
Complexity Compression and Evolution

Peter Nordin

Universit�at Dortmund
Fachbereich Informatik

Lehrstuhl f�ur Systemanalyse
D{44221 Dortmund

nordin@ls11.informatik.uni-dortmund.de

Wolfgang Banzhaf

Universit�at Dortmund
Fachbereich Informatik

Lehrstuhl f�ur Systemanalyse
D{44221 Dortmund

banzhaf@ls11.informatik.uni-dortmund.de

Abstract

Compression of information is an important
concept in the theory of learning. We argue
for the hypothesis that there is an inherent
compression pressure towards short, elegant
and general solutions in a genetic program-
ming system and other variable length evol-
utionary algorithms. This pressure becomes
visible if the size or complexity of solutions
are measured without non-e�ective code seg-
ments called introns. The built in parsi-
mony pressure e�ects complex �tness func-
tions, crossover probability, generality, max-
imum depth or length of solutions, expli-
cit parsimony, granularity of �tness function,
initialization depth or length, and modulariz-
ation. Some of these e�ects are positive and
some are negative. In this work we provide
a basis for an analysis of these e�ects and
suggestions to overcome the negative implic-
ations in order to obtain the balance needed
for successful evolution. An empirical invest-
igation that supports our hypothesis is also
presented.

1 Introduction

The principle of Occam's Razor, formulated 700 years
ago, states that from two possible solutions to a prob-
lem we should choose the shorter one. Bertrand Rus-
sell claims that the actual phrase used by William of
Ockham was: "It is vain to do with more what can
be done with fewer". A famous example of Occam's
Razor is when the Polish astronomer Copernicus ar-
gued in favor of the fact that the earth moves around
the sun and not vice versa, because it would make his
equations simpler. Many great scientists have formu-
lated their own versions of Occam's Razor. Newton, in

his preface to Principia, preferred to put it as; "Natura
enim simplex est, et rerum causis super
uis non lux-
uriat". (Nature is pleased with simplicity, and a�ects
not the pomp of super
uous causes.) The essence of
Occam's Razor is that a shorter solution is a more
generic solution. The process of inferring a general
law from a set of data can be viewed as an attempt
to compress the observed data. Some researchers have
claimed that this principle could be the basis of many
cognitive processes in the brain (Wol� 1993).

In this paper, we argue that one of the foundations of
Evolutionary Algorithms in general, and Genetic Pro-
gramming in particular, is that they have the built in
property of favoring short solutions and sub-solutions.
This property might be one of the reasons that Evol-
utionary Algorithms work so e�ciently and robustly
in a diverse set of domains. The compression property
could also be responsible for the ability of a solution to
be generic and applicable on a larger set of data than
the set of data or �tness cases used during evolution.
The other side of the coin is that the built in compres-
sion pressure in certain cases is too strong and results
in premature convergence and failure to adapt to com-
plex �tness functions. The Evolutionary Algorithm
could choose a short but incomplete solution instead
of a long but complete solution. The strength of the
pressure is dependent on the di�erent attributes of a
particular Evolutionary Algorithm such as, represent-
ation, genetic operators and probability parameters.

The bottom line is that it is helpful to be aware of
this compression pressure and to try to keep it on a
balanced optimum level during evolution.

In this paper, we focus on the problem of symbolic
regression of programs with a genetic algorithm. We
have used a variant of a variable length genetic al-
gorithm operating on a string of bits to evolve an
algorithm or program for a register machine (Nordin
1994). Using a register machine makes the analysis of

introns more straight forward, and using a bit string
representation will simplify the complexity reasoning.
The argumentation, however, is analogous for stand-
ard tree-representation Genetic Programming and the
reasoning is useful for other evolutionary systems.

1.1 Destructive Crossover

We would like to start by de�ning some important con-
cepts. These are destructive crossover, di�erent kinds
of introns and e�ective complexity.
A crossover acting on one block or segment of the code
in an individual, might have di�erent results. In one
extreme case the two blocks that are exchanged in
crossover are identical, therefore, the performance of
the program is not a�ected at all. Normally, however,
there is a high probability that the function of the
program is severely damaged, resulting in a �tness de-
crease for the individual. In Figure 1 we can see a
typical distribution of the e�ect of crossover on �t-
ness in an early generation of the symbolic regression
problem from section 3. The x-axis gives the change
in �tness �fpercent after crossover fafter .(fbest = 0,
fworst =1).

