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On Multiobjective Selection for

Multimodal Optimization

Simon Wessing Mike Preuss

Multiobjective selection operators are a popular and straightforward tool
for preserving diversity in evolutionary optimization algorithms. One appli-
cation area where diversity is essential is multimodal optimization with its
goal of finding a diverse set of either globally or locally optimal solutions of
a single-objective problem. We therefore investigate multiobjective selection
methods that identify good quality and diverse solutions from a larger set
of candidates. Simultaneously, unary quality indicators from multiobjective
optimization also turn out to be useful for multimodal optimization. We fo-
cus on experimentally detecting the best selection operators and indicators
in two different contexts, namely a one-time subset selection and an itera-
tive application in optimization. Experimental results indicate that certain
design decisions generally have advantageous tendencies regarding run time
and quality. One such positive example is using a concept of nearest better
neighbors instead of the common nearest-neighbor distances.

1 Introduction

The discipline of multiple-criteria decision making (MCDM) generally deals with the iden-
tification of a set of good alternatives under consideration of conflicting objectives [26].
Often, there exists a discrete, predefined set of candidates to choose from. A concrete
example of such multiobjective selection problems in the real-world is the identification
of a good and diverse subset of molecules in drug discovery [25]. If, however, the set of
candidates is not explicitly known beforehand, we rather speak of multiobjective opti-
mization. In this case, the number of alternatives may be either very large or in the case
of real-valued decision variables even infinite. Metaheuristics such as evolutionary algo-
rithms (EA) usually attack the multiobjective optimization problem by converting it into
a sequence of discrete decision-making problems, where the alternatives to the selection
in each iteration are generated by randomly altering the selected solutions of the previous
iteration. Multiobjective approaches have even proved beneficial for single-objective op-
timization problems when a compromise between exploitation and exploration is sought,
e. g., in global and multimodal optimization (MMO) [13, 28, 39], which is the focus of
our work.
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The general approach of applying multiobjective methods to single-objective problems
is called multiobjectivization, although the method proposed here does not belong into
the originally defined categories of decomposing a scalar function [18] or adding (static)
objectives [5]. Earlier attempts of using multiobjective methods for multimodal opti-
mization (as, e. g., [31]) usually belong to the latter category and would exploit a certain
problem knowledge. Instead, we are considering a subset selection algorithm incorporat-
ing multiobjectivization. Such an approach may be used for arbitrary decision making
problems or for survivor selection in evolutionary algorithms. The secondary objective is
based on distances to other solutions (neighbors). Therefore, the approach is population-
dependent and thus dynamic [48], but problem-independent. A niching effect is achieved
without an explicit notion of local optima, and thus the method does not guarantee that
all local optima are preserved during selection. Nevertheless, we will show that it is
a very good and simple solution if one does not desperately try to locate the possibly
huge, complete set of optima a problem possesses but a large subset of very good ones.
The approach is versatile and elegant, because it works on non-differentiable problems,
is parameterless, and requires neither additional function evaluations nor modifications
of the dominance relation. It is therefore well suited to be utilized inside more complex
multimodal optimization algorithms. However, here we rather focus on the fundamental
differences between multiobjective selection mechanisms and single-objective ones.

Multimodal optimization differs from global optimization in the expected result. The
latter only searches for one single globally optimal solution, while the former aims to find
a set of (potentially only locally) optimal solutions. This definition is intentionally kept
abstract, as any further characterization of this set depends on the user’s preferences,
which would be represented by using an appropriate quality indicator for performance
assessment (Sec. 2). We would like to emphasize that we do not suggest a concrete,
new algorithm for multimodal optimization but rather investigate the effects of different
selection variants from a combinatorial space of up to six factors (Sec. 3). We see this
as a necessary step towards improving existing and deriving new, better optimization
methods. All investigated variants have in common that objective values and search
space distances are taken into account simultaneously. Some of them are in use already,
some are not, and we will use experimental evidence to show which ones are actually
useful and which should rather be disregarded.

Parts of this work draw on material from [33], where some of the performance measures
were introduced, and [53], where a subset of the selection variants discussed here were
defined. However, this is the first time that both topics are connected in two large,
computationally involving experimental investigations. These target the interplay of
multiobjectivization-based selection mechanisms with different performance measures in
the context of i) a simple subset selection problem (“what part of the possibly large
result set do we present to the user?”) in Sec. 4.2 and ii) an optimization scenario using
evolutionary algorithms in Sec. 4.3. For the first time, additional implementation details
as the number of neighbors, the use of archives, and greedy behavior are considered. We
also rate all these variants regarding elitism (i. e., the ability to keep the best solution in
the population). Overall, we strive for obtaining general guidelines concerning selection
mechanisms and performance measures for the two mentioned scenarios.
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1.1 Niching, Additional Objectives and Novelty Search

Successfully employing multiobjective techniques for multimodal optimization requires
bringing together several strands of former and recent developments that were mostly
kept separate before. This applies to niching concepts as well as to algorithms utiliz-
ing additional objectives in the context of dynamic optimization, and also to the more
recently proposed novelty search.

The term niching is commonly used to describe diversity maintenance in evolutionary
algorithms. Employing the distance to the nearest neighbor in a population of search
points P within selection is a simple possibility to increase or maintain diversity. This
has been implemented already by De Jong’s famous crowding method [11] in a very di-
rect form (comparison with the nearest individual of a fraction of the parent population).
Mahfoud [24] later on suggested to consider only the direct parents and compare with the
nearest one. Subpopulation (speciation) oriented evolutionary algorithms may rather be
seen as following the path of Richardson and Goldberg’s fitness sharing who define a dis-
tance between search points as far or near, according to some distance parameter. While
the measures to achieve the separation and the separate development of the subpopula-
tions are different, nearly all attempts either need a given niche distance [29, 22, 41] or
use additional evaluations in order to detect which subpopulation a search point belongs
to as [51, 44]. In the former case, one is not interested in the nearest neighbor within
the population but rather the nearest neighbor in the much smaller set of niche centers.
A large survey about conventional approaches for multimodal optimization can be found
in [9].

