
Faculty of Computer Science 
Algorithm Engineering (Ls11) 
44221 Dortmund / Germany 
http://ls11-www.cs.uni-dortmund.de/ 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Propagating Interaction Logic 

Toward Predictive Protein 
Hypernetworks  

 
 

Johannes Köster 
 
 
 
 

Algorithm Engineering Report 
TR11-4-002 

February 2011 
ISSN 1864-4503 



 



Diploma Thesis

Propagating Interaction Logic Toward
Predictive Protein Hypernetworks

Johannes Köster
August 27, 2010

Supervisors:
Prof. Dr. Sven Rahmann
(Technische Universität Dortmund)
Dr. Eli Zamir
(Max Planck Institute of Molecular
Physiology Dortmund)

Fakultät für Informatik
Algorithm Engineering (Ls11)

Technische Universität Dortmund
http://ls11-www.cs.uni-dortmund.de





Contents

1 Introduction 1

2 Mathematical Foundations 5
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Modal Logic 9
3.1 Syntax and Semantic . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The Modal Logic Tableau . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Protein Hypernetworks 23
4.1 Incorporating Interaction Logic . . . . . . . . . . . . . . . . . . . . . 24

4.2 Data Mining in Protein Hypernetworks . . . . . . . . . . . . . . . . 27

4.2.1 Perturbation Effects . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Minimal Network States . . . . . . . . . . . . . . . . . . . . . 29

5 Prediction of Protein Complexes 35
5.1 Measuring Prediction Quality . . . . . . . . . . . . . . . . . . . . . . 36

5.2 The LCM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Detecting local cliques . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Merging dense regions . . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Complex Prediction with Protein Hypernetworks . . . . . . . . . . . 42

5.3.1 Perform Perturbations . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Network Based Complex Prediction . . . . . . . . . . . . . . 42

5.3.3 Compute Minimal Network States . . . . . . . . . . . . . . . 43

5.3.4 Refine predicted complexes . . . . . . . . . . . . . . . . . . . 43

5.3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Protein Hypernetwork Analysis 53
6.1 Prediction of Master Switches . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Prediction of Functional Similarity . . . . . . . . . . . . . . . . . . . 57

7 Conclusion and Outlook 61

Further Informations 65

iii



Contents

Figures 69

Tables 71

Algorithms 73

Bibliography 75

Acknowledgements 77

Erklärung 79

iv



1 Introduction

Proteins are fundamental building blocks of cells, the smallest unit of life. Most of
the cellular functions are executed by proteins: among many other functions, they
form channels in the cell membrane to allow the passage of small molecules, act as
enzymes to promote chemical reactions and create or carry signals between adjacent
cells or different parts of a single cell.1

A protein consists of at least one chain of amino acids linked by covalent bonds. In
general a protein is restricted to certain three-dimensional conformations by non-
covalent bonds between parts of its chain (hydrogen bonds, electrostatic attractions
and van der Waals attractions) and hydrophobicity of parts of certain amino acids
(the property to be repelled by water molecules).

Figure 1.1: Binding of a protein to another molecule. A cavity in the proteins surface
allows the molecule to fit tightly so that a large number of non-covalent bonds can be
formed, providing a stable binding. Derived from Alberts et al. (2007).

The source of proteins’ power is their ability to bind other molecules. This happens
by non-covalent bonds between the surfaces. Since non-covalent bonds are much
weaker than covalent ones, several of them are needed to provide a stable binding.
Hence binding is only possible in an area of the protein surface the three dimensional
conformation of which fits closely to a part of the binding molecule (Figure 1.1). Such
an area is called binding domain or binding site. This kind of binding allows for a
very high specificity so that only a few or even only one type of molecule may be
able to bind to a certain domain. Of special interest in our case is the interaction
between two proteins, which is in most cases provided by this kind of binding. Since
the surface contour is essential for this, the binding between two proteins can be
influenced by their conformation. A change in conformation can induce a specific
surface contour – that may either allow or prevent binding. Furthermore the binding
by itself may induce conformational changes that have effects on other parts of the
protein. These effects are called allosteric. In the context of this thesis, we will
consider scaffold dependency as a special case of allosteric effects: An interaction

1This and the following paragraphs are based on Alberts et al. (2007)

1



1 Introduction

Figure 1.2: An important allosteric effect is a scaffold dependent interaction. The binding of
one protein (blue) changes the conformation of a second protein (green) so that the binding
of an additional protein (red) is possible.

between two proteins is scaffold dependent, if it depends on one of the proteins taking
part in a second interaction (Figure 1.2). Apart from allosteric effects, two proteins
may compete on the same binding domain of a third, thus mutually inhibiting their
binding (Figure 1.3). Both scaffold dependency and competition on the same binding
domain define logic relationships between interactions, which we call interaction
logic.

By interacting in the described way, proteins form large networks with emergent
system-level functions the execution of which is closely related to the propagation
of conformational changes along different pathways. Due to the large complexity,
abstraction is needed in order to capture the behaviour of such a network in a model.
In contrast to quantitative approaches, which are based on protein concentrations
and try to model individual chemical reactions based on the law of mass action
(Monod, Wyman, and Changeux, 1965), graph based abstractions are popular now.
This qualitative approach does not need detailed information about the chemical
reactions and protein concentrations, which is mostly not available at the moment.
Rather it argues about possible existences of proteins and interactions. However,
interaction logic is not considered here. Hence, predictions that are made with these
models suffer from inaccuracies. In a previous study (Jung et al., 2010), a first inclu-
sion of effects induced by competition on the same binding domain was provided. In
this thesis, the graph based protein network model is extended to higher dimensional
protein hypernetworks which allow flexible formulation of arbitrary logic constraints
on the existence of interactions and proteins. That is, they allow the formulation of
interaction logic including scaffold dependency and competition on the same binding
domain. On top of this model – using modal logic and corresponding tableau based

Figure 1.3: Competition of two proteins (blue, red) on the same binding domain of another
protein (green).

2



methods in combination with graph theoretic tools – algorithms for data mining and
analysis will be defined.

Biological analysis of protein networks often uses perturbations to determine the
structure and properties of protein networks. A perturbation is an experimental
intervention that changes the level or state of a protein or interaction. In this
context, we prescind from this and assume a perturbation to entirely remove a
protein or interaction. In general, a perturbation has side effects generated by the
described interaction logic, so that it may result in additional removals. Utilizing
the constraints of protein hypernetworks, it will be possible to predict such effects,
hence complementing experimental perturbations.

Proteins tend to form large complexes by interacting with each other. Using the
mechanism of conformation changes, these complexes perform impressive tasks, act-
ing like molecular machines. A prominent example are ribosomes which execute
protein synthesis (Alberts et al., 2007). The computational prediction of protein
complexes can guide experiments to discover new real protein complexes that may
give rise to a deeper understanding of the networks mechanisms. Based on graphs,
so far clustering methods like the Markov Cluster Algorithm (Brohee and Helden,
2006), as well as specialized approaches like MCODE (Bader and Hogue, 2003) or
LCMA (Li et al., 2005), were proposed for complex prediction. When used alone,
these methods suffer from being unaware of effects like scaffold dependency or mu-
tual exclusivenes of interactions. The latter were recently adressed by Jung et al.
(2010), combining networks of simultaneously possible protein interactions and con-
ventional complex prediction methods. In this thesis, a similarly combined approach
ensures that conventionally predicted complexes respect all constraints of a protein
hypernetwork. It will be shown that this improves the accuracy of protein complex
prediction.