�fpercent =
fbefore � fafter

fbefore
� 100 (1)

Individuals with a �tness decrease of more than 100
percent are accumulated at the left side of the diagram.
This diagram shows that the most common e�ect of
crossover is a much worsened �tness (the spike at the
left). The second most common e�ect is that nothing
happens (the spike of zero). Below we use the term
\probability of destructive crossover" for the probab-
ility that a crossover in the program or block will lead
to a deteriorated �tness value, comprising the area left
of zero in Figure 1, pd = P (�fpercent < 0). The term
could be used for complete programs as well as for
blocks in programs.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-100 or less -50 0 50 100

N
um

be
r

of
 C

ro
ss

ov
er

 E
ve

nt
s

Fitness Change after Crossover (%)

Effect of Crossover in One Generation

"Crossover Effect"

Figure 1: E�ects of Crossover in one Generation.

1.2 Introns

As a rule, a solution evolved by Genetic Programming
systems contains segments of code that do not seem
to perform any useful functions, seem to be unneces-
sarily lengthy or that are not executed at all within
the program. Similar redundant structures are present
in nature within DNA and are called \introns" (Wat-
son 1987). The idea of explicitly inserting introns in
Genetic Algorithms has previously been investigated
(Levenick 1991, Forrest 1992).

In the experiments performed in Section 3 below we
use the term intron segment for a block that does not
a�ect the behavior of the entire program for any of the
�tness cases. The code is thus neutral on the phen-
otype level. Notice however that an intron segment
may a�ect the output of a program for other inputs
than the current ones. By the term block we mean any
subset of the code regardless of its representation. It
could be a sequence of binary digits in a binary string,
a structure in a messy genetic algorithm, or a set of
nodes within a tree representation. An active block is
a block of code that is not an intron block and does

a�ect the properties on the phenotype level.

Examples of introns can be found in most unedited
individuals from a genetic programming run. The sys-
tem can be very creative in �nding such blocks. Some
typical examples in S-expression notation are:

(NOT (NOT X)), (AND : : : (OR X X)), (+ : : : (-
X X)), (* : : : (DIV X X)), (MOVE-LEFT MOVE-
RIGHT), (IF (2 = 1) : : : X), (SET A A)

In reality, neither the extent to which a block a�ects
output, nor the sensitivity of crossover is a discrete
property of the block. There is a scale or distribution,
both on, how sensitive the block is for crossover and
how much it a�ects the program output. To simplify
terms, we de�ne an absolute intron as a block of code
that neither a�ects the output of the program nor is
sensitive to crossover. A crossover inside such a block
will not a�ect the performance of the program. The
following is an example of an absolute intron structure
that can evolve when using the if function:

if 2<1 then {Absolute Intron Block ...}

else {Active Block ...}

We call an intron global if it is an intron for every valid
input to the program, and we call it local if it acts as
an intron only for the current �tness cases and not
necessarily for other valid inputs. This distinction is
important for the generalization capabilities of a pro-
gram, see Section 2.4.

In Section 3, we introduce a method for measuring
the size of the intron segments in Evolutionary Al-
gorithms. We look at intron blocks that do not a�ect

the behavior of the individual for any of the �tness
cases. This kind of intron will not be totally immune
against crossover but, as long as the population con-
tains some of these segments, swapping two of them
by crossover will not a�ect the performance of the two
individuals involved. Introns of this kind arise by a
mutual agreement among the individuals to keep these
sort of NoOperation code blocks.

1.3 E�ective Complexity

By complexity of a program or program block we mean
the length or size of the program measured with a
method that is natural for a particular representation.
For a tree representation, this could be the number of
nodes in the block. For the binary string represent-
ation, in our work it is the number of bits, etc. The
absolute length or absolute complexity is the total size
of the program or block. The e�ective length or ef-
fective complexity of a block, or program, is the length
of the active parts of the code within the program or
block, in contrast to the intron parts.

2 Program Complexity, E�ective
Fitness and Evolution

Genetic programs do not seem to favor parsimony in
the sense that the evolved program structures become
short and elegant measured with the absolute size of
an individual (Koza 1992). Instead, evolved programs
seem to contain a lot of garbage and the solutions do
not give an elegant impression when �rst examined.
On the contrary, solutions look unnecessarily long and
complex.