In the recent years, there was a surge of publications using multiobjective selection
for solving single-objective problems in general [39], and especially as a means of pre-
serving (decision-space) diversity in the population. To resolve the conflict between the
objectives, most of the approaches in the following survey use non-dominated sorting as
the first and crowding distance as the secondary selection criterion. Before the concept
was employed in single-objective optimization, de Jong et al. [10] applied it to genetic
programming and Toffolo and Benini [46] in multiobjective optimization. Bui et al. [6]
established the first larger comparison of different secondary objectives. They compared
the distance to the nearest neighbor, the average distance to all neighbors, the distance
to the best individual, and other objectives not based on distance in the context of dy-
namic optimization. According to their result, especially the first two performed well.
Segredo et al. [38] and Segura et al. [40] continued the research into these variants on
static problems with a high number of decision variables and large budgets of function
evaluations. In the latter paper, they also investigated the influence of incremental (i. e.,
less greedy) fitness calculations. Tran et al. [48] compared an NSGA2, using the dis-
tance to the nearest neighbor as a second objective, to state-of-the-art algorithms for
single-objective optimization. Their experimental setup was according to the black-box
optimization benchmarking (BBOB) rules, and therefore aiming at global optimization.
However, all these approaches focusing on a single global optimum suffer from a lack of
systematic analysis of the diversity preservation capabilities of the algorithms.

Deb and Saha [13] considered multimodal optimization with the objective of discover-
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ing all local optima. Their basic idea was to exploit gradient information by considering
it as a second objective function. A slightly modified dominance relation ensured that
all optima were non-dominated. To get rid of the dependency on derivatives, they also
proposed a variant with an integrated local search, consuming 2n additional function
evaluations for each individual (n standing for the number of search space dimensions).
The secondary criterion in this case was the number of better neighbors of a solution.
This local search allowed approximating optima to a high precision, but also incurred a
high cost. It also introduced several parameters that were later more or less eliminated
by means of heuristics [36]. Finally, the approach was abandoned in favor of a simpler
selection that considers a solution’s average distance to all other population members [1].
Basak et al. [2] use the same second objective, but employ the hypervolume contribution
instead of crowding distance to sort non-dominated fronts.

In parallel to these developments, an almost identical approach evolved from the nov-
elty search concept of Lehman and Stanley [20]. The idea of novelty search is to com-
pletely disregard the objective function in favor of a solution’s novelty, which is defined
as the average distance to k nearest neighbors in some phenotypic or behavioral space.
As the reference to these spaces already indicates, novelty search was designed to evolve
complex structures such as robot controllers. Mouret [28] used multiobjectivization to
combine novelty search with common objective-based optimization, obtaining better re-
sults than with either of the pure strategies. These results were largely confirmed by
[21]. In the novelty search community, it is also customary to use an archive of previous
solutions to avoid rediscovering the same areas over and over, a concept that reminds of
tabu search [17] and related approaches as, e. g., sequential niching [3]. Although there
exists no sensible distinction between genotype, phenotype, or behavior in our case of
numerical optimization, we will nonetheless adopt and test the remaining ideas, as has
already been done for archiving in [2].

Ulrich and Thiele [50] use an individual’s contribution to a diversity indicator value
as an objective. This has the drawback that selection has at least cubic run time in
the number of individuals. Instead of doing non-dominated sorting, their algorithm
alternates between optimizing the original objective and diversity, basically carrying out
an iterated level set approximation. As a goal, they correspondingly aim to obtain a
maximally diverse set of solutions with objective values below some threshold. The
approach is tested on binary and on structural optimization problems.

1.2 Considering the Nearest Better Neighbors

Instead of considering all neighbors, one may especially be interested in the distance to
the nearest better neighbor (as all search points carry a quality information). These
distances are rather larger than the nearest neighbor differences, the more so, the better
a search point is. Nearest-better-neighbor information was first employed in the niching
context by [32]. They used the values of the distance from a search point x to the
nearest better neighbor in a population P to estimate a problem’s number of basins
in an approach called nearest-better clustering (NBC). Points with large nearest-better
distance represent the best available approximations to the global/local optima as all the
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Figure 1: The left panel shows a randomly distributed population on a multimodal land-
scape, n = 1. In the middle, objective values are plotted against each point’s
distance to the nearest neighbor. The right panel shows the distances to the
nearest better neighbor instead. For better visualization, we have set dnb(x

∗,P)
to a value of 110% of the largest finite distance value in this figure (it would
otherwise be ∞ because there is no better neighbor). Non-dominated fronts
are indicated by connecting the respective points and plotting their ranks.

near points must be worse. This idea was combined with multiobjectivization by [53].
The various mentioned distances are generalized to k neighbors and formally defined as
follows.

Definition 1. Let y(1), . . . ,y(µ) be the ordered elements of P, so that d(x,y(1))
≤ · · · ≤ d(x,y(µ)) for some x /∈ P. Then, the distance to the k nearest neighbors is

denoted dnn(x,P, k) = 1
k

∑k
i=1 d(x,y(i)) .

Definition 2. Let Q = {y ∈ P | f(y) < f(x)}. As before, assume y(i) ∈ Q are ordered
so that d(x,y(1)) ≤ · · · ≤ d(x,y(|Q|)). Then, the distance to the k nearest better neighbors

is denoted dnb(x,P, k) = 1
min{k,|Q|}

∑min{k,|Q|}
i=1 d(x,y(i)) .

The special cases of k = 1 are consistent with the classic definition of the distance to the
nearest neighbor of x, dnn(x,P) = min{d(x,y) | y ∈ P \ {x}}, and the distance to the
nearest better neighbor dnb(x,P) = min{d(x,y) | f(y) < f(x) ∧ y ∈ P}. The nearest-
and nearest better neighbor will be denoted with nn(x,P) and nbn(x,P), respectively,
by using the above definitions with argmin instead of min. As we are dealing with
minimization problems f : R

n → R, we assume the euclidean distance ‖x − y‖2 as
the underlying distance measure d(x,y). In general, however, any measure is possible.
The best solutions x

∗ regarding the objective value have no nearest better neighbor,
so we choose dnb(x

∗,P, k) := ∞. This makes them the only non-dominated solutions
in multiobjective approaches with f(x) and dnb(x,P, k) as criteria (but note that they
would be part of the non-dominated set anyway due to their extremal objective value).

Figure 1 shows a randomly distributed population spread out on a multimodal land-
scape. This simple example already indicates that a multiobjective selection procedure
based on non-dominated ranking is in principle able to maintain several optima at once.
However, we will also have to specify a preference between incomparable solutions within
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a non-dominated front to arrive at an unambiguous definition. Apparently, this prefer-
ence mostly has theoretical influence, as results in Sec. 3 and 4 show. But first we will
discuss the current state-of-the-art in performance assessment for multimodal optimiza-
tion in detail.

2 Performance Assessment

We dismiss the idea of formulating a single success criterion (e. g., “finds all optima”)
for multimodal optimization algorithms, because, firstly, it seems implausible that every
local optimum is equally important, and secondly, the task of finding all optima with
high precision may be too challenging. We speak of a floor effect when a measurement
indicates no progress because the posed task is too difficult. Troubles with such kinds
of performance measurement have been demonstrated in [53]. Furthermore, diversity
and optimality are conflicting and there seems no natural way to aggregate them. A
success criterion is only binary and thus cannot express the inherently multiobjective
character of assessing a population’s features. One possible workaround is to change
the problem formulation into a level-set approximation problem. Here, the goal is to
maximize the diversity of a set of points with objective values below some threshold
[8, 50, 15]. However, specifying a sensible threshold parameter is difficult. Therefore,
we present a large collection of quality indicators that can represent the multimodal
optimization problem in more detail. Many of these indicators require information about
the location (and the basins of attraction) of the optima, and are therefore only suited
for benchmarking.