Since the most important functions in protein networks are executed by protein
complexes, it can be assumed that a protein the perturbation of which has extensive
effects on the occuring complexes is important for the network. This thesis proposes
the master switch score which describes the functional importance of proteins and
interactions, based on the simulation of perturbation effects on protein complexes.

Lastly, using protein complex prediction, the simulation of perturbations, and the
master switch score, a method is provided to predict the functional similarity of
proteins or interactions.

Structure

This thesis first introduces into mathematical foundations needed later (Chapter 2),
followed by a chapter defining modal logic and the tableau algorithm (Chapter 3),
the main tools we use for the protein hypernetwork model. After that, the protein
hypernetwork model is defined and two methods for data mining the model are
shown (Chapter 4). Based on the protein hypernetwork model, Chapter 5 describes
the prediction of protein complexes, while Chapter 6 describes the prediction of
master switches and functional similarities.

3





2 Mathematical Foundations

Here mathematical tools that will be needed in this thesis are presented. A short
introduction into graph theory is followed by the definition of trees as a special case.
We use the abbreviation “iff ” for “if and only if ” (that is, equivalence between two
statements).

2.1 Graphs

Graphs are structures that are widely used throughout computer science and math-
ematics. A graph is a collection of nodes (also called vertices), which are connected
to each other by edges. We will use two types of graphs:

2.1 Definition (Directed Graph). A pair (V,E) is a directed graph, if V 6= ∅ is
a set of nodes and

E ⊆ V × V

is a set of edges. An edge (v, v) ∈ E with v ∈ V is called loop.

2.2 Definition (Undirected Graph). A pair (V,E) is an undirected graph if V 6=
∅ is a set of nodes and

E ⊆ {{v1, v2} | v1, v2 ∈ V }

is a set of edges. An edge {v, v} ∈ E with v ∈ V is called loop.

Obviously we can abandon our definition of undirected graphs by interpreting E of
a directed graph (V,E) as a relation between nodes and requiring symmetry, leading
to

∀(v1, v2) ∈ E : (v2, v1) ∈ E.

Thus we will use directed graphs in the following definitions.

2.3 Definition (Successor and Predecessor). Let (V,E) be a directed graph
and v ∈ V be a node. All nodes v′ ∈ V with (v, v′) ∈ E are called successors of v.
We denote

succ(V,E)(v) := {v′ ∈ V | (v, v′) ∈ E}

as the set of successors of v. Analogously we define a node v′ to be a predecessor of
v if (v′, v) ∈ E, and denote pred(V,E)(v) as the set of predecessors. In an undirected
graph, for each vertex v we call

n(V,E)(v) := succ(V,E)(v) = pred(V,E)(v)

the neighbourhood and each element of n(V,E)(v) a neighbour of v.

5



2 Mathematical Foundations

Based on this we can define the degree of a node, which describes its interconnection
to other nodes:

2.4 Definition (Degree). Let (V,E) be a graph and v ∈ V be a node. The in-
degree of the node is defined as

degin(V,E)(v) := |pred(V,E)(v)|

whereas the out-degree is analogously defined as

degout(V,E)(v) := |succ(V,E)(v)|.

If (V,E) is undirected, we call

deg(V,E)(v) := |succ(V,E)(v)| = |pred(V,E)(v)|

the degree of the node.

A path is a sequence of nodes that connects one node with another. If there exists
an edge between two nodes, it is the shortest path between them.

2.5 Definition (Path). Let (V,E) be a graph. A sequence of nodes

(v1, . . . , vn)

is called path if for all i ∈ {1, . . . , n− 1} there exists an edge (vi, vi + 1) ∈ E.

Using paths, we can asses the connectivity of a graph:

2.6 Definition (Connectivity). Let (V,E) be a graph. (V,E) is called connected
if there exists a path (v, . . . , v′) for all nodes v, v′ ∈ V . If (V,E) is not connected, it
is called disconnected. (V,E) is fully connected or a clique if for all nodes v, v′ ∈ V
there exist edges (v, v′), (v′, v) ∈ E.

A subset of nodes can be used to build an induced subgraph, which includes all edges
from its parent that connect any two nodes of the given subset.

2.7 Definition (Induced Subgraph). Let (V,E) be a graph. The induced sub-
graph for a set of nodes V ′ is defined as

S(V,E)(V
′) = (V ′, E′)

with E′ := {(v, v′) | (v, v′) ∈ E, v, v′ ∈ V ′}.

2.2 Trees

A tree can be seen as a special directed graph. Each tree has a node without any
predecessors, which is called root node. Nodes without successors are called leaves.
Each node in a tree may have only one predecessor.

6



2.2 Trees

2.8 Definition (Tree). A directed graph (V,E) is a tree iff there exists a node
r ∈ V so that

degin(V,E)(r) = 0

and for all nodes v ∈ V \ {r} holds that

degin(V,E)(v) = 1.

We denote
children(V,E)(v) := succ(V,E)(v)

and term each successor of v ∈ V as a child of v. The predecessor of a node is called
its parent and is denoted by

parent(V,E)(v) := pred(V,E)(v)

for v ∈ V . Additionally, the node

root((V,E)) := v ∈ V with degin(V,E)(v) = 0

is called the root of (V,E).

2.9 Definition (Ancestor). Let (V,E) be a tree. Let v, v′ ∈ V be two nodes. The
node v′ is called ancestor of v iff v′ is on the path between root(V,E) and v. We
denote

ancestors(V,E)(v) := {v′ ∈ V | v′ is ancestor of v}

as the set of ancestors of v.

7





3 Modal Logic

The basic tool we are using for this work is modal logic. It is an extension of propo-
sitional logic with additional operators. Modal logic provides high flexibility as one
can extend it toward various directions, for example Temporal Logic or Probabilistic
Logic (Chapter 7). For the purpose of this thesis, basic modal logic – from now on
referred as modal logic for simplicity – is sufficient.

3.1 Syntax and Semantic

The modal logic defined here is also referred in the literature as “modal logic K ”.
The following definitions are inspired from Doberkat (2009), as well as Kreuzer and
Kühling (2006).

3.1 Definition (Propositional Logic). Let P be a set of propositions. We denote
by Prop(P ) the set of all possible propositional logic formulae over the propositions
P . We define Prop(P ) as the smallest set of formulae for which

P ⊆ Prop(P ),

¬φ ∈ Prop(P ),

φ ∧ φ′ ∈ Prop(P ),

φ ∨ φ′ ∈ Prop(P ),

φ⇒ φ′ ∈ Prop(P )

for φ, φ′ ∈ Prop(P ).

Now propositional logic can be used to define modal logic as its superset.

3.2 Definition (Modal Logic). Let P be a set of propositions. We denote by
Mod(P ) the set of all possible modal logic formulae over the propositions P . We
define Mod(P ) as the smallest set of formulae with

Prop(P ) ⊆Mod(P ),

3φ ∈Mod(P ),

2φ ∈Mod(P )

for φ ∈Mod(P ).

It can be seen that modal logic is extending propositional logic by adding two op-
erators. The semantic of modal logic is determined by Kripke models. A Kripke
model provides a set of Kripke states in combination with two relations.