In this section, we give a reason for which a pro-
gram has the tendency of increasing its absolute length
during the course of evolution and at the same time
favoring Parsimony. The crucial point is to meas-
ure e�ective length instead of absolute length. Ob-
serving the e�ective length will clearly show that the
genetic programming system not only favors parsimo-
nious solutions for the �nal result, but constantly, for
sub-solutions during the evolution of the population.

Let us say that we have a simple GP system with �t-
ness proportional selection and crossover as genetic op-
erators. The crossover operator could be any crossover
operator exchanging blocks of code such as the stand-
ard tree based subtree exchanging crossover (Koza
1992) or two point bit string crossover (Nordin 1994).
If we have an individual program with a high relative
�tness in the population, it will be reproduced accord-
ing to its �tness by the selection operator. Some of
these new copies will undergo crossover and will loose

one block and gain another. If the crossover interferes
with a block that is doing something useful in the pro-
gram, then there is a probability that this new segment
will damage the function of the block, see Figure 1. In
most cases, the probability of damaging the program
is much greater than the probability of improving the
function of the block. If, on the other hand, the cros-
sover takes place at a position within an absolute in-
tron block, then by de�nition there will be no harm
done to this block or to the program. A program with
a low ratio of e�ective complexity to absolute complex-
ity has a small \target area" for destructive crossover
and a higher probability to constitute a greater pro-
portion of the next population.

The ability to create and add introns during evolu-
tion is another important property of the system and
its primitives. This ability could depend on paramet-
ers like initial individual size, function set, and �tness
function. The additions of introns could be viewed as
a way for the program to self-regulate the crossover
probability parameter or as a "defense against cros-
sover" (Altenberg 1994).

We can formulate an equation with resemblance to the
Schema Theorem (Holland 1975) for the relationship
between the entities described above. Let Cej be the
e�ective complexity of program j, and Caj its absolute
complexity. Let pc be the standard genetic program-
ming parameter giving the probability of crossover at
the individual level. The probability that a crossover
in an active block of program j will lead to a worse �t-
ness for the individual is the probability of destructive
crossover, pdj . By de�nition pdj of an absolute intron is

zero. Let fj be the �tness1 of the the individual and f t

be the average �tness of the population in the current
generation. If we use �tness proportionate selection2

and block exchange crossover, then for any program
j, the average proportion P t+1

j of this program in the
next generation is:

P t+1
j � P t

j �
fj

f t
�

�
1� pc �

Cej

Caj

� pdj

�
(2)

In short, Equation (2) states that the proportion of
copies of a program in the next generation is the pro-
portion produced by the selection operator less the
proportion of programs destroyed by crossover. Some
of the individuals counted in P t+1

j might be modi�ed
by a crossover in the absolute intron part, but they

1Notice that this is not standardized �tness used in GP.
Here a better �tness gives a higher �tness value (GA).

2The reasoning is analogous for many other selection
methods including more elitist strategies

are included because they still show the same beha-
vior at the phenotype level. The proportion P t+1

j is a
conservative measure because the individual j might
be recreated by crossover with other individuals, etc.3

Equation (2) could be rewritten as:

P t+1
j �

fj � pc � fj �Cej �

1

Caj
� pdj

f t

!
� P t

j (3)

Here we see that we can interpret the crossover related
term as a direct subtraction from the �tness in an ex-
pression for reproduction through selection. In other
words, reproduction by selection and crossover acts as
reproduction by selection only, if the �tness is adjusted
by the term:

�pc � fj �Cej �
1

Caj

� pdj (4)

This could thus be interpreted as if there where a term
(4) in our �tness proportional to program complexity.

We now de�ne \e�ective �tness" fej as:

fej = fj � pc � fj �Cej �
1

Caj

� pdj (5)

It is the e�ective �tness that determines the number
of individuals of a certain kind in the next generation.

Under these assumptions, it is possible to show that
an individual can win a higher proportion of the next
generation in spite of the fact that it has worse �tness.
By loosing a block with high e�ective complexity with
a moderate contribution to �tness it can increase its
chances of survival. The individual is then trading
normal �tness for e�ective �tness by reducing its com-
plexity and a less �t individual can take a higher pro-
portion of the next generation. This is an undesired
phenomenon in most training situations.