We interpret measuring the quality of a solution set for a multimodal problem as
consisting of several stages. At first, an optimization algorithm provides a solution set.
This may, e. g., be the final population or an archive of recorded good solutions. The
cardinality of this set should depend on the tackled problem, but is at current usually
determined by the employed algorithm alone. Thus, the set can become extremely large,
which is inappropriate, because it may firstly bias the quality assessment and secondly
make a human inspection of the set too laborious and costly. So, we explicitly assume
an automated subset selection step as part of the evaluation process. We may term the
result of the subset selection a representing set or approximation set, and it is important
to note that all the other solutions contained in the solution set have no influence on the
result of the measurement.

The term quality indicator is taken from multiobjective optimization [54] and simply
describes a mapping that assigns each solution set P a real number. We classify the
presented quality indicators according to the amount of information that is necessary
for their application. Throughout the section, P = {x1, . . . ,xµ}, µ < ∞, denotes the
approximation set that is to be assessed. Some of the indicators already exist for some
time, while others were recently presented in [33]. So, no comprehensive analysis of the
whole collection existed so far.
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2.1 Indicators without Problem Knowledge

Solow-Polasky Diversity (SPD) Solow and Polasky [43] developed an indicator to mea-
sure a population’s biological diversity and showed that it has superior theoretical prop-
erties compared to the sum of distances and other indicators. Ulrich et al. [49] discovered
its applicability to multiobjective optimization. They also verified the inferiority of the
sum of distances experimentally by directly optimizing the indicator values. To com-
pute this indicator for P, it is necessary to build a µ × µ correlation matrix C with
entries cij = exp(−θd(xi,xj)). The indicator value is then the scalar resulting from
SPD(P) := e

⊤
C

−1
e, where e = (1, . . . , 1)⊤. As the matrix inversion requires time

O(µ3), the indicator is only applicable to relatively small sets. It also requires a user-
defined parameter θ, which depends on the size of the search space. We preliminarily
choose θ = 1/n throughout this paper.

Sum of Distances (SD) As already mentioned, the sum of distances

SD(P) :=

√

√

√

√

µ
∑

i=1

µ
∑

j=i+1

d(xi,xj)

is criticized by [43, 49, 25] as being inappropriate for a diversity measure, because it only
rewards the spread, but not the diversity of a population. The figure should therefore
not be used. However, if it is used, we suggest to take the square root of the sum, to
obtain indicator values of reasonable magnitude.

Sum of Distances to Nearest Neighbor (SDNN) As [49] showed that SD has some
severe deficiencies, we also consider the sum of distances to the nearest neighbor

SDNN(P) :=
µ
∑

i=1

dnn(xi,P) .

In contrast to SD, SDNN penalizes the clustering of solutions, because only the near-
est neighbor is considered. Emmerich et al. [15] mention the arithmetic mean gap
1
µ SDNN(P) and two other similar variants. We avoid the averaging here to reward
larger sets. However, it is still possible to construct situations where adding a new point
to the set decreases the indicator value.

Statistics of the Distribution of Objective Values Regarding the assessment of the
population’s raw performance, few true alternatives seem to exist. To us, the only things
that come to mind are statistics of the objective value distribution, with the mean or
median as the most obvious measures. Values from the tail of the distribution, as the
best or worst objective value, do not seem robust enough to outliers. Thus we include the
average objective value AOV(P) := 1

µ

∑µ
i=1 f(xi) as a representative for this category in

our experiments.
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2.2 Indicators Requiring Knowledge of the Optima

All indicators in this section require a given set of locally optimal positions Q =
{z1, . . . , zm}, m < ∞, to assess P. This means they can only be employed in a bench-
marking scenario on test problems that were specifically designed so that Q is known.
Note, however, that Q does not necessarily have to contain all existing optima, but can
also represent a subset (e. g., only the global ones).

Peak Ratio (PR) Ursem [51] defined the number of found optima ℓ = |{z ∈ Q |
dnn(z,P) ≤ ǫ}| divided by the total number of optima as peak ratio PR(P) := ℓ/m. The
indicator requires some constant ǫ to be defined by the user, to decide if an optimum has
been approximated appropriately.

Peak Distance (PD) This indicator simply calculates the average distance PD(P) :=
1
m

∑m
i=1 dnn(zi,P) of a member of the reference set Q to the nearest individual in P . A

first version of this indicator (without the averaging) was presented by [44] as “distance
accuracy”. With the 1/m part, peak distance is analogous to the indicator inverted
generational distance [7], which is computed in the objective space of multiobjective
problems.

Peak Inaccuracy (PI) Thomsen [45] proposed the basic variant of the indicator

PI(P) := 1

m

m
∑

i=1

|f(zi)− f(nn(zi,P))|

under the name “peak accuracy”. To be consistent with PR and PD, we also add the
1/m term here. We allow ourselves to relabel it to peak inaccuracy, because speaking of
accuracy is a bit misleading as the indicator must be minimized. PI has the disadvantage
that the representativeness of P is not directly rewarded, because it is possible for one
solution to satisfy several optima at once. Note that PI is somewhat related to the
maximum peak ratio (MPR) by [27]. MPR is also extensively used by [42].

Averaged Hausdorff Distance (AHD) This indicator can be seen as an extension of
peak distance due to its relation to the inverted generational distance. It was defined by
[37] as

∆p(P,Q) = max







(

1

m

m
∑

i=1

dnn(zi,P)p
)1/p

,

(

1

µ

µ
∑

i=1

dnn(xi,Q)p
)1/p







.

The definition contains a parameter p that controls the influence of outliers on the indi-
cator value (the more influence the higher p is). For 1 ≤ p <∞, AHD has the property
of being a semi-metric [37]. We choose p = 1 throughout this paper, analogously to
[15]. The practical effect of the indicator is that it rewards the approximation of the
optima (as PD does), but as well penalizes any unnecessary points in remote locations.
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This makes it an adequate indicator for the comparison of approximation sets of different
sizes.

2.3 Indicators Requiring Knowledge of the Basins

Even more challenging to implement than the indicators in Sec. 2.2 are indicators that
require information about which basin each point of the search space belongs to.