9



3 Modal Logic

3.3 Definition (Kripke Model). Given Mod(P ), a triple

(S,R,)

with a set of Kripke states S 6= ∅, a reachability relation between states R ⊆ S × S,
and a satisfiability relation ⊆ S×Mod(P ) is called Kripke model iff for each state
s ∈ S the following holds:

s  ¬φ iff s 1 φ, (3.1)

s  φ1 ∧ φ2 iff s  φ1 and s  φ2, (3.2)

s  φ1 ∨ φ2 iff s  φ1 or s  φ2, (3.3)

s  φ1 ⇒ φ2 iff s  ¬φ1 ∨ φ2, (3.4)

s  2φ iff ∀s′ ∈ S, (s, s′) ∈ R : s′  φ, (3.5)

s  3φ iff s 1 2¬φ. (3.6)

Further, the extension of a formula φ

JφK(S,R,) := {s ∈ S | s  φ}

is the set of states which satisfy the formula.
We say, a Kripke model (S,R,) satisfies a formula iff JφK(S,R,) 6= ∅.

Regarding the reachability relation R ⊆ S × S, if (s, s′) ∈ R, then state s′ can be
reached from state s. The satisfiability relation  relates each state s ∈ S with the
formulae it satisfies.

Rule (3.1) introduces a “closed world” assumption: If a state does not to satisfy a
formula, then its negation is assumed to be satisfied.

For a formula φ = φ1 ◦ φ2 or φ = ◦ φ1 with ◦ being one of the above defined operators
we call φ1 and φ2 subformulae of φ. The operator ¬ is called negation, a formula
φ1∧φ2 is called conjunction and φ1∨φ2 is called disjunction. The subformulae of the
latter are called disjuncts, whereas the subformulae of φ1 ∧ φ2 are called conjuncts.
The implication φ1 ⇒ φ2 is equivalent to ¬φ1 ∨ φ2. The operator 2 is called modal
operator. s  2φ means that the formula φ holds on every state s′ that is reachable
from state s ((s, s′) ∈ R). 3 is called dual modal operator. A closer look at the dual
modal operator reveals the following property:

3.4 Lemma (Dual modal operator). Let (S,R,) be a Kripke model. The state-
ment

s  3φ iff ∃s′ ∈ S, (s, s′) ∈ R : s′  φ

holds for all s ∈ S.

Proof. Assuming s  3φ we gain that s 1 2¬φ. This is equivalent to

∃s′ ∈ S, (s, s′) ∈ R : s′ 1 ¬φ.

Rule (3.1) leads to

∃s′ ∈ S, (s, s′) ∈ R : s′  φ.

10



3.1 Syntax and Semantic

For the opposite direction we assume that ∃s′ ∈ S, (s, s′) ∈ R : s′  φ holds. Then
we know that the statement

∀s′ ∈ S, (s, s′) ∈ R : s′  ¬φ

does not hold. Hence the state s does not satisfy the formula 2¬φ (s 1 2¬φ), and
from rule (3.6) follows s  3φ. �

Lemma 3.4 and rule (3.5) give the motivation for the naming and therefore the
interpretation of the two modal operators we will use from now on. The modal
operator 2 is called necessity operator, whereas the dual modal operator 3 is called
possibility operator.

For our further usage of the modal logic it will be useful to work with a normal-
ized type of formulae. This reduces the complexity of the used methods and data
structures.

3.5 Definition (Negation normal form). The map nn : Mod(P )→Mod(P )

nn(φ) =



nn(φ′) if φ = ¬¬φ′

nn(¬φ1) ∨ nn(¬φ2) if φ = ¬(φ1 ∧ φ2)

nn(¬φ1) ∧ nn(¬φ2) if φ = ¬(φ1 ∨ φ2)

nn(φ1) ∧ nn(φ2) if φ = φ1 ∧ φ2

nn(φ1) ∨ nn(φ2) if φ = φ1 ∨ φ2

nn(¬φ1) ∨ nn(φ2) if φ = φ1 ⇒ φ2

3nn(¬φ′) if φ = ¬2φ′

2nn(¬φ′) if φ = ¬3φ′

2nn(φ′) if φ = 2φ′

3nn(φ′) if φ = 3φ′

φ else .

translates an arbitrary modal logic formula into its negation normal form.

Negation normal form removes the implication (⇒) operator and moves all negations
directly in front of the propositions.1

3.6 Example (Negation normal form). A formula ¬2(A⇒ B) is first mapped
to 3¬(A⇒ B), then to 3¬(¬A∨B). Negation is moved into the disjunction leading
to 3(¬¬A∧¬B). Finally the mapping produces the simplified formula 3(A∧¬B).

Now we show that using negation normal form does not decrease the expressive
power of Mod(P ):

3.7 Lemma (Negation normal form). Let φ ∈ Mod(P ) be a modal logic for-
mula and (S,R,) be an arbitrary Kripke model. For each state s ∈ S it holds that
s  φ iff s  nn(φ).

1When using the tableau algorithm (Chapter 3.2), this prevents the need of two additional expan-
sion rules.

11



3 Modal Logic

Proof. Let p ∈ P be an arbitrary proposition. Assuming φ = p, we know nn(φ) = p,
and for φ = ¬p we know nn(φ) = φ, so the lemma is valid for φ = p and φ = ¬p.
Let (S,R,) be an arbitrary Kripke model and s ∈ S be an arbitrary state. Let
φ1, φ2,¬φ1,¬φ2 ∈Mod(P ) be formulae for which the lemma is valid.
Case 1. Assuming φ = φ1 ∧ φ2 we derive

s  φ iff s  φ1 ∧ φ2

iff s  nn(φ1) ∧ nn(φ2)

iff s  nn(φ).

An analogous argument can be applied for φ = φ1 ∨ φ2, φ = 2φ1 and φ = 3φ1.
Case 2. Assuming φ = ¬(φ1 ∧ φ2) we see that

s  φ iff s  ¬(φ1 ∧ φ2)

iff s 1 φ1 ∧ φ2

iff s 1 φ1 or s 1 φ2

iff s  ¬φ1 or s  ¬φ2

iff s  ¬φ1 ∨ ¬φ2

iff s  nn(¬φ1) ∨ nn(¬φ2)

iff s  nn(φ).

These arguments can be applied in an analogous manner to φ = ¬(φ1 ∨ φ2).
Case 3. Assuming φ = ¬2φ1 the connection between the two modal operators leads
to

s  φ iff s  ¬2φ1

iff s 1 2φ1

iff s  3¬φ1

iff s  3nn(¬φ1)

iff s  nn(φ),

and an analogous argument can be applied for φ = ¬3φ1. �

In order to work with modal logic formulae inside a software tool, they have to be
represented in an appropriate data structure. The general solution is using a formula
tree (Figure 3.1). The inner nodes of such a tree represent operators and may thus
be of the type ¬,∧,∨,2 or 3. Propositions occur as leaves. Inner nodes of the type
∧ and ∨ may have more than one child, whereas all other types are restricted to one
child. In the underlying formula the children of an inner node are connected by the
corresponding operator.

∧

A B

Figure 3.1: Example formula tree for A ∧B.

12



3.2 The Modal Logic Tableau

3.2 The Modal Logic Tableau

A method to find a satisfying Kripke model for a modal logic formula is the modal
logic tableau. The original purpose of tableau based methods is to prove the satisfi-
ability of a given formula. Tableau based methods aim to generate a deductive tree.
If successful, the method finds a possible model for a given formula, represented by
a path – in this chapter, each mentioned path is assumed to reach from the root of
the deductive tree to a leaf – without contradictions. If not, the formula is proven to
be not satisfiable. We restrict modal logic formulae to be in negation normal form
(Definition 3.5) since that is equivalent to general modal logic formula and reduces
the complexity of the implementation.