2.1 Crossover Protection

An individual can do a number of things to protect it-
self from crossover. As discussed above, it can increase
the absolute complexity by adding introns. The pos-
sibility of adding introns is limited by a number of
factors for any given GP system under evolution. A
system cannot add introns with arbitrary complexity
instantly.

3The event of recreating individuals can be measured
to be low except when applying a very high external parsi-
mony pressure which forces the population to collapse into
a population of short building blocks.

One other possibility for the individual to protect it-
self is to reduce the e�ective length by �nding a more
parsimonious solution, but this ability is limited by the
�tness function and the dynamics of the system. It is
in the balance between these two strategies that the
parsimony pressure of a GP system appears.

If the e�ective length cannot be further reduced then
the system will try to add more introns. This is on con-
dition that the maximal length or depth of this system
is not exceeded. If su�cient intron adding is allowed
by the dynamics of the system, then it can gradually
balance out di�erences in the e�ective �tness' by a
short and a long program. All genetic programming
systems have some de�ned maximal size of the pro-
gram structure. This size is important because chosen
too small it may limit the additions of intron, thus
preventing the system from �nding a perfect solution.
In certain cases it is necessary for the intron blocks to
be many times the size of useful blocks before an exact
solution can be found. This means that it is import-
ant to adjust the allowed maximum size of individuals
according to the composition of the �tness function.

A third possible way to reduce the probability for
destructive crossover is to allow crossover at certain
points only. Where crossover should be allowed could
also be evolved through a suitable representation in the
individual of allowed crossover points. This is common
in nature, where there are numerous sophisticated sys-
tems for protection from changes in genetic material.
Sexual recombination in higher species in particular is
only allowed at very well de�ned points (Watson 1987).

The composition of the �tness function in
uences the
sensitivity of the system too. For example, by altering
the size of constants and scaling of di�erent contribut-
ing part of the �tness function, it could be possible to
reduce the crossover sensibility below the threshold of
interference with the perfect solution.

2.2 Balanced Evolution

Adding an external parsimony pressure is one way to
balance up the e�ective �tness. This pressure P is in
its simplest form proportional to the absolute length
of the program and subtracted from the �tness ex-
pression. This results in the following equation for the
e�ective �tness:

fej = fj � P �Caj � pc � fj �Cej �
1

Caj

� pdj (6)

The external parsimony pressure could be made vari-
able during evolution and could also be allowed to have
a negative value if necessary.

When evolving functions with non-continuous �tness
functions for instance where the results is an integer, it
is important to scale the output from the �tness func-
tion so that the smallest change in �tness, the granu-
larity, is balanced against the biggest change in com-
plexity. Otherwise, the change in �tness can drown in
the change of complexity, see equation 5.

When heterogeneous complex �tness functions are
used, it is also important to balance the contribution
from the di�erent parts in the �tness function.

The average initial size or complexity will a�ect the
average complexity pressure in the beginning of a ge-
netic programming session. The complexity pressure is
proportional to the relation between the e�ective and
absolute complexity. A high complexity at the initial
state will give a low pressure in the beginning which is
of importance for the dynamics of the whole training
session.

Other strategies that could help evolving programs to
obtain a shorter e�ective length are the introduction
of control structures like loops or the use of subfunc-
tions and other modularization techniques. In the next
section we give a brief motivation for spontaneously
emerging subfunctions.

2.3 Spontaneously Emerging Subfunctions

A natural tool for humans when de�ning an algorithm
or computer program is to use modularization and di-
vide the solution into smaller blocks of code. Di�er-
ent modularization techniques have been suggested for
use with genetic programming, where the most thor-
oughly evaluated are automatically de�ned functions
(ADF) (Koza 1994). Other examples of modular-
ization techniques are Module Acquisition (Angeline
1993) and The Encapsulation Operation (Koza 1992).
All modularization techniques are ways of encapsu-
lating blocks of code. ADFs encapsulate blocks that
becomes subroutines which could be called from the
main program or from another subroutine. A sub-
routine can be called more than once from the same
program. This means that a program can reduce its
e�ective length by putting frequently used identical
blocks into a subroutine. As we have seen, a small ef-
fective length increases the chances of survival of this
o�spring. This is in our mind one of the main reasons
for which ADFs and other encapsulation techniques
work spontaneously.

If a block of code with e�ective complexity �Cblock

within an individual is present n times, then the pro-
gram can decrease its e�ective complexity and thus
increase its e�ective �tness by using ADFs.