Definition 3 (Attraction basin, [47]). For the position z ∈ R
n of an optimum, basin(z) ⊆

R
n is the largest set of points such that for any starting point x ∈ basin(z) the infinitely

small step steepest descent algorithm will converge to z.

In practice, the set basin(z) can only be approximated, either by using a carefully
constructed test problem, or by running a hill climber for each x ∈ P as a start point
during the assessment and then matching the obtained local optima with the points of
the known Q. Regardless of how it is achieved, we assume the existence of a function

b(x, z) =

{

1 if x ∈ basin(z),

0 else.

The rationale of indicators for covered basins instead of distances to local optima is that
the former also enables measuring in early phases of an optimization, when the peaks
have not been approximated well yet. If the basin shapes are not very regular, the latter
indicator type may be misleading in this phase.

Basin Ratio (BR) The number of covered basins is calculated as

ℓ =

m
∑

i=1

min{1,
µ
∑

j=1

b(xj , zi)} .

The basin ratio is then BR(P) := ℓ/m, analogous to PR. This indicator can only assume
m+1 distinct values, and in lower dimensions it should be quite easy to obtain a perfect
score by a simple random sampling of the search space. It makes sense especially when
not all of the existing optima are relevant. Then, its use can be justified by the reasoning
that the actual optima can be found relatively easily with a hill climber, once there is a
start point in each respective basin.

Basin Inaccuracy (BI) This combination of basin ratio and peak inaccuracy was pro-
posed by [33]. It is defined as

BI(P) := 1

m

m
∑

i=1

{

min {|f(zi)− f(x)| | x ∈ P ∧ b(x, zi)} ∃x ∈ basin(zi) ,

fmax else,

where fmax denotes the difference between the global optimum and the worst possible
objective value. For each optimum, the indicator calculates the minimal difference in
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Table 1: Overview of the quality indicators.

Ind. Best Worst Uses
f(x)

Use with
var. µ

w/o
optima

w/o
basins

w/o
params

SPD µ 1 ✘ ✔ ✔ ✔ ✘

SD > 0 0 ✘ ✘ ✔ ✔ ✔

SDNN > 0 0 ✘ ✘ ✔ ✔ ✔

AOV f(x∗) > f(x∗) ✔ ✔ ✔ ✔ ✔

PR 1 0 ✘ ✘ ✘ ✔ ✘

PD 0 > 0 ✘ ✘ ✘ ✔ ✔

PI 0 > 0 ✔ ✘ ✘ ✔ ✔

AHD 0 > 0 ✘ ✔ ✘ ✔ ✘

BR 1 0 ✘ ✘ ✘ ✘ ✔

BI 0 > 0 ✔ ✘ ✘ ✘ ✔

objective values between the optimum and all solutions that are located in it’s basin. If
no solution is present in the basin, a penalty value is assumed for it. Finally, all the values
are averaged. The rationale behind this indicator is to enforce a good basin coverage,
while simultaneously measuring the deviation of objective values f(x) from f(zi).

2.4 Summary

The ideal indicator for multimodal optimization would probably regard both diversity
and objective values, enable fair comparisons of sets with different sizes, and require
no problem information or additional parameters. Table 1 shows a classification of the
indicators regarding these properties. With the notable exception of AOV and AHD, all
presented indicators are inclined to favor approximation sets with unduly large sizes µ.
While this makes sense for diversity indicators, it should be avoided for those in Sec. 2.2
and 2.3.

Unfortunately, only diversity indicators and AOV can be applied in real-world appli-
cations, as they are the only ones not needing any problem knowledge. In benchmarking
scenarios, we have more options available, although care has to be taken not to con-
duct unfair comparisons. AHD is more challenging than PD, because the former not
only rewards the approximation of Q, but also penalizes superfluous points in remote
locations. AHD’s parameter should be well-tempered. While PR has a straightforward
interpretation, it can be easily misconfigured [53]. Therefore, BR is a good parameterless
alternative, especially if only a subset of all optima is requested to be found, as in [23].
BR and BI also put a higher emphasis on diversity than the “peak-oriented” indicators,
but are more difficult to implement, because they rely on more problem knowledge. PI
can be easily deceived when an optimum is not covered by any solution, but another
similarly good solution exists in another basin nearby [33].
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Table 2: Examined selection variants

High Priority Neighbor Multiobjective

SV1 objective nearest false
SV2 objective nearest true
SV3 objective nearest better false
SV4 objective nearest better true
SV5 distance nearest false
SV6 distance nearest true
SV7 distance nearest better false
SV8 distance nearest better true

CD-NN crowding distance nearest true
CD-NB crowding distance nearest better true

3 Subset Selection

To be able to carry out systematic experiments, we not only need appropriate quality
indicators, but also have to define selection variants (SV) in a way that lets us attribute
the observed effects to certain design decisions. In [53], the following three factors were
first identified to collectively define a selection criterion:

• High priority defines if the objective- or the distance value should be preferred as a
selection criterion. In the multiobjective case, also crowding distance is an option.

• The type of neighbor information (nearest or nearest better) decides which distance
function to use.

• Multiobjectivization controls if the two criteria objective value and distance are
treated in a multiobjective fashion or only in lexicographic order.

Table 2 lists all 23 possible selection variants according to these factors plus two variants
based on the popular crowding distance (CD). Hypervolume contribution [4] is omitted
in our investigations due to its relative similarity to crowding distance. Subsequently,
all these variants are combined with different numbers of neighbors, different approaches
regarding the removal of more than one solution (incremental/non-incremental), and
archives. In total this amounts to 120 different selection approaches, although some
are actually duplicates of each other, as we will see later. The pseudocode in Fig. 1
shows how the parameters control the behavior. When applying the respective selection
criteria, the algorithm can either follow a greedy approach by removing one individ-
ual per iteration (r = 1) and recalculating distance values each time, or it can use a
“super-greedy” approach by removing all individuals at once (r = λ). In the context of
hypervolume contribution-based selection, Bringmann and Friedrich [4] discourage the
(more expensive) greedy behavior in favor of an even more expensive exact calculation
of the optimal subset. However, we disregard this option for now, as it is (yet) unclear
which population-based indicator value to optimize. Additionally it would probably be
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Algorithm 1 Parameterized selection

Input: Population P = {x1, . . . ,xµ+λ}, archive A, number of considered neighbors k, number
of removed individuals per iteration r

Output: Surviving individuals
1: Q ← P ∪A
2: if neighbor mode is nearest then

3: d(·, ·, ·)← dnn(·, ·, ·)
4: else if neighbor mode is nearest better then

5: d(·, ·, ·)← dnb(·, ·, ·)
6: end if

7: while length(P) > µ do

8: for all x ∈ P do

9: calculate d(x,Q, k)
10: end for

11: if multiobjective is true then

12: compute non-dominated fronts F1, . . . ,Fs

13: for all Fi ∈ {F1, . . . ,Fs} do

14: if high priority is objective then

15: sort Fi ascending by objective values f(x)
16: else if high priority is distance then