3.2.1 Idea

For a given formula φ the tableau algorithm tries to find possible Kripke models
(S,R,) that satisfy φ. The tableau is created by recursively breaking φ into sub-
formulae. It can be seen as a tree in which each node represents an assumption
that can be made due to assumptions which were made in an ancestral node. The
process of generating such an assumption is called expansion.

3.8 Definition (Assumption). Let φ be a modal logic formula. An assumption
can be of the type s  ψ for a subformula ψ of φ or a relation (s, s′) ∈ R meaning
that two states s, s′ ∈ S are assumed to be in relation R.

A path in the tree is thus a sequence of assumptions which may be valid at the same
time. Two assumptions can obviously contradict each other. This is called a clash.
We say that a path is open if it does not contain any clash. A path that contains a
clash is called closed. Hence an open path on which all nodes have been expanded,
thus no further assumptions are possible, can be interpreted as a satisfying Kripke
model for the formula φ. Closed paths then are obviously invalid models, even if
they are not yet fully expanded. Thus a path can be ignored once it is closed.

s0  2¬A

s0  3A ∨3B

s0  3A

(s0, s1) ∈ R

s1  A

s1  ¬A 

s0  3B

(s0, s2) ∈ R

s2  B

s2  ¬AX

Figure 3.2: Example tableau for (2¬A)∧ (3A∨3B). The left path marked by  is closed,
because it contains a clash between the assumptions s  ¬A and s  A. The right path
marked by X does not contain any clash, hence it is open.

13



3 Modal Logic

Assumption s  φ1∧φ2 s  2φ s  3φ

Expansion s  φ1

s  φ2

∀(s, s′) ∈ R :

s  φ

(s, s′) ∈ R

s  φ

∀s  2ψ ∈ ancestors(s  3φ) :

s′  ψ

Table 3.1: Deterministic expansion rules. In order to satisfy Rule (3.5) of Definition 3.3,
the third rule for expanding the assumption s  3φ creates a new Kripke state s′ and thus
needs to add s′  ψ to the open paths for all assumptions s  2ψ that were made before
on this path.

New assumptions are generated by applying expansion rules on nodes. When ap-
plying an expansion rule on a node v, the results of the expansion are added to
every open path containing node v. There exist two types of expansion rules: deter-
ministic (Table 3.1) and non-deterministic (Table 3.2). A deterministic expansion
leads to only one possible result. For example, when expanding 3A in Figure 3.2
we can assume that (s0, s1) ∈ R and s1  A. A non-deterministic expansion leads
to more than one possible result. In Figure 3.2, expanding s0  3A ∨ 3B means,
that s0  3A or s0  3B can be true. When building the tableau this means
that a deterministic expansion expands all paths it lies on by adding nodes. A non-
deterministic expansion splits each path into several, each of them ending with one
of the results as leaf. A tableau which does not contain any open paths nor any
unexpanded nodes proves the unsatisfiability of the formula it was generated from.
Accordingly a tableau with at least one open path on which all nodes are expanded,
is a proof of the satisfiability of the formula.

3.2.2 Optimization

The possible size of a tableau is exponentially big, and the computation time of
the method can be shown to be in the complexity class NEXPTIME (Li, 2008).

Assumption s  φ1 ∨ φ2

Expansion
s  φ1 s  φ2

Table 3.2: Non-deterministic expansion rule. Expansion does only make minimal assump-
tions necessary for satisfiability here. Thus it does for example neither assume s  ¬φ2 nor
s  φ2 in the left case. For a disjunction with n disjuncts, this ensures a search space with
a size linear in the number of disjunctions (n expansions) in contrast to 2n − 1 different
expansions.

14



3.2 The Modal Logic Tableau

This means, that the solution space, as well as the number of operations needed to
investigate a possible solution, may be exponentially big in the size of the input.
However the method can be optimized in order to show acceptable performance in
practice.

Backtracking

The relation between the satisfiability and the existence of an open, fully expanded
path, which was shown above, gives rise to an optimization approach. Since one
path is sufficient to show satisfiability, the tableau can stop after it has found the
first fully expanded path. Further, it can even work in a depth-first manner: When a
non-deterministic expansion rule is applied to a disjunction, only one of the disjuncts
is investigated. This means that the tableau method does not split paths any more
and only investigates one single path.

If this leads to a clash, the tableau needs to find another path. Therefore it has to
backtrack its decisions: A disjunction that has a not yet investigated disjunct has to
be found. From there, the tableau has to take a different path. Hence the misleading

1: s0  p ∨ q

2: s0  s ∨ t

3: s0  ¬p ∨ ¬s

4: s0  p [1]

5: s0  s [2]

6: s0  ¬p [3]  7: s0  ¬s [3,1]  

8: s0  t [2]

Figure 3.3: Backjumping example (Li, 2008). Dependency sets are denoted in brackets,
assumptions are numbered. The path between the assumptions 1 and 3 is resulting from
the expansion of a conjunction containing the formulae of the path as conjuncts. After that,
expansion of 1 causes 4 to be appended to the current leaf of the path (which is 3 at that
time). Expansion of 2 leads to appending assumption 5 to 4. Expansion of assumption 3
leads to assumption 6. This causes a clash with assumption 4. Backjumping to the first
assumption in the dependency set of 6 – which is 3 – causes the second disjunct of 3 to be
investigated. Therefore, assumption 7 is appended to the path. The dependency set of 7
not only contains its parent disjunct but the cause of the clash of its sibling disjunct (4). As
7 causes a clash again, the dependency sets of 7 and the clashing assumption 5 have to be
investigated: [3,1] and [2]. Since assumption 3 is fully explored and 4 is not a disjunction,
assumption 2 is investigated so that it leads to the addition of the node 8.
Let the dotted line between 2 and 3 represent additional disjunctions and the dotted line
below 5 represent their expansions. With chronological backtracking after the clash at 7,
each disjunction between 2 and 3 would be investigated until the true source of the problem
(2) is found.

15



3 Modal Logic

disjunct chosen so far is called blocked and another not yet blocked disjunct is chosen.
This backtracking procedure has to be repeated until a fully expanded path without
clashes is found.

In literature, several different backtracking mechanisms have been elaborated (Li,
2008). The naive approach is called chronological backtracking. The disjunctions are
investigated chronologically: Once a clash is found, a not blocked disjunct of the the
last possible disjunction will be investigated. This happens even if the expansion
does not have any influence on the clash.

Chronological backtracking obviously causes unnecessary overhead as it could inves-
tigate multiple paths that have the same clash. Backjumping tries to reduce this
unneeded effort by only investigating disjunctions that are a direct or indirect cause
of a clash. Therefore, a dependency set is recorded for each assumption which in-
cludes its ancestral disjunctions in the formula tree. Additionally, if a disjunct is
selected because of a previous clash, the dependency set contains the assumption
which was responsible for the clash. Figure 3.3 shows an example.