Let Ccall be the size or complexity of a call to an
ADF, and Cadf the complexity of the overhead for an
ADF de�nition. Let the original e�ective length of
the complete program be Cej, and the original abso-
lute length be Caj . A subfunction can then change the
individual's e�ective �tness:

fej = fj � pc � fj �
Cej ��Cej

Caj ��Cej

� pdj (7)

�Cej = �Cblock � (n � 1)� Ccall � n�Cadf2 (8)

As long as the change in e�ective �tness is positive,
the individual will have an advantage in survival by
using an ADF. Equation 7 motivates why a program
sometimes can gain a reproduction advantage by spon-
taneously using modularization, and also explains why
ADFs do not appear in simple problem spaces. Initial
empirical investigations support this hypothesis, but a
more rigid evaluation is planned in our future work.

2.4 Bene�ts from parsimony pressure

We have concluded, in the previous sections that a Ge-
netic Programming system has an inherent tendency
to promote solutions that have a short e�ective com-
plexity. We have also seen that this could sometimes
con
ict with our goal of adapting to a speci�c �tness
function.

It has previously been noted that a shorter overall
length of an evolved program seems to results in a
program with more generic behavior (Kinnear 1993,
Tackett 1993). This could be made intuitively reason-
able by many di�erent examples. For instance, let us
say that we want to perform symbolic regression of a
function with the following �tness cases.
fn(3)=9, fn(0)=0, fn(2)=4, fn(1)=1

Two possible functions with maximal �tness' are:
First solution:

if x=0 then fn= 0 else, if x=1 then fn=1, else, if

x=2 then fn= 4, else, if x=3 then fn=9, else, fn=0

Second solution:

fn=x*x

The second solution is shorter than the �rst and it be-
haves more uniformly for a larger set of input/output
pairs, than the �rst solution. It could be argued that
the second solution is more generic. This is the so
called principle of Occam's Razor. In principle a solu-
tion has a greater probability of being general if it is
shorter, provided that the functional and terminal set
is not biased in an unwanted way. If the �rst solu-
tion in the example above was included as one of the

functions in the function set, then the function set
could be regarded as biased in an unwanted way. The
Principle of Occam's Razor can be formalized and put
into a mathematical framework by algorithmic inform-
ation theory and the Solomono�-Levin distribution.
For an excellent introduction to the relation between
complexity and machine learning, see (Li 1990). Nor-
mally when we evolve an algorithm with a genetic
programming system, or when optimizing parameters
from data, we want to be able to apply the solution
to a much wider set of inputs than the ones given by
the �tness cases. We thus want a solution that is as
generic as possible and - in analogy with above - we
could say that we want a solution that is as short as
possible or has the lowest complexity.

The pressure towards low e�ective complexity does not
only work on the global program level, but also on the
block level where short blocks have a higher probab-
ility of proliferation, c.f. the Schema Theorem. A ge-
netic programming system can be regarded as employ-
ing a divide-and-conquer strategy towards the goal of
�nding a good solution with low complexity. This gen-
eral problem solving strategy of \divide-and-conquer"
with a continuous pressure toward elegant and generic
sub-solutions could be one of the reasons for which
a genetic programming system succeeds in reasonable
time in such a broad set of domains.

The e�ects of this pressure should be balanced to avoid
unwanted e�ects such as the inability to obtain a per-
fect �tness value, where one balancing factor could be
an external pressure applied on the absolute size of the
individual.

Notice that there is an important di�erence between
a program with a short e�ective complexity and one
with a short absolute complexity. The generalization
properties of the program with short e�ective length
could be decreased by introns that are not global in-
trons. There might be blocks of code that only act as
introns with the current �tness cases.
Example: (IF (< X 4) (X*X) (+ 0 0))

This program has a perfect score for the �tness cases
above but will not give the desired result for input val-
ues above four. This example provides a motivation
for applying external parsimony pressure, because it
could remove the local intron. On the other hand, an
external parsimony pressure could further increase the
probability of unwanted e�ects. We propose to have a
parsimony pressure that is balanced and variable dur-
ing the evolution of the population. For instance, it
could increase towards the end of the training session.

3 Empirical Results

In this section, we present a method for empirically
measuring absolute complexity and e�ective complex-
ity. We brie
y present an example of these measure-
ments and show how they support the hypothesis that
there exists a compression pressure in the system.