17: sort Fi descending by distance values d(x,Q)
18: else if high priority is crowding distance then

19: sort Fi descending by CD, using the algorithm in [19]
20: end if

21: end for

22: P ← concatenate F1, . . . ,Fs

23: else if multiobjective is false then

24: if high priority is objective then

25: sort P by (f(x),−d(x,Q, k)) in ascending lex. order
26: else if high priority is distance then

27: sort P by (−d(x,Q, k), f(x)) in ascending lex. order
28: end if

29: end if

30: remove last r elements of P
31: end while

32: return P

too computationally expensive anyway, as there are
(

µ+λ
µ

)

subsets of size µ. Analogously
to the question if distance values in the search space should be recalculated, the same
problem applies in objective space. So far, authors usually employ the original, super-
greedy crowding distance procedure [12]. We, however, use the improved, greedy version
of [19], which yields a much more uniform sampling of the non-dominated front.

The given algorithm is not tailored towards efficiency but simplicity, and covers all
selection variants examined in this paper. As usual, the selection gets the current popu-
lation P as input and returns the individuals selected for survival. Optionally, an archive
A of older individuals may be incorporated into the neighborhood calculation, to prevent
rediscovering previously visited areas of the search space. Regardless of how the archive
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Table 3: Intrinsic elitism of selection variants

A = ∅ ∀a ∈ A : f(a) ≥ f(x∗) ∃a ∈ A : f(a) < f(x∗)

k = 1 k > 1 k = 1 k > 1 k = 1 k > 1

SV1 ✔ ✔ ✔ ✔ ✔ ✔

SV2 ✔ ✔ ✔ ✔ ✔ ✔

SV3 ✔ ✔ ✔ ✔ ✔ ✔

SV4 ✔ ✔ ✔ ✔ ✔ ✔

SV5 ✔ ✘ ✘ ✘ ✘ ✘

SV6 ✔ ✘ ✘ ✘ ✘ ✘

SV7 ✔ ✔ ✔ ✔ ✘ ✘

SV8 ✔ ✔ ✔ ✔ ✘ ✘

is actually managed in practice, the important characterization for us is that its solutions
influence the fitness of members of the population, but do not underlie survivor selection
themselves. The archive hopefully enables us to work with smaller population sizes, re-
ducing the cost of the quadratic distance matrix computation. Based on this situation,
we make the following observation:

Proposition 1. If ∀x,y ∈ P : f(x) 6= f(y), then SV1 and SV3 behave identical. If
additionally k = 1, A = ∅, and incremental selection is used (r = 1), then also SV5 and
SV7 behave identical.

Proof. The statement is obvious for SV1 and SV3, because the order is completely given
by the objective values. For SV5 and SV7, without loss of generality, let x,y ∈ P be the
pair of solutions for which d(x,y) is minimal and let f(x) < f(y). Then, y is in both
cases considered the worst solution in the population. This is sufficient to establish the
identical behavior, because only one individual at a time is removed. If A 6= ∅, we can
construct a counterexample for SV5 and SV7 by choosing A = {a} and P = {x,y} for
which f(x) < f(a) < f(y) and d(x,a) < d(y,a). Then SV5 would remove x while SV7
would remove y.

This result is interesting, because it shows that using nearest-better distances alone
does not always mean a change, leave alone an improvement. In some cases, a multi-
objective approach is necessary to obtain a benefit from nearest-better information in
selection. Furthermore, the archive influences all “distance-focused” selection variants
(SV5–SV8), regarding their ability to retain all best solutions x

∗ in the population.

Proposition 2. SV5 to SV8 do not guarantee to retain all best solutions x
∗ in a popu-

lation in the presence of a non-empty archive.

Proof. In a slightly modified example with A = {a} and P = {x,y}, for which f(a) <
f(x) < f(y) and d(x,a) < d(y,a), all selection variants that put a high priority on
distance remove x, because it has the smaller distance to its nearest (better) neighbor.
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The last two columns in Tab. 3 summarize the statement of Proposition 2. Neither SV5
nor SV7 possess elitism when the archive is generally non-empty. However, there are cases
where only SV5 fails, as seen in Proposition 1. This leads us to a further differentiation:
The situation that ∃a ∈ A : f(a) < f(x∗) can never appear if we start with an empty
archive, use a selection that rejects the worse solution in the example in Proposition 1,
and subsequently fill the archive with rejected solutions. Thus, in the special situation
where it is guaranteed that ∀a ∈ A : f(a) ≥ f(x∗), also SV7 and SV8 again guarantee to
retain the best solution in the population. The elitism of CD-NN and CD-NB stems from
their forced selection of the boundary points of the non-dominated front when µ+λ ≥ 3
(this also holds for appropriate variants based on hypervolume contribution). Generally,
it is assumed that elitism is a desired property. Without experiments, however, it is
difficult to estimate how the tradeoff between distance and objective value should be
chosen, as analogous decisions also have to be made between worse individuals. Please
note that retaining the best solutions does not necessarily mean that all locally optimal
solutions are kept, once they are in the population. The fitness of each locally optimal
individual depends on the depth and size of its basin in relation to the competing ones.
Thus, the decision to keep or delete any solution is always dependent on the problem and
the current population. Therefore, we will analyze all selection variants experimentally
in the following, in order to obtain a better understanding of their behavior.

4 Experiments

There are numerous algorithms for multimodal optimization out there, and with them
numerous ways to control the search process, do variation, local search, and archiving.
However, all algorithms sooner or later have to cope with the problem of what to keep
and what to throw away, namely selection. This problem naturally comes in two flavors:
online and offline. The offline situation resembles the subset selection problem, when the
optimization is finished and we have to choose a subset of the obtained final population
and/or archive. The online situation occurs during the run of the optimization algorithm.
We therefore undertake two experiments in order to find out which selection variants are
most successful for each of these two scenarios and can therefore be recommended for
further use in more complex algorithms for multimodal optimization.

4.1 Test Instances

For our experiments, we need to select some reasonable test problems. However, those
in the CEC 2013 benchmark suite [23] do not supply enough information to (efficiently)
apply all indicators. Only the positions for a few global optima are known and the cor-
responding attraction basins would have to be estimated by hill climbing. Furthermore,
many instances are only trivial one-dimensional problems. Eiben and Jelasity [14] suggest
to use parametrized problem generators that can produce test instances randomly, to ex-
ercise fine control over problem difficulty. Such generators were also explicitly proposed
for multimodal optimization by Rönkkönen et al. [35]. Our choice is the test problem
generator “N -Peaks” by [30], which is very similar to the “quadratic family” in [35].
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Figure 2: Illustrations of the used test problems. The landscapes are generated by taking
the minimum of overlapping unimodal functions.