Dynamic backtracking (Li, 2008) is an alternative approach. It uses elimination
explanations to record the reasons for a disjunct to be misleading. If a disjunct
ψ is decided to be misleading, all disjunctions which are ancestors of the clashed
subformulae inside the formula tree (except it’s own disjunction) are recorded as
its elimination explanation E(ψ). When choosing another disjunct, all disjuncts

1: s0  p ∨ q

2: s0  s ∨ t

3: s0  ¬p ∨ ¬s

4: s0  p

5: s0  s {3, 1}

6: s0  ¬p {1}  7: s0  ¬s  

8: s0  t

Figure 3.4: Dynamic backtracking example (Elimination explanations are denoted in
braces, assumptions are numbered). Expansion of assumption 3 leads to assumption 6.
This causes a clash with assumption 4. Dynamic backtracking reveals that disjunction 3
has another disjunct which is not blocked. Thus, all assumptions that were made because
of 6 are undone and 3 is expanded to 7. This produces a clash again between 7 and 5.
This time, there is no not blocked disjunct left in 3 so that the next parent disjunction of
the clashed formulae is investigated: Disjunction 2 has a disjunct that is not blocked. The
current active disjunct of 2 and everything resulting from it is removed from the active path
and 2 is expanded to 8. Assumption 7 now no longer produces a clash.
Consider the dotted lines between 2 and 3 as additional assumptions and the dotted lines
under 5 as their expansions. As we did not remove the full path under 5, the work on these
assumptions has not to be done twice.

16



3.2 The Modal Logic Tableau

that were blocked before become unblocked if their elimination explanation contains
the disjunction of ψ. In other words, if the reason for the decision that a disjunct
ρ is misleading turns out to be misleading itself, then ρ is no longer assumed to
be misleading. This mechanism gives rise to the key difference between dynamic
backtracking and backjumping: Since it provides the possibility to undo previous
blocks there is no need to undo all subsequent assumptions if it selects another
disjunct. Only assumptions that are derived from the misleading disjunct have to
be removed from the path. Thus, in constrast to backjumping, dynamic backtracking
does not need to repeat work that was not influenced by a clash.

Li (2008) shows that dynamic backtracking is, compared to the other approaches, a
fast method that ensures high efficiency even for pathologically structured formulae.
A detailed comparison between the different approaches can be found there.

3.2.3 Implementation

The implementation uses a formula tree as described above. A formula is represented
by a pointer to a node of the tree. The algorithms make use of the following data
structures and functions (Li, 2008):

(s, φ) A labelled formula. For s ∈ S, (s, φ) ∈ P means that
s  φ is assumed on the current path P .

P A sequence of labelled formulae. Represents the cur-
rently investigated path.

unknown/active/blocked Each labelled formula has a state (initially unknown).
A formula is set to active if it is in the current path. It
is set to blocked if it caused a contradiction.

expanded Each labelled formula is flagged expanded when an ex-
pansion rule has been applied to that formula.

Unxepanded(P ) A function that returns a labelled formula (s, φ) ∈ P
which is not flagged as expanded. The selection can be
based on various heuristics. Returns null if all formulae
are expanded.

D A sequence of labelled disjunctive formulae. It contains
all disjunctions on the current path which have been
expanded.

S A set of states. Represents the set of states of the Kripke
model.

R A set of pairs (s, s′) with s, s′ ∈ S. This represents the
reachability relation R of the Kripke model.

SuccR(s) A function that returns a set of states,

SuccR(s) = {s′ | (s, s′) ∈ R}.

17



3 Modal Logic

Boxs A set of formulae. For s ∈ S

Boxs = {φ | (s,2φ) ∈ P}

gives all formulae φ which necessarily have to be true in
states reachable from s.

Dias A labelled formula 3φ. The expansion of 3φ led directly
to the generation of state s ∈ S.

Disjs(φ) A function that returns all disjunctions that are ances-
tors of φ in the formula tree.

Clashes(P ) A function that returns a set of labelled formulae:

Clashes(P ) = {(s, φ) | (s, φ), (s,¬φ) ∈ P}.

E(φ) A set of disjunctive formulae. The active formula of
each disjunction in here is a cause for φ to be blocked,
respectively clashing.

The implemented algorithm (Algorithm 3.1) subsequently expands formulae on the
current path as long as no clash is detected. The currently investigated path is
recorded in the sequence P . If no clashes are found on the current path, an unex-
panded labelled formula is selected and the corresponding expansion rule (Algorithm
3.2) is applied.

If the current path has no unexpanded formula, it represents a satisfying Kripke
model. The formula is therefore satisfiable. If a clash is detected, the method tries
to “backtrack” the decisions (Algorithm 3.3). This is implemented using dynamic
backtracking (Section 3.2.2). All parent disjunctions of the clashed formulae are hold

Input: formula φ
Output: satisfiability of φ

1: create state s and set S := {s}
2: P := {(s, φ)}
3: D := ∅
4: while Clashes(P ) 6= ∅ or Unexpanded(P ) 6= null do
5: if Clashes(P ) = ∅ then
6: (s, φ) := Unexpanded(P )
7: expand(s, φ)
8: set (s, φ) to be expanded
9: else

10: if not backtrack(Clashes(P )) then
11: return “unsatisfiable”
12: end if
13: end if
14: end while
15: return “satisfiable”

Algorithm 3.1: The modal logic tableau (Li, 2008).

18



3.2 The Modal Logic Tableau

Input: labelled conjunction (s, φ)
1: for all conjuncts ψ of φ do
2: P := P ∪ {(s, ψ)}
3: set (s, ψ) to be active
4: end for

Input: labelled disjunction (s, φ)
1: ψ := an unknown disjunct of φ
2: P := P ∪ {(s, ψ)}
3: D := D ∪ {(s, ψ)}
4: set (s, ψ) to be active

Input: labelled possibility (s,3ψ)
1: create state s′ and set S := S ∪ {s′} and R := R ∪ (s, s′)
2: Dias := (s,3ψ)
3: P := P ∪ {(s′, ψ)}
4: set (s′, ψ) to be active
5: for all ρ ∈ Boxs do
6: P := P ∪ {(s′, ρ)}
7: end for

Input: labelled necessity (s,2ψ)
1: for all s′ ∈ SuccR(s) do
2: P := P ∪ {(s′, ψ)}
3: set (s′, ψ) to be active
4: end for
5: Boxs := Boxs ∪ ψ

Algorithm 3.2: The modal logic tableau (formula expansion) (Li, 2008).

in the set T . We iterate over T in reverse order of their apperance in the current
path.

If a disjunction ψ ∈ T has an unknown disjunct (one that is not expanded on
the current path nor blocked because it would cause another clash) we perform
backtracking on this disjunction. If not, we extend the search space for backtracking
points by including all elimination explanations of the disjuncts of ψ in the set T
and including all parent disjunctions of ψ. Further, we add the parent disjunctions
of the formula that caused the current state s to appear.

Performing backtracking on a disjunction ψ works as follows: The elimination ex-
planation of the active disjunct is set to contain T without the disjunction ψ since
it is the direct parent of the disjunct and cannot be a contradiction. The disjunct
is flagged as blocked, and all disjuncts that were blocked before because of the dis-
junction ψ are flagged unknown again since the next selected disjunct of ψ probably
is not a contradiction to these any more. We remove everything that results from
the newly blocked disjunct and expand ψ again (this time skipping the blocked
disjunct). If backtracking is not successful, a clash cannot be avoided. Hence all
paths end in a clash, there may not be a satisfying Kripke model and the formula is
unsatisfiable.