The example is symbolic regression of a function using
a polynomial with large constants. We have a set of
ten �tness cases with input/output pairs taken from
this polynomial function and we would like to evolve
the function in the language of the register machine.
For a more complete description of this experiment see
(Nordin 1995b).

The register machine used performs arithmetic opera-
tions between a small set of registers. All instructions
are coded as 32 bits. An instruction de�nes the des-
tination registers, the two operands and the arithmetic
operation to be used. One of the two operands can be
a small constant, the other has to be another register.
The operators used in this example are addition, sub-
traction and multiplication. All this information is
stored in the 32 bits of the register. An individual
consists of a continuous string of bits. Crossover is
only allowed between the instructions at a locus that
is a multiple of 32. The crossover operator selects two
such points in two individuals and then swaps the in-
structions between them.

This approach enables us to cut and splice blocks of
instructions into the individual without the risk of gen-
erating programs with invalid syntax. It also enables
us to make a good estimation of the e�ective length
of individuals. We do this by systematically replacing
each instruction in an individual with a NOP (NoOp-
eration) instruction that, by de�nition, has no e�ect
on the state or output of the machine. If the individual
still gives the same output for all �tness cases, then we
know that the particular instruction substituted acted
as an intron. The number of these instructions is ad-
ded, and then subtracted from the absolute length to
give a lower bound for the e�ective length of the pro-
gram. This method gives a lower bound on the number
of introns because it does not �nd higher order introns
consisting of cooperating instructions such as the two
instructions a = a + 1; a = a � 1. But higher or-
der introns are themselves sensitive to crossover, and
experiments show that the small proportion present
in the �rst generations is rapidly substituted by the
same number of �rst order introns. The estimation
of e�ective length is thus close to the actual �gure.
In addition to crossover a mutation operator toggles
bits in the individual with a certain probability. The

selection operator in the examples below is �tness pro-
portional selection. We have tried di�erent selection
operators resulting in di�erent strength and dynam-
ics of the system but with the same general results.
The average standardized �tness during evolution of
the function, plotted in Figures 2 and 3, shows the
evolution of absolute length and e�ective length in the
same experiment.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
ta

nd
. F

itn
es

s

Generations

Average Fitness

"Average Fitness"

Figure 2: Average �tness, population size 2000.

Evolution of lengths starts from a point de�ned by the
average initialization length. From generation 2 to 7,
the rapidly decreasing �tness is the dominating term
in the expression for e�ective �tness and the change
in complexity is not dramatic. When the change in
�tness becomes less important, the compression pres-
sure increases and the e�ective lengths decrease. Fi-
nally, the absolute length starts to grow exponentially.
Note that this happens while the e�ective length re-
mains small and the average �tness continues to im-
prove. Evolution over longer time has shown that the
absolute complexity continues to grow exponentially
without limit.

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 L
en

gt
h

in
 B

its

Generations

Absolute Complexity and Efficient Complexity

"Absolute Length"
"Efficient Length"

Figure 3: The evolution of the absolute and e�ective length.

To support the hypothesis that compression achieves
its goal of protecting the individual, we have plotted
the e�ect of crossover in di�erent generations. Figure
4 shows the change of e�ects of crossover during evol-
ution. This diagram consists of many diagrams of the

same type as Figure 1 placed in sequence after each
other. We can see that the absolutely dominating ef-
fects of cross-over are that either nothing happens to
the �tness, or the �tness is worsened by more than 100
percent. The peak over the zero line increases which
indicates a growingly una�ected �tness. The accumu-
lated destructive e�ect of crossover to the left decreases
after generation 15 as the ratio between absolute and
e�ective length increases and the individual becomes
more and more protected.

Effects of Crossover during Evolution

"Crossover Effect "

-100 or less
-50

0
50

100 0
5

10
15

20
25

30
35

0

1000

2000

3000

4000

5000

6000

7000

Fitness Change after Crossover (%)

Generations

Number of Crossover Events

Figure 4: Distribution of crossover e�ect during evolution.

Figure 5 shows how a moderate constant external
parsimony pressure can remove the introns completely
after some generations. In this case, however, the neg-
ative e�ect of parsimony pressure is too strong and the
system does not converge to an optimal solution. A
smaller parsimony pressure would stop the exponen-
tial growth of the absolute length and force the two
curves to follow each other more closely.

A tightly set maximum individual size can also be seen
to increase the compression pressure, because the only
way to increase the crossover target area when the
maximum length is reached is to decrease the e�ective
length. This manipulation sometimes leads to faster
convergence but often the pressure becomes too high
and the system fails to converge to an optimal solution.

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 L
en

gt
h

in
 B

its

Generations

Absolute Complexity and Efficient Complexity

"Absolute Length"
"Efficient Length"

Figure 5: E�ects of parsimony pressure.

4 Summary and Conclusions

We have argued for the existence of a compres-
sion pressure in evolutionary algorithms with variable
length individuals. This pressure promotes short solu-
tions with low complexity if the complexity is meas-
ured as e�ective complexity with introns removed.
This phenomenon has both positive and negative ef-
fects, and is supported by data from evolution of com-
puter programs. The positive e�ects are a more ef-
�cient search and more general behavior of the solu-
tion when used with unseen data. The negative ef-
fect is premature convergence towards a non-optimal
solution. The key to the positive e�ects is to bal-
ance the complexity pressure according to the equa-
tion for e�ective �tness. This analysis should take
into account a number of relevant properties, for in-
stance representation, genetic operators, composition
of �tness functions, crossover probability, generality
of solutions, maximum depth or length of solutions,
explicit parsimony, granularity of �tness function, ini-
tialization length and modularization.

Acknowledgement

The authors would like to thank Thomas B�ack and
Sami Khuri for valuable comments to this paper.
This research has been supported by the Ministry
for Wissenschaft und Forschung (MWF) of Nordrhein-
Westfalen, under grant I-A-4-6037.I .

References

Wol�, J.G. (1993) Computing, cognition and inform-
ation compression. AI Communications 6(2):pp 107-
127

J.P. Nordin,W. Banzhaf (1995) Evolving Turing Com-
plete Programs for a Register Machine with Self-
Modifying Code. In Proceedings of the Sixth Interna-

tional Conference on Genetic Algortihms,San Mateo,
CA: Morgan Kaufmann Publishers

J. Levenick (1991) Inserting introns improves genetic
algortithm success rate: Taking a cue from biology.
In Proceedings of the Fourth International Conference

on Genetic Algortihms, R.K. Belew and L.B. Booker
(eds.) San Mateo, CA: Morgan Kaufmann Publishers
Inc., pp 123-127

S. Forrest,M. Mitchell (1992) Relative building block
�tness and the building block hypothesis In Founda-

tions of Genetic Algorithms 2, D. Whitley (ed.). San
Mateo, CA: Morgan Kaufmann Publishers Inc., pp
109-126.

J.D Watson,N.H. Hopkins,J.W Roberts,A.M Wiener
(1987) Molecular Biology of the Gene, Menlo Park,
CA: The Benjamin/Cummings Publishing Company,
Inc.

J. Koza (1994) Genetic Programming II, Cambridge,
MA: MIT Press.

J. Koza (1992) Genetic Programming, Cambridge,
MA: MIT Press.

L. Altenberg (1994) The Evolution of Evolvability in
Genetic Programming. In Advances in Genetic Pro-

gramming, K. Kinnear, Jr. (ed.), Cambridge, MA:
MIT Press. pp47-74.

J. Holland (1975) Adaption in Natural and Arti�cial

Systems, Ann Arbor, MI: The University of Michigan
Press.

P.J. Angeline, J.B Pollack (1993) Evolutionary Mod-
ule Acqusition, In Proceedings of the Second Annual

Conference On Evolutionary Programming, La Jolla,
CA: Evolutionary Programming Society.

K. Kinnear (1993). Generality and Di�culty in Ge-
netic Programming: Evolving a Sort. In Proceeding

of the �fth International Conference on Genetic Al-

gorithms, San Mateo, CA, Morgan Kaufmann.

W.A. Tackett (1993). Genetic Programming for Fea-
ture Discovery and Image Discrimination. In Proceed-

ing of the �fth International Conference on Genetic

Algorithms, San Mateo, CA, Morgan Kaufmann.

M. Li, P. Vitani (1990) Inductive Reasoning and
Kolmorogov Complexity. In Journal of Computer and

System Sciences, pp343-384

J.P. Nordin,F. Francone W. Banzhaf (1995b) Expli-
citly De�ned Introns in Genetic Programming. Sub-
mitted to the GP workshop atMachine Learning 1995,
Tahoe City, CA.