It produces multimodal problem instances by combining several randomly distributed
peaks. The problems are non-separable and irregular, which are also important features
of difficult real-world problems. The N -Peaks function itself is defined by the following
formulas:

f(x) = min
∀p
{g(x,p)} (1)

g(x,p) = hp

((

md(x,p)

rp

)sp

− 1

)

+ 1 (2)

md(x,p) =

√

√

√

√max

{

0,

n
∑

i=1

(xi − pi)2 + dep(x,p)

}

(3)

dep(x,p) =

n
∑

j=1

n
∑

k=j+1

(xj − pj)(xk − pk)Dp,jk (4)

Dp,jk = u/(n− 1− j) (5)

The objective function is given in (1). It takes the minimum of N unimodal functions
(2) around peaks p. This has the advantage that local optima with known positions are
created, which is in turn necessary to calculate some quality indicators (see Sec. 2.2).
Each of these functions (2) is controlled by its own parameters hp, sp, and rp for depth,
shape, and radius, respectively. An example for the instantiation of these parameters can
be found in Sec. 4.2. A basin is simply formed by calculating a euclidean distance (3)
from p, modified by a dependency term (4). Equation 4 in turn requires values Dp,jk,
which are calculated in (5) using random numbers u ∼ U(−0.5, 0.5). These are drawn
once during initialization and then stored.

At this point we extend the original definition of the generator by adding some rules
for the creation of different global structures. For a “linear” topology, the depth values
hp are reordered so that we have the i-th largest depth assigned to the peak with the
i-th largest value of ‖p‖1 =

∑n
j=1 pj the global optimum thereby sitting near to a corner

of the domain. For a “funnel” structure, depths are chosen to grow with increasing
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Table 4: Additional factors for experiment 4.2

Factor Type Symbol Levels

Number solutions environmental {125, 250, 500, 1000}
Topology environmental {random, linear, funnel}
Number variables environmental n {2, 3, 5, 10, 20}
Number neighbors control k {1, 15, all}
Incremental control {yes, no}

euclidean distance from (10, . . . , 10)⊤ (the centroid of the valid domain). If no depth
reordering is carried out, we have the “random” topology. Additionally, shape values sp
are always reordered so that they decrease with increasing hp. The effect is that the
robustness of optima is correlated to their objective value (the global optimum has the
least robustness). This is one possible justification for doing multimodal optimization.
Figure 2 shows examples for the resulting problems for n = 1 and N = 20. Note that
m ≤ N , because peaks can be masked by others.

4.2 Subset Selection Experiment

Research Question Which selection variant is the most successful in the situation de-
scribed as “subset selection” in Sec. 3?

Pre-experimental Planning Corresponding to the chosen scenario, we assume that the
number of points in the solution set cannot be controlled. Therefore we test several
different set sizes. However, as the run time of most selection variants and indicators
is at least quadratic, we cannot consider exceedingly large solution sets. Regarding the
necessary problem knowledge, we assume that the number of optima is known and is
equal to the number of desired optima. Thus, we will select exactly m solutions from the
original set. Note that making different assumptions here should lead to the consideration
of completely different selection algorithms. If, for example, the number of desired optima
is small but not exactly specified, representative 5 selection would be an alternative [33].

Task The obtained representing sets are evaluated with all indicators mentioned in
Sec. 2. We regard two configurations as equally effective regarding some indicator, if
a Mann-Whitney U test cannot reject the null hypothesis that there is no significant
difference between the two with 95% confidence. Of course it is the task of the selection
variants to obtain an as good as possible performance regarding all indicators at once.
As this is infeasible, we will try to explain the observed effects.

Setup The setting in this experiment is a hypothetical subset selection task at the
moment where optimization is finished and we are faced with the problem of identifying
interesting solutions among the ones the algorithm generated. To imitate this situation,
we first generate a random problem instance. A solution set is constructed for this
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problem, containing all local optima (between 50 and 100 points) and a larger number
of non-optimal solutions that are drawn randomly. The latter represent points that were
visited during the algorithm’s search for the optima. The set size is then reduced to the
size of the representing set either sequentially by removing one individual at a time or
by identifying all the worst individuals at once. Apart from the basic selection variants
listed in Tab. 2, we consider the factors in Tab. 4 for this experiment. Each factor level
is combined with all other possible levels, leading to a full factorial experimental design.
Every configuration is replicated eleven times with a random test instance and random
solution set. The sample sizes in the statistical tests are 11 · 4 · 3 = 132, because we also
have four solution set sizes and three problem topologies from the environmental factors.
The randomness in the test instances results from the following procedure: N = 100
peaks are drawn with uniform random positions within [0, 20]n. For each peak p, a
depth hp ∈ [0.5, 0.99], a shape sp ∈ [1, 3], and a radius rp ∈ [5

√
n, 10

√
n] are drawn also

uniformly random, followed by the (potential) reordering described in Sec. 4.1. The global
optimum has its depth explicitly set to 1. The resulting problems exhibit structures as
in Fig. 2, only in higher dimensions.

Results Figure 3 shows performance details of some example configurations. Here, the
progress of incremental selection variants with k = 1, while reducing the number of so-
lutions from 250, is plotted. The problems belong to the random topology and n = 5.
To obtain smoother curves, we increased the number of repeats to 100 for these figures.
Relative performance is used to better visualize the differences. In each panel, the indi-
cator value of SV1 is taken as a reference, because it is independent of k and incremental
selection. In Fig. 4, a level plot of all configurations’ final performance is shown. The
results are averaged over all solution set sizes, problem topologies, and incremental/non-
incremental versions. This is done because the former two are environmental factors and
the effects of the latter are difficult to visualize in this form. Table 5 lists the three best
configurations (differentiating between incremental/non-incremental) for the indicators
AHD, PR, BR, and BI according to best mean performance. None of the differences be-
tween the first place and the two lower ranked configurations is statistically significant.
(In some cases there were no significant differences between the top eight configurations
of the sixty tested.)

Observations Figure 3 shows that non-incremental selection variants tend more to ex-
tremes than the incremental ones. An additional analysis of variance shows that the
factor interacts with the used distance function and n: When using nearest-better dis-
tances, non-incremental selection should be used to obtain good PR and AHD values.
The conventional nearest-neighbor distance, on the other hand, should be coupled with
incremental selection. For BR and BI, this only holds for n ≥ 10, but for n ≤ 5 incre-
mental selection has an advantage regardless of the distance function (see Tab. 5).