19



3 Modal Logic

Input: set of clashing formulae, called clashes
Output: success of backtracking

1: T := {parentDisj(φ) | (s, φ) ∈ clashes}
2: for (s, ψ) ∈ D in reverse order do
3: if ψ ∈ T then
4: if ψ has unknown disjuncts then
5: (s, φ) := active disjunct of ψ
6: E(φ) := T \ {ψ}
7: set (s, φ) to be blocked
8: for all (s, γ) with ψ ∈ E(γ) do
9: set (s, γ) to be unknown

10: E(γ) := ∅
11: end for
12: remove (s, φ) and every labelled formula, state and relation resulting from

(s, φ) from P,D,Dia,Box, S,R.
13: expand(s, ψ)
14: return true
15: end if
16: for all ρ such that ρ is a disjunct of ψ do
17: T := T ∪ E(ρ)
18: end for
19: T := T ∪Disjs(ψ) ∪Disjs(Dias)
20: T := T \ {ψ}
21: end if
22: end for
23: return false

Algorithm 3.3: The modal logic tableau (dynamic backtracking) (Li, 2008).

Finding Kripke models

In this thesis, the tableau algorithm will be used to find Kripke models for a formula.
It will be seen that for this it is important to be sure that for each disjunction the
leftmost disjunct that does not lead to a clash, is expanded:

3.9 Definition (Strictly Left Expanding Tableau). A tableau algorithm is cal-
led strictly left expanding if it ensures, that for all disjunctions the leftmost not
blocked disjunct is expanded.

To some extend the implementation of the tableau algorithm mentioned above al-
ready shows the desired behaviour. For a formula

α ∨ β (3.7)

in negation normal form, the tableau first tries to expand α, and only if that fails
due to a clash, dynamic backtracking leads to the expansion of β and blocks the
disjunct α. This happens because the tableau algorithm always tries to expand the
leftmost disjunct first. However in the lines 8 to 11 of the dynamic backtracking

20



3.2 The Modal Logic Tableau

1: for all (s, γ) with ψ ∈ E(γ) do
2: set (s, γ) to be unknown
3: E(γ) := ∅
4: (s, χ) := parent disjunction of γ
5: (s, ξ) := active disjunct of (s, χ)
6: remove (s, ξ) and every labelled formula, state and relation resulting from

(s, ξ) from P,D,Dia,Box, S,R.
7: expand(s, χ)
8: end for

Algorithm 3.4: The modal logic tableau (modification of dynamic backtracking) These
lines replace the lines 8 to 11 of the dynamic backtracking algorithm (Algorithm 3.3). The
changed behaviour ensures that for each disjunction the leftmost possible disjunct is ex-
panded.

algorithm (Algorithm 3.3), a blocked disjunct γ is flagged as unknown if its elim-
ination explanation contains the currently backtracked disjunction ψ. For above
formula (3.7) consider the situation that the disjunct α is blocked, and β is ex-
panded. If another backtracking process leads to α being flagged as unknown, the
path still contains an expanded β, which is not the leftmost possible disjunct of
formula (3.7).

In fact, the above behaviour illustrates the strength of dynamic backtracking to
do only necessary work. We will however provide a way to ensure a strictly left
expanding tableau without the need to abandon dynamic backtracking.

Algorithm 3.4 is a replacement for the lines 8 to 11 of the dynamic backtracking
algorithm (Algorithm 3.3). It provides a way to ensure the tableau algorithm to
be stricly left expanding. Each disjunct γ that was blocked due to the currently
backtracked disjunction ψ is flagged as unknown and its elimination explanation
is cleared. Then the currently active and expanded disjunct ξ of the disjunction
χ of γ is removed from all data structures together with all resulting formulae.
Afterwards the disjunction χ is expanded again. As normal expansion of disjunctions
was already shown to behave in the way that the leftmost not blocked disjunct is
selected, this ensures the desired behaviour.

21





4 Protein Hypernetworks

This chapter will describe an approach for incorporating interaction logic into the
description of protein networks. In the literature it is common practice to model
protein networks as graphs (Chapter 2.1). They consist of proteins, and binary
interactions between them.

4.1 Definition (Protein Network). An undirected graph (P, I) with a vertex p ∈
P for each protein and an undirected edge {p1, p2} ∈ I for each possible interaction
is a protein network.

Obviously this structure is an abstraction from substance concentration and even
individual protein instances. If it contains a node representing a particular protein,
one can only say that the protein exists at some time point somewhere in the cell,
no assumption can be made on the amount or even different particular instances
of the protein. An interaction between two proteins in the graph only gives the
information that there might be two instances of the proteins in reality, which are
interacting in the described way at some point in time at a specific location in the
cell.

In the literature, structures of these graphs have been mapped to biological mean-
ingful properties: Dense regions are considered to be protein complexes (Chapter 5).
Overrepresented patterns, in other words small subgraphs, are investigated as net-
work motifs in order to find functional properties of the network (for example by
Milo et al. (2002)).

Here, a fundamental problem occurs because the information gained by these tradi-
tional analyses of protein networks cannot take the dynamics of interactions – the
interaction logic (Chapter 1) – into account. This leads to incomplete and prob-
ably wrong predictions. Two proteins can compete on the same binding domain
(Figure 1.3) of a third protein, so that the two interactions cannot appear at the
same time because they are mutually inhibiting each other. Further, as a special
case of allosteric effects, an interaction may depend on a certain scaffold of interact-
ing proteins to be available (scaffold dependency, Figure 1.2). Protein complexes,
for example, are assumed to consist of proteins that are interacting at the same
time and place (Spirin and Mirny, 2003), thus they may not contain mutual exclu-
sive interactions. Jung et al. (2010) show that accounting knowledge about mutual
exclusive interactions improves the computational prediction of protein complexes.
Our protein hypernetwork approach is an extension of the above protein network
model by arbitrary propositional logic constraints on the existence of proteins and
interactions. In this chapter, it will be shown that interaction logic can be captured
by this. The approach gives rise to improvements in traditional analysis of protein
networks as well as allowing new methods of analysis. Possible usages are shown in
Chapter 6.

23



4 Protein Hypernetworks

Sometimes there are several interactions between two proteins, which can be dis-
tinguished by different used binding sites. Therefore, a finer grained model seems
appropriate. This can be achieved by introducing a variant of the protein network,
which considers interactions between binding domains of proteins.

4.2 Definition (Protein Domain Network). A pair (P, I) of proteins p ∈ P and
domain interactions {(p1, d1), (p2, d2)} ∈ I is a protein domain network. A protein
domain can be an arbitrary identifier or a wildcard “?”, indicating that no domain
can be specified. For each protein domain network (P, I) there exists a protein
network (P, I ′) with I ′ := {{p1, p2} | {(p1, d1), (p2, d2)} ∈ I}.

A protein domain network is not a graph. Hence, the mentioned translation to a
protein network, which is an undirected graph, will be necessary whenever a graph
based analysis is intended.

4.1 Incorporating Interaction Logic

Since we want to combine a protein network with logical information, for both of
its entities – proteins and interactions – a logical representation has to be found. A
constraint will be modelled as a logic formula of interactions or proteins. Thus a
constraint can be seen as a third type of entity, which expands the two dimensions of
the protein network, turning it into a protein hypernetwork. The logic of choice will
be modal logic (Chapter 3). Although we will not always use the full expressional
power – the modal operators – in our constructs, modal operators cannot be avoided
completely.

On the one hand, as the system should be able to distinguish between interactions
on the level of protein domains, we use protein domain interactions i ∈ I as atomic
units. On the other hand, proteins p ∈ P will be used as we need to have a single
representation for each. Thus, the atomic units are represented as logic propositions
P ∪ I. Considering a Kripke model (S,R,) for an arbitrary modal logic formula
φ ∈Mod, we can now provide an interpretation:

4.3 Definition (Proteins and Interactions). Let (S,R,) be a Kripke model
for a modal logic formula φ ∈Mod(P ∪ I). A protein p ∈ P is said to be possible in
a Kripke state s ∈ S iff

s  p.

An interaction i ∈ I is said to be possible in a Kripke state s ∈ S iff

s  i.

All proteins and interactions satisfied by the Kripke state are assumed to be possible
simultaneously.

A Kripke state represents a situation that can occur in the cell at some location and
some point in time. All proteins and interactions satisfied by the Kripke state thus
may possibly appear at that location and time. Hence they are said to be possible
simultaneously.

24



4.1 Incorporating Interaction Logic

{A,B} {C,B} {A,B} ⇒ {C,B} Protein network

0 0 1
A

B C

0 1 1
A

B C

1 0 0
A

B C

1 1 1
A

B C

Table 4.1: Truth table for a constraint modelling scaffold dependency. Interaction between
protein A and B shall be only possible if protein C interacts with B. Each row of the truth
table for the corresponding constraint {A,B} ⇒ {C,B} represents either a satisfying – if the
entry for the constraint is 1 – or a not satisfying Kripke state. Appended to the truth table
is the representation as a protein network. The protein network that violates the constraint
is crossed out.

This makes the goal of our modelling obvious: All formulae describing (a part of)
the protein hypernetwork have to be designed in a way that ensures a satisfying so-
lution (the states of a Kripke model) to represent a combination of interactions and
proteins, which is assumed to be possibly appearing simultaneously in reality. Hav-
ing that in mind, we provide the definition of a constraint and reveal its properties.

4.4 Definition (Constraint). A constraint is a logic formula of the form

q ⇒ ψ

with q ∈ P ∪ I and ψ ∈ Prop(P ∪ I). With C(P ∪ I) ⊆ Prop(P ∪ I) we denote the
set of all possible constraints. Further we call a constraint q ⇒ ψ active in a Kripke
state s iff s  (q ⇒ ψ), s  q and s  ψ.

We want constraints to capture the interaction logic and thus restrict the simulta-
neous possibility of proteins and interactions. However, since arbitrary implications
are allowed and not only interactions but also proteins may be constrained, we are
in theory not limited to the description of interaction logic. Accordingly, proteins
and interactions are treated the same in the following. Formulae describing the
hypernetwork will use a conjunction of the constraints to ensure that assumptions
about simultaneous possibility respect the interaction logic.

25



4 Protein Hypernetworks

{A,B} {C,B} ({A,B} ⇒ ¬{C,B}) ∧ ({C,B} ⇒ ¬{A,B}) Protein network

0 0 1
A

B C

0 1 1
A

B C

1 0 1
A

B C

1 1 0
A

B C

Table 4.2: Truth table for constraints modelling competition on domain. The two interac-
tions are mutually exclusive. Each row of the truth table for the conjunction of constraints
({A,B} ⇒ ¬{C,B}) ∧ ({C,B} ⇒ ¬{A,B}) represents either a satisfying – if the entry for
the conjunction is 1 – or a not satisfying Kripke state. Appended to the truth table is the
representation as a protein network. The protein network that violates the constraint is
crossed out.

Taking a deeper look at a constraint q ⇒ ψ uncovers that it restricts the satisfiability
of q by the satisfiability of ψ. In other words: if q is satisfied in a Kripke state, then
the same has to apply for ψ. Equivalently the contraposition has to hold for a
satisfying state: If ψ is not satisfied, then q may not either. From Definition 3.3
we gain the insight that q being not satisfied in a Kripke state puts no limitations
on the satisfiability of ψ. The following two examples show that this behaviour is
desired. For better readability we denote an interaction {(p, ?), (p′, ?)} as {p, p′}.

4.5 Example (Constraint for scaffold dependency). Consider a protein net-
work (P, I) with P = {A,B,C} and I = {{A,B}, {C,B}}. Assume that the inter-
action between protein A and B depends on the existence of the interaction between
C and B (e.g. the binding of C is introducing a conformational change to protein
B (Figure 1.2) that enables a binding domain for protein A). This behaviour can
be reflected by the constraint

{A,B} ⇒ {C,B}.

Satisfying Kripke states for this formula can be directly translated to situations,
which are assumed to appear in reality: On the one hand, if protein A binds to B,
then there has to be an interaction between C and B at the same time. On the
other hand, if C does not bind to B, then A cannot interact with B. Table 4.1
shows all Kripke states for this constraint in a truth table. It can be seen that every
Kripke state except the third one satisfies the constraint. The representation of

26



4.2 Data Mining in Protein Hypernetworks

the third state as a protein network accordingly shows a situation that violates the
scaffold dependency: the interaction {A,B} is assumed to be possible alone. Each
Kripke state that satisfies a formula which contains the above constraint describes
a situation that does not violate this scaffold dependency.

4.6 Example (Constraints for competition on domain). Consider a protein
network (P, I) with P = {A,B,C} and I = {{A,B}, {C,B}}. This time we assume
that both proteins A and C are competing on the same binding domain of protein
B (Figure 1.3). Thus the two interactions of this network are mutually exclusive.
This can be achieved by the conjunction of two constraints:

({A,B} ⇒ ¬{C,B}) ∧ ({C,B} ⇒ ¬{A,B})

Again, the satisfying Kripke states for this formula reflect the desired behaviour
(Table 4.2): the two interactions cannot appear at the same time, but any other
combination – including no interaction at all – is allowed. The latter is the reason
why one cannot simply use equivalence here:

{A,B} ⇔ ¬{C,B}

shows the same properties, except that an absence of both interactions would lead
to an unsatisfied constraint, which is certainly not desired.

Now a protein hypernetwork can be defined as a combination of proteins, domain in-
teractions and a set of constraints. In order to ensure consistency among interactions
and their proteins, we force a default constraint for each interaction.

4.7 Definition (Protein hypernetwork). Let P be a set of proteins, and I be a
set of domain interactions. A triple

(P, I, C)

with a set of constraints C ⊆ C(P ∪ I) is called protein hypernetwork. Additionally
C has to contain a set D(C) with a default constraint i⇒ p1∧p2 for each interaction
i = {(p1, d1), (p2, d2)} ∈ I.

In the following we assume that the constraints C of a protein hypernetwork do not
contradict each other, so that q ∧

∧
c∈C c has to be satisfiable for all q ∈ P ∪ I.

4.2 Data Mining in Protein Hypernetworks

One can think of many ways of information retrieval out of a protein hypernetwork.
Presented here are methods based on the modal logic tableau, which follow a simple
recipe:

1. Construct a (modal) logic formula, using the constraints.

2. Use the tableau algorithm (Chapter 3.2) to find a satisfying Kripke model.

3. Post process the Kripke model in order to retrieve the desired information.

27



4 Protein Hypernetworks

Based on this recipe, we now present an approach to calculate perturbation effects.
Later, minimal network states are introduced, which represent for an interaction all
proteins and interactions that need to be simultaneously possible and those that are
not possible simultaneously.

4.2.1 Perturbation Effects

For the prediction of perturbation effects (Chapter 1), we use all three structures
of the protein hypernetwork to define a logic formula, which shows the wanted be-
haviour. We manipulate that formula by adding additional subformulae which model
a perturbation. Retrieval of a satisfying Kripke model by the tableau algorithm will
provide the information about the effects of perturbation. In our context, they can
be summarized by directly and indirectly perturbed proteins or interactions. A di-
rectly perturbed protein or interaction is the equivalent of experimentally removing
the protein in the real network. An indirectly perturbed protein or interaction dis-
appears because of logic constraints propagating the effect of a perturbation. For
example, an interaction {A,B} can be scaffold dependent on a perturbed interaction
{C,B} (Example 4.5). Accordingly, both interactions are impossible to appear in
the network, while {C,B} is directly and {A,B} is indirectly perturbed.

4.8 Definition (Perturbation formula). Let (P, I, C) be a protein hypernetwork.
The perturbation formula is given by

P(P,I,C) :=
∧

q∈P∪I

3

q ∧ ∧
c∈C(q)

c

 ∨2¬q


with C(q) := {c ∈ C | c = (q ⇒ ψ)}.

For each interaction or protein q the first disjunct 3(q ∧
∧
c∈C(q) c) models the sit-

uation that – if all of its constraints are satisfiable – there exists a Kripke state in
which q is possible. The second disjunct 2¬q describes that no such state exists.
Obviously a constraint for q can enforce an interaction or protein r to be negated.
Due to the possibility operator 3 this happens in an isolated Kripke state and has
no effect on the general possibility of r. That is, there cannot appear any conflict
between the conjuncts for different proteins or interactions of the perturbation for-
mula. In contrast to the first disjunct, the satisfaction of the second disjunct 2¬q
has global a effect and propagates the impossibility of interaction q to all Kripke
states. The usage of C(q) instead of C in conjunction with q speeds up the com-
putation with the tableau algorithm without changing the solution. This is because
effects of other constraints (q′ ⇒ ψ) ∈ C \ C(q) are propagated by the satisfaction
of the corresponding second disjunct 2¬q′.

The perturbation formula is satisfiable since for each interaction or protein either
the first or the second disjunct is satisfiable. If the tableau algorithm is applied
onto this formula, for each interaction or protein the first disjunct will be tried to be
satisfied. If the first disjunct is unsatisfiable, the second disjunct will be expanded.

28



4.2 Data Mining in Protein Hypernetworks

This reflects that an interaction is assumed to be impossible iff the requirements for
it to be possible are not met – in other words: if its constraints are not satisfiable.

Biologically, the formula describes that an interaction or protein is either possible
to appear at some point in time somewhere in the cell (accordingly a Kripke state
satisfying it has to exist), or cannot appear at all. The possiblity to appear at some
point is linked to the satisfiability of the constraints, hence may not violate the
interaction logic.

Using the perturbation formula, a perturbation can now be simulated by adding an
additional subformula.

4.9 Theorem (Perturbation). Let (P, I, C) be a protein hypernetwork. Consider
(S,R,) to be a satisfying Kripke model derived from the application of the tableau
algorithm onto

(
∧

q∈P↓∪I↓

2¬q) ∧ P(P,I,C).

Then the set of all proteins that are not directly or indirectly perturbed after the
perturbation of proteins P↓ ⊆ P and interactions I↓ ⊆ I is

Q := {q ∈ P ∪ I | ∃s ∈ S : s  q}.

Proof. The conjunctive formula does not contain any non-modal proposition. Ac-
cordingly the first state s0 ∈ S produced by the tableau algorithm does not satisfy
any proposition and can be ignored. For each other state s ∈ S \ {s0}, it holds that
(s0, s) ∈ R giving s0 the role of an empty base state.
We show that the set Q of not perturbed proteins and interactions does not contain
any directly or indirectly perturbed interaction or protein. Assume a protein or
interaction q ∈ P ∪ I to be perturbed. If q ∈ P↓ ∪ I↓, then the conjunction of 2¬q
ensures that there is no state s ∈ S that satisfies q (∀s ∈ S : s 1 q). If q is indirectly
perturbed (q ∈ (P ∪ I) \ (P↓ ∪ I↓)), then the perturbation of q has to depend on a
directly or indirectly perturbed protein or interaction q′ ∈ P ∪ I. Thus there has to
exist a constraint (q ⇒ φ) ∈ C(q) which is not satisfiable in conjunction with 2¬q′.
The unsatisfiable constraint turns the first disjunct of 3(q ∧

∧
c∈C(q) c) ∨2¬q to be

unsatisfiable. Accordingly the tableau algorithm has to choose the second disjunct
2¬q so that there is no state s ∈ S satisfying q and thus q is not contained in the
set.
Next we show that the set contains all interactions and proteins that are not di-
rectly or indirectly perturbed. Assume a protein or interaction q ∈ P ∪ I to be
not perturbed. Then q /∈ P↓ ∪ I↓, so that there is no conjunct 2¬q in the for-
mula. As q is assumed to be not perturbed, all of its constraints c ∈ C(q) have to
be satisfiable in conjunction with q. Thus the tableau chooses the first disjunct of
3(q ∧

∧
c∈C(q) c) ∨2¬q and creates a Kripke state sq ∈ S with sq  q in particular.

Hence q is contained in the set. �

4.2.2 Minimal Network States

Biologically, logic constraints may restrict the possibility of an interaction by im-
posing dependencies on proteins or interactions. For an interaction to be possible,

29



4 Protein Hypernetworks

Input: a modal logic formula
(∧

q∈P↓∪I↓ ¬q
)
∧M(P,I,C)(i)

Output: a set K of satisfying Kripke models
1: K := ∅
2: put ∅ on the stack
3: while stack is not empty do
4: take set of blocked formulae B from stack
5: calculate tableau (strictly left expanding) assuming each labelled formula

(s, ψ) with ψ ∈ B to be blocked
6: let k := ({s}, R,) be the Kripke model derived from the tableau
7: if k is satisfying then
8: K := K ∪ {k}
9: for all active disjuncts s  ψj with s 

∨
k∈{1,...,n}

ψk and j < n do

10: B′ := B ∪ {ψi}
11: put B′ on the stack
12: end for
13: end if
14: end while

Algorithm 4.1: Algorithm to find all reasonable satisfying Kripke models for a minimal
network state formula.

it may be necessary that proteins or other interactions are possible simultaneously.
Further, other proteins or interactions may become impossible. This information
will be captured in minimal network states. Later, minimal network states can be
used to derive whether two individual interactions are possible simultaneously, or
even to generate subnetworks of a protein network that are possible simultaneously
(Chapter 6).

Using above recipe again, minimal network states will be derived from Kripke models
satisfying a minimal network state formula in conjunction with a perturbation term.
The perturbation term is necessary because a perturbation may affect the minimal
network state. When no perturbations are applied, the term will be empty.

4.10 Definition (Minimal network state formula). Let (P, I, C) be a protein
hypernetwork. For an interaction i ∈ I the logic formula

M(P,I,C)(i) := i ∧
∧
c∈C

c

is called minimal network state formula.

The conjunction of M(P,I,C)(i) with a perturbation term of all perturbed proteins
P↓ ⊆ P and interactions I↓ ⊆ I ∧

q∈P↓∪I↓

¬q

 ∧M(P,I,C)(i)

enables us to calculate minimal network states. The formula shows the following
behaviour when applying the tableau algorithm: For constraints of the form i⇒ φ,

30



4.2 Data Mining in Protein Hypernetworks

the formula φ ∈ Prop(P ∪I) is expanded. This is obviously correct, because all these
constraints contain information about the state of the network when i is existing.
It can lead to additionally satisfied propositions which enforces the expansion of
further constraints. However, constraints with disjