depending on the sequence of random numbers various cases

occurred� the entries in the table refer to the �rst case de�ned�
OFC� Number of objective function calls�
CFC� Number of constraint function calls�
Time� Computation time in seconds �CPU time��

Iterations� cycles� exploratory cycles� line searches� orthogonalizations� restarts�
etc�� were counted as in the �rst comparison test�
Fatal execution errors were only registered in the Powell and DFPS methods
and it is not further speci�ed here in which problems they occurred� As a rule
the same types of problem were involved as in the second test�
In unconstrained problems no numbers are tabulated for the number of
objective function calls made by the evolution strategies� This can be
calculated from the number of mutations or generations as follows�

EVOL� � � number of mutations
GRUP� REKO� �� � ��� times number of generations

�continued�
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With only three variables� nearly all the problems were solved perfectly by all strate�
gies� i�e�� the required approximation to the objective was achieved� The only exception
is Problem ��	� which ended in failure for the coordinate strategies� the method of Hooke
and Jeeves� and the methods of Powell and of Davidon�Fletcher�Powell�Stewart� In ap�
parent contradiction to this� the corresponding Problem ���� for n � 	 was satisfactorily
solved by the Hooke�Jeeves strategy and the DFPS method� The causes are to be found
in the di�erent initial values of the variables� With the variable metric method� fatal
execution errors occurred in both cases�

If there are �� or more variables� even the two membered evolution strategy does not
�nd the minimum in Problem ��	� due to the extremely unfavorable starting point� The
probability of making from there a �rst step with a lower objective function value is ��n�
Thus with many variables� the termination condition is usually met before a single success
has been scored� The simplex method of Nelder and Mead with n � �� took ��	 restarts
to reach the desired approximation to the objective� For more than �� parameters the
solution can no longer be su�ciently well approximated in spite of an increasing number
of restarts� With stricter accuracy requirements the simplex method fails much sooner
�Problem ���� with n � 	��

The complex strategy likewise was no longer able to solve the same problem for n �
��� Depending on the sequence of random numbers it either ended the search before
achieving the required accuracy� or it was still far from the minimum when the allowed
computation time �� hours� expired� The multimembered evolution strategy also proved
to be dependent� although less strongly� on the particular sequence of random numbers�
The version without recombination failed on Problem ��	 for n � ��� with recombination
it failed for n � ���� Without recombination and for n � ��� it ended the minimum
search prematurely also in Problems ��� and ��� The simplex and complex methods had
convergence di�culties with both types of objective function� usually even for only a few
variables� Several times they had to be interrupted because of exceeding the time limit�
Further details can be found in the tables and Appendix A� Section A���

The search for the minima in Problems ��� and �� presents no di�culties to the
coordinate strategies� and the methods of Hooke and Jeeves� Rosenbrock� Davies�Swann�
Campey� Powell� and Davidon�Fletcher�Powell�Stewart� The three rotating coordinate
strategies are the only ones that manage to solve Problem ��	 satisfactorily for any num�
ber of variables� Nevertheless it would be hasty to conclude that these methods are
therefore clearly better than the others� an attempt to analyze the reasons for their suc�
cess reveals that only slight changes in the objective functions are enough to undermine
their apparently advantageous way of working�

The signi�cant di�erence in this respect between the above group of strategies and
the others �complex� simplex� and evolution strategies� is that the former operate with
a much more limited set of search directions than the latter� There are usually only n
directions� e�g�� the n coordinate directions of the axes�parallel search methods� compared
to an in�nite number �in principle� in the evolution methods� In the case of Problems ���
to �� the most favorable search directions are the n directions of the unit vectors� All
methods with one dimensional minimizations use precisely these directions in their �rst
iteration cycle� so they do not usually require any further iterations to achieve the required
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accuracy� By keeping the starting conditions the same but rotating the coordinates with
respect to the contours of the objective function �Problem ���� or slightly tilting the
contours with respect to the coordinate axes �Problem ��	�� or both together �Problem
����� one could easily cause all the line searches to fail� On the other hand the strategies
without line searches would not be impaired by these changes� Thus the advantage of
selected directions can turn into a disadvantage� These coordinated strategies can never
solve the problem referred to� whereas� as we have seen� the strategies that have a large
set of search directions at their disposal only fail when a particular number of variables
is exceeded� Problems ��� and �� are therefore suitable for assessing the reliability of
simplex� complex� and evolution strategies� but not for the other methods� Together they
belong to the type of problems which Himmelblau designates as !pathological�"

Leaning more to the conservative side are the several times continuously di�erentiable
objective functions of Problems ���� ���� ���� and ��
� The �rst two problems were tackled
successfully by all the strategies for any number of variables� The simplex method did�
however� need at least one restart for Problem ��� with n � ���� For ��	 variables it
exceeded the time limit before Problems ��� and ��� were solved to su�cient accuracy�

Problem ��� gave trouble to several search procedures when there were �� or more
variables� The coordinate strategies were the �rst to fail� For only n � ��� the step
lengths of the line searches would have had to be smaller than allowed by the number
precision of the computer used� At n � ��� the DSC strategy with Gram�Schmidt
orthogonalization also ends without having located the minimum accurately enough� The
simplex method with one restart still found the solution for n � ��� but the complex
strategy failed here� either by premature termination of the search or by reaching the
maximum permitted computation time� Problem ���� because the cost per objective
function evaluation increases as O�n��� requires the longest computation times for its
solution� Since the objective function also took O�n�� units of storage� this problem could
not be used for more than �� variables�

Problem ��
� like the analogous Problem ����� gave trouble to the two quadratically
convergent strategies� The method of Powell was only successful for n � �� For more
variables it became stuck in the search process without the termination rule taking e�ect�
The variable metric strategy behaved in just the same way� For n � ��� it no longer
came as near as required to the optimum� Under the stricter conditions of the second set
of tests it failed already at n � 	� With both methods fatal execution errors occurred
during the search� No other direct search strategies had any di�culty with Problem ��
�
which is a simple ��th order polynomial� Only the simplex method would not have found
the solution su�ciently accurately without the restart rule� For n � ���� it reached the
time limit before the search simplex had collapsed for the �rst time�

The advantage shown by the complex strategy was due to the complex�s having �n
vertices� which is almost twice as many as the n � � of the simplex� An attempt to solve
Problems ��� to ���� for n � �� with a complex constructed of �� points failed completely�
The search ended� in every case� without having reached the required accuracy�

How do the computation times compare when the problems are no longer only quadrat�
ically non�linear� For solving the !pathological" Problems ��� to �� all the methods with
a line search take about the same times� with the same number of variables� as they do
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for solving the simple quadratic Problem ���� if indeed they actually can �nd a solu�
tion� With any of the remaining methods the computation times increase somewhat more
steeply with the number of variables� up to the limiting number beyond which convergence
cannot be guaranteed in every case�

The solution times for Problems ��� and ��� usually turn out to be several times
greater than those for Problem ���� The cost of the coordinate strategies is up to �����
more for a few variables� which reduces to ���� as the number of variables increases� As
in the case of Problem ���� the solution times for Problems ��� and ��� using the method
of Hooke and Jeeves increase somewhat faster than the square of the number of variables�
For very many variables �	�� more computation time is required�

For n � ��� the Rosenbrock method requires 
�� to �	�� more time �depending on
the number of orthogonalizations� for the �rst two problems of the third set of tests than
for the simple quadratic problem� The computation time still increases as O�n�� in all
cases because of the costly procedure of rotating the coordinates� For example� for n � 
	�
up to ��� of the total time is taken up by the orthogonalizations� The DSC strategies
reached the desired accuracy in Problem ��� without orthogonalizations� Since solving
Problems ��� and ��� requires more than n line searches in each case� the computation
times di�er signi�cantly� depending on the chosen method of orthogonalization� Palmer�s
program holds down the increase in the computation times to O�n�� whereas the Gram�
Schmidt method leads to an O�n�� increase� It therefore is not meaningful to quote the
extra cost as a percentage with respect to Problem ���� In the extreme case instead of 
seconds at n � 
	 the procedure took nearly �� seconds�

The method of Powell requires two to four times as much time� depending on whether
one or two extra iterations are needed� However� even for the same number of iterations�
i�e�� also with the same number of line searches �n � ��	�� the number of function calls
in Problems ��� and ��� is greater than in Problem ���� The reason for this is that in the
quadratic reference problem a simpli�ed form of the parabolic interpolation can be used�
The variable metric strategy� in order to solve the two non�quadratic problems �Problems
��� and ���� with n � ���� requires about nine times as much computation time as for
Problem ���� This factor increases with n since the number of gradient determinations
increases gradually with n�

The pattern of behavior of the simplex method of Nelder and Mead is very irregular�
If the number of variables is small� the computation times for all three problems are about
equal� However� for n � ���� Problem ��� requires about seven times as much time to be
solved as Problem ���� and� because of a restart� Problem ��� requires even thirty times
as much� With n � ��	� neither of the two non�quadratic problems can be solved within
� hours� whereas ��	 hours are su�cient for Problem ���� On the other hand the complex
strategy requires only slightly more time� about ���� than in the simple quadratic case�
provided �n vertices are taken� The time taken by this method on the whole for all
problems� however� exhibits the strongest rate and range of variation with the number of
parameters�

The evolution strategies prove to be completely una�ected by the altered topology
of the objective function as compared with the case of spherically symmetrical contour
surfaces� Within the expected deviations� due to di�erent sequences of random numbers�



Numerical Comparison of Strategies ���

the measured computation times for all three problems are equal� The results show that
Rechenberg�s ���
�� theory of the rate of progress� which does not assume a quadratic
objective function but merely concentric hypersphere contour surfaces� is valid over a
wide range of conditions� Even more surprising� however� is the behavior of the ���
� ���� evolution method with recombination in the solution of Problems ��� and ���
whose objective functions have discontinuous �rst derivatives� i�e�� their contour surfaces
display sharp edges and corners� The mixing of the components of variables representing
individuals on di�erent sides of a discontinuity appears sometimes to have a kind of
smoothing e�ect� In any case it can be seen that the strategy with recombination needs
no more computation time or objective function calls for Problems ��� and �� than for
Problems ���� ���� and ����

With all the methods under test� the computation times for solving Problem ��
 are
about twice as high as those measured in the simple quadratic case� Only the simplex
method is signi�cantly more demanding of time� Since the search simplex frequently
collapses in on itself it must repeatedly be reinitialized�

Since Problem ��� could only be tackled with �� ��� and �� variables it is not easy to
analyze the resulting data� In addition� the dependence of the increase in di�culty on the
number of parameters is not so clear�cut in this problem� Nevertheless the results seem to
indicate that at least the number of objective function calls� in many strategies� increases
with n in a way similar to that in the pure quadratic Problem ���� Because an objective
function evaluation takes about O�n�� operations in Problem ���� the total cost generally
increases as one higher power of n than in Problem ���� The cost of the variable metric
strategy and both versions of the ��� � ���� evolution strategy seems to increase even more
rapidly� In the latter case there is a suspicion that the chosen initial step lengths are too
large for this problem when there are very many variables� Their reduction to a suitable
size then takes a few additional generations� The two membered evolution strategy� which
is able to adjust unsuitable initial step lengths relatively quickly� needed about the same
number of mutations for both Problems ��� and ���� Since only one experiment per
strategy and number of variables was performed� the e�ect of the particular sequence
of random numbers on the recorded computation times is not known� The particularly
advantageous behavior of the DFPS method on exactly quadratic objective functions is
clearly wasted once the problem deviates from this model structure� in fact it seems that
the search process is appreciably held back by an interpretation of the measured data in
terms of an inappropriate internal model�

So far we have only discussed the results for the seven unconstrained problems� since
they were amenable to solution by all the search strategies� Problem ���� with constraints�
corresponds to the second model function �corridor model� for which Rechenberg ���
��
has obtained theoretically the rate of progress of the two membered evolution strategy
with optimal adaptation of variances� According to his analysis� one expects a linear rate
of convergence increasing with the width of the corridor and inversely proportional to
the number of variables� The results of the third set of tests con�rm that the number
of mutations or generations increases linearly with n if the width of the corridor and
the reference distance to be covered are held constant� The picture for the Rosenbrock
strategy is as usual� the time consumption increases as O�n�� again� The point at n � 
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departs from the general trend of the others simply because no orthogonalizations were
performed in this case� But the di�erence is not dramatic� because the cost of testing the
constraints is of the same order of magnitude as that of rotating the coordinates� The
complex method takes computation times that initially increase somewhat more rapidly
than O�n��� This corresponds to a greater than linearly increasing number of objective
function evaluations� As we have already seen in other problems� the increase becomes
even steeper as the number of parameters increases� With n � �	 variables� the required
distance was only partially covered within the maximum computation time�

Problem ��� represents a modi�cation of Problem ��� with respect to the constraints�
In place of the ��n � �� linear constraints� the corridor is bounded by a single non�linear
boundary condition� The cost of testing the feasibility of an iteration point is thereby
greatly reduced� The number of mutations or generations of the evolution strategies is
higher than in Problem ��� but still increases as O�n�� the computation times in contrast
to Problem ��� only increase as O�n��� The Rosenbrock method also has no di�culty with
this problem� although the necessary rotations of the coordinate system make the times
of order O�n��� The complex method could only solve Problem ��� for n � �� upwards
of n � �� it no longer converged�

The last problem� Problem ����� which also has inequality constraints� turned out
to be extremely di�cult for all the search methods in the test� The main problem is
one of scaling� Convergence in the neighborhood of the minimum can be achieved if� and
practically only if� the step lengths in the coordinate directions are individually adjustable�
They have to di�er from each other by several powers of ��� For n � ��� no strategy
managed to solve the problem within the maximum allowed computation time� The
complex method sometimes failed to end the search within this time for n � ��� The
intermediate results achieved after � hours are presented in Appendix A� Section A��� All
of the evolution strategies do better than the methods of Rosenbrock and Box�

The result that the two membered evolution strategy came closer to the objective
than the multimembered evolution without recombination was not completely unexpected�
because considerably fewer generations than mutations can occur within the allowed time�
What is more surprising is that the ��� � ���� strategy with recombination does almost as
well as the two membered version� Here once again� the degree of freedom gained by the
possibilities of recombination shows itself to advantage� The variances of the mutation
step lengths do adjust themselves individually quite di�erently according to the situation
and thus permit much faster convergence than with equal variances for all variables�
The other evolution strategies only come as close as they do to the solution because
the variances reach their relative lower bounds at di�erent times� whereby di�erences in
their sizes are introduced� This scaling process is� however� very much slower than the
continuous process of adaptation brought about by the recombination mechanism�

��� Core storage required

Up to now� only the time has been considered as a measure of the computational cost�
There is� however� another important characteristic that a�ects the applicability of op�
timization strategies� namely the core storage required� �Today nobody would use this



Core storage required ���

term !core" here� but at the time these tests were performed� it was so called�� All indi�
rect methods of quadratic optimization� which solve the linear equations for the extremal�
require storage of order O�n�� for the matrix of coe�cients� The same holds for quasi�
Newton methods� except that here the signi�cant r�ole is played by the approximation to
the inverse Hessian matrices� Most strategies that perform line searches in other than
coordinate directions also require O�n�� words for the storage of n vectors� each with n
coe�cients� An exception to this rule is the conjugate gradient method of Fletcher and
Reeves� which at each stage only needs to retain the latest generated direction vector
for the subsequent iteration� Of the direct search methods included in the tests� the co�
ordinate methods� the method of Hooke and Jeeves� and the evolution strategies work
with only O�n� words of core storage� How important the formal storage requirement
of an optimization method can be is shown by the maximum number of variables for
the tested strategies in Table ��� The limiting values range from 
	 to ����� under the
given conditions� There exist� of course� tricks such as segmentation for enabling larger
programs to be run on smaller machines� the cost of the strategy should then take into
account� however� the extra cost in preparation time for an optimization� �Here again�
modern virtual storage techniques and the relative cheapness of memory chips make the
considerations above look rather old�fashioned��

In the following Table ���� all the strategies compared are listed again� together with
the order of magnitude of their required computation time as obtained from the �rst set of
tests �columns � and ��� The third column shows how the computation time would vary
if each function call performed O�n�� rather than O�n� operations� as would occur for the
worst case of a general quadratic objective function� The fourth column gives the storage
requirement� again only as an order of magnitude� and the �fth displays the product
of the time and storage requirements from the two previous columns� Judging by the
computation computation time alone� the variable metric strategy seems the best suited
for true quadratic problems� In the least favorable case� however� it is more expensive
than an indirect method and only faster in special cases� Problems having a very simple
structure �e�g�� Problem ���� can be solved just as well by direct search methods� the time
they take is at worst only a constant factor more than that of a second order method�

If the total cost is measured by the product of time and storage requirements� all those
strategies that store a two dimensional array of data� show up badly at least for problems
with many variables� Since the coordinate methods have shown unreliable convergence�
the method of Hooke and Jeeves and the evolution strategies remain as the least costly
optimization methods� Their cost does not exceed that of indirect methods� The product
of time and storage is not such a bad measure of the total cost� in many computing centers
jobs have been� in fact� charged with the product of storage requested in K words and
the time in seconds of occupation of the central processing unit �K�core�sec��

A comparison of the two membered and multimembered evolution strategies seems
clearly to favor the simpler method� This is not surprising as several individuals in the
multimembered procedure have to �nd their way towards the optimum� In nature� this
process runs in parallel� Already in the early ��
�s� �rst e�orts towards constructing
multi�processor computers were undertaken �see Barnes et al�� ���� Miranker� ��
���
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Table ���� The dependence of the total costs of the search methods
on the number of variables �n�

Strategy Computation Computation Computation Core K�core�sec
time for time for time for gen� storage
Problem ��� Problem ��	 quadr� probl�

FIBO�GOLD�LAGR n� n�y n� n n

HOJE � n
�

n
�

n
�

n n


DSCG n� n� n� n� n�

DSCP n
�

n
�

n
�

n
�

n
�

POWE n� n�y n� n� n�

DFPS n
�

n
��

n
��

n
�

n
�

SIMP � n� n n n� n	

ROSE n
�

n
�

n
�

n
�

n
�

COMP � n� ny n n� n	

EVOL�GRUP�REKO n
�

n
�

n
�

n n


On such a parallel computer� supposing it had ��� sub�units� one could simultaneously
perform all the mutations and objective function evaluations of one generation in the
��� � ���� evolution strategy� The time required for the optimization would be about
two orders of magnitude less than it is with a serially operating machine� In Figures ���
and ��	 the dotted lines show the results that would be obtained by the ��� � ���� strategy
without recombination in the hypothetical case of parallel operation� No other methods
can make use of parallel operations to such an extent� On SIMD �single instructions�
multiple data� architectures� the possible speedup is sharply limited by the percentages of
a program�s scalar and vector operations� Using array arithmetic for all matrix and vector
operations� the execution time of a program may be accelerated at most by a factor of �ve�
given that these operations would serially take ��� of the computation time� On MIMD
�multiple instructions� multiple data� machines� the speedup is limited by the number of
processing units a program can make use of and by the amount of communication needed
between the processors and the data store�s�� Most classical optimization algorithms
cannot economically employ large MIMD computers�even the less� the more sophisticated
the procedures are� Multimembered evolution strategies� however� are easily scalable to
any number of processors and communication links between them� For a taxonomy of
parallel versions of evolution strategies� see Ho�meister and Schwefel �������

yNot sure to converge