Another observation is that although SV5 achieves the highest diversity, it fails at
maintaining good “multimodal” indicator values, especially in higher dimensions. SV7
usually obtains slightly better values, except for k = all and n ≥ 5 (see Fig. 4). Also, the
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Figure 3: Development of indicator values during incremental selection, averaged over
100 runs. Markers at the right hand side denote the performance of non-
incremental versions. The white star stands for the set containing all optima.
Arrows at the labels show if the indicator has to be maximized or minimized.
SV1 is taken as a reference.

theoretical differences between SPD, SD, and SDNN cannot be recognized in Fig. 3, but
they are clearly visible in Fig. 4: For optimizing SPD in low dimensions, it is appropriate
to consider only one neighbor. Choosing k = all usually has a bad influence, except on
SD and on SPD for n ≥ 5. For several indicators, k = 15 often obtains similarly good
values as k = 1.

In high dimensions, we can observe an interesting effect of the curse of dimensionality:
While the multiobjective selection variants with nearest-better information dominate the
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Figure 4: Quality of the representing sets in the subset selection scenario. Lighter shades
indicate better values.

competition regarding the multimodal indicators in dimensions up to ten, there seems
to be a changeover between ten and 20. In 20 dimensions, suddenly SV1/SV3, which
are focusing completely on objective values, are competitive and even seem to obtain
the best performance in Fig. 4. This, however, is not true if we regard incremental and
non-incremental versions separately. Generally, it looks as if the priority of objective
values should increase proportionally with the dimension to obtain good results.
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Table 5: Best configurations according to PR, BR, AHD, and BI in experiment 4.2.

n Sel. k Inc. PR Std. p

2 SV8 1 no 0.632 0.084 1

2 CDNB 1 no 0.627 0.084 0.64

2 SV4 1 no 0.620 0.087 0.41

3 SV8 1 no 0.727 0.061 1

3 CDNB 1 no 0.722 0.064 0.56

3 SV4 1 no 0.719 0.069 0.33

5 SV4 1 no 0.757 0.062 1

5 CDNB 1 no 0.756 0.059 0.95

5 SV8 1 no 0.756 0.060 0.90

10 SV4 1 no 0.841 0.050 1

10 CDNB 1 no 0.838 0.049 0.63

10 SV4 15 no 0.835 0.062 0.29

20 SV4 15 no 0.932 0.030 1

20 SV1 1 no 0.927 0.042 0.39

20 CDNB 15 no 0.926 0.030 0.10

n Sel. k Inc. AHD Std. p

2 CDNB 1 no 0.914 0.341 1

2 SV8 1 no 0.920 0.370 0.84

2 SV4 1 no 0.922 0.325 0.66

3 SV8 1 no 1.069 0.285 1

3 CDNB 1 no 1.093 0.293 0.48

3 SV4 1 no 1.116 0.337 0.29

5 CDNB 1 no 1.788 0.488 1

5 SV4 1 no 1.788 0.524 0.99

5 SV8 1 no 1.795 0.489 0.80

10 SV4 1 no 2.353 0.712 1

10 SV4 15 no 2.385 0.897 0.72

10 CDNB 15 no 2.393 0.862 0.66

20 SV4 15 no 1.704 0.750 1

20 SV1 1 no 1.862 1.085 0.29

20 CDNB 15 no 1.862 0.746 0.08

Sel. k Inc. BR Std. p

SV6 1 yes 0.734 0.063 1

CDNN 1 yes 0.731 0.063 0.62

SV8 1 yes 0.729 0.072 0.79

SV2 1 yes 0.790 0.049 1

CDNN 1 yes 0.789 0.046 0.73

SV8 1 yes 0.788 0.049 0.91

CDNB 1 yes 0.794 0.047 1

SV8 1 yes 0.792 0.048 0.88

SV4 1 yes 0.792 0.046 0.81

SV4 1 no 0.852 0.044 1

CDNB 1 no 0.850 0.042 0.71

SV8 1 no 0.847 0.042 0.33

SV4 15 no 0.934 0.029 1

CDNB 15 no 0.929 0.028 0.11

SV1 1 no 0.927 0.042 0.18

Sel. k Inc. BI Std. p

SV6 1 yes 10.13 2.57 1

CDNN 1 yes 10.20 2.50 0.81

SV8 1 yes 10.24 2.61 0.72

SV2 1 yes 11.92 2.86 1

SV8 1 yes 12.02 2.89 0.91

CDNN 1 yes 12.05 2.86 0.76

CDNB 1 yes 15.55 3.90 1

SV4 1 yes 15.57 3.83 0.99

SV8 1 yes 15.69 3.94 0.79

SV4 1 no 14.07 4.15 1

CDNB 1 no 14.29 3.99 0.64

SV8 1 no 14.62 4.00 0.24

SV4 15 no 6.57 2.87 1

CDNB 15 no 7.13 2.79 0.11

SV1 1 no 7.27 4.23 0.25

Discussion Figure 3 illustrates that regarding diversity and mean objective value, SV1
and SV5 are indeed extreme choices of all selection variants, while SV4 and SV6 are
extreme choices of all variants based on non-dominated sorting. We predict that any other
selection variant must lie somewhere in between these extreme behaviors. Therefore, this
kind of visualization also represents a good baseline investigation for future methods.

Regarding the seeming superiority of SV1/SV3 in 20 dimensions, one explanation might
be that the randomly sampled points have a lower probability to be close to an optimum
in higher dimensions, and thus also must have comparatively worse objective values than
in lower dimensions. Correspondingly, the assumption that all optima are known seems
to become increasingly unrealistic with growing dimension. Therefore, this observation
should not be seen as an argument against multiobjective selection variants.

The methods investigated here are also highly relevant for the selection problem in drug
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Table 6: Additional factors for experiment 4.3

Factor Type Symbol Levels

Archive No Archive

Number peaks environmental N {20, 100}
Topology environmental {random, linear, funnel}
Number variables environmental n {2, 3, 5, 10, 20}
Incremental control {yes, no}
Number neighbors control k {1, 15, all}
Population size control µ {100} {100, 500}

discovery, described by Meinl et al. [25]. While the run time of their fastest heuristic is
only O(µ(µ+ λ)), it is not parameterless. The use of SV4 (or similar) may yield better
results, albeit with a run time of O((µ+ λ)2).

4.3 Optimization Experiment

Research Question When using a multiobjective evolutionary algorithm for multimodal
optimization, which selection variant yields the highest performance? In other words, was
the preliminary decision for incremental SV4 without archive and with k = 1 in [53] right?

Pre-experimental Planning The assumed situation in this experiment is that of opti-
mization, that is, the selection is now applied repeatedly inside the optimization algo-
rithm. Again, the desired number of individuals surviving the selection, µ, is specified by
the user. Regarding archives, the question arises if the decision for or against an archive
generally calls for different configurations. At least µ should be chosen smaller to adjust
for the run time differences. Additionally, we do test incremental variants together with
archives, although the concept seems a bit contradictory in this case. In a sense, it means
that we disregard removed points in subsequent selection steps of the current generation,
only to re-regard them in following generations by putting them into the archive.

Task All selection variants are compared regarding AHD, an indicator which can sen-
sibly compare sets of different sizes. The performance assessment at the end of each run
is solely based on the EA’s population and does not consider the archive in any form.

Setup This time, the experiment’s setup is determined by the selection variants in
Tab. 2 and additional factors from Tab. 6. An evolutionary algorithm is used for multi-
modal optimization, employing the selection variants as survivor selection. We are using
a relatively small budget of n · 103 objective function evaluations for the EA to keep
the run time of the whole experiment endurable. The EA is initialized with a random
uniform population. In each generation, λ = 100 offspring individuals are generated.
Mutation is done by adding Gaussian random numbers with a fixed standard deviation
of σ = 1. This is relatively small compared to the size of the search space, which is
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[0, 20]n. The test problems are generated the same way as in Sec. 4.2. We are not
using any recombination in this experiment, because we suppose that it would either
create many noncompetitive offspring or hinder exploration [32]. Violations of the box
constraints are repaired by Lamarckian reflection [52]. The archive simply records all
individuals that have ever been removed from the population, so its size grows linearly
with the number of function evaluations.

Results Figures 5 and 6 show box plots of AHD results in two and 20 dimensions,
respectively. In these figures, black dots mark the median of each sample, while the
notches depict 95% confidence intervals for the median. By comparing the intervals
visually, we can estimate the statistical significance of the differences. Again, the number
of peaks and the problem topologies are not accounted for in the visualization, because
we expect a certain robustness of the methods against variation of these parameters.

Observations The figures show that using all neighbors is generally a bad idea. This
also holds for the dimensions that are not shown here. For multiobjective variants, it
seems of minor importance how the non-dominated fronts are sorted: Differences between
SV2, SV6, and CD-NN, and between SV4, SV8, and CD-NB are hardly significant.
Especially the latter group with nearest-better distances provides a very robust and
high performance. Also SV7, the single-objective selection maximizing nearest-better
distance, obtains favorable results for n = 20, but is sensitive to changes in n, k, and µ.
SV7 also generally obtains the best basin ratios (not shown here).

No positive effects could be identified for using an archive. When it is used with non-
incremental selection, the results are almost identical to the ones without archive. If
incremental selection is used, it even has a negative impact on variants based on nearest-
neighbor distances. The comparison of the different population sizes 100 and 500 shows
that AHD does not necessarily prefer the larger sets. In 20 dimensions, the indicator
values for µ = 500 are comparable to those for µ = 100, in two dimensions the latter
choice even attains better results.

Discussion To answer the research question, using an incremental SV4 apparently does
not harm, but the non-incremental version yields the same performance with a lower
run time. The experiment also confirms the result of experiment 4.2 that conventional
nearest-neighbor distances should never be paired with non-incremental selection modes.
It is surprising that also the archive has a similarly bad influence on nearest-neighbor
distances, and no positive influence anywhere. While one could argue that it may be
better suited for global optimization, where only a single solution is sought, this is not
the case either. Our results do not indicate any substantial improvement in terms of
best or average objective value of the population. It should be investigated if more
sophisticated approaches for managing the archive are necessary to obtain any benefit
or if this result is due to our way of measuring performance. However, note that in this
specific setup, all selection variants except SV5 and SV6 guarantee to retain the global
best solution in the population (see Sec. 3). So, it cannot be expected to find a better
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Figure 5: AHD indicator values for n = 2 in the optimization scenario.
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Figure 6: AHD indicator values for n = 20 in the optimization scenario.
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objective value in the archive than in the population.
Furthermore, only few neighbors should be considered for the distance computations.

If we maximize the distance to all neighbors, we simply maximize the spread, but not the
diversity of the population, because exterior points are preferred [43, 49]. This simply
means a selection pressure towards the corners of the search space. The approach may
still be useful for novelty search in a low dimensional, constrained space, but seems
inferior for multimodal optimization.

In future experiments, the influence of the optimization budget should be investi-
gated, because also the run length may influence the performance ranking. As none of
the regarded selection variants explicitly recognizes basins, it is unlikely (especially for
multi-objective variants; see [53]) that the indicator values develop monotonic over time.
While in our experiment we could have identified the point in time when the population
attains the best performance regarding some indicator, this information currently has no
practical relevance, as it is unavailable in real-world situations. We therefore tried to
establish a relatively fair comparison by only regarding small budgets.

5 Conclusion

A large amount of experimental data was obtained in this paper and investigated for
two different use cases: subset selection and selection during optimization. The former
moves on largely uncharted terrain as the problem of actually choosing a suitable subset
from the possibly very large result set is currently ignored very often. However, in a
real-world scenario, deploying thousands of solutions is not meaningful, as it would be
asked too much of a user to perform this selection manually. We provide hints on what
indicators and selection methods to use for this. More research on this shall follow. The
latter use case (selection during optimization) directly affects the structure of algorithms
for multimodal optimization.

The core result of this paper is that the most frequently used multiobjective selection
variants for multimodal optimization are not the best available, they can be improved
by employing nearest-better distances instead of nearest-neighbor distances. In all our
experiments, selection with nearest-better distances yielded the better performance and
has been shown to be relatively robust against changes in several other parameters. In
particular, it is a great advantage that the super-greedy, non-incremental approach with
quadratic run time in the number of solutions (see Sec. 3) can safely be used together
with them. Variants with nearest-neighbor distances require an incremental approach
with cubic run time to obtain a similar performance. Additionally, in contrast to current
practice only a low number of neighbors should be considered, while the criterion applied
to sort non-dominated fronts has surprisingly little influence on performance. Our results
of course do not rule out that some of the less competitive configurations yield a benefit
in different applications than MMO. Further experiments would be especially needed to
clarify how archives actually influence the optimization.

Of course, MMO algorithms cannot work by only doing selection. Research on available
and new variation operators is in order, and their performance will surely also influence
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the selection step. This is clearly outside of the focus of this work. However, we presume
that locally oriented adaptation of the variation, e. g., basin oriented step size adapta-
tion, or mating restrictions with respect to basin knowledge, would be advantageous.
Restricting mates to the nearest neighbors of individuals is already utilized by Qu et
al. [34] and Epitropakis et al. [16], and resembles a simple but effective variant of such
a mating restriction. Also hybridization with local search may be a practicable way to
improve the performance of multiobjective MMO algorithms.
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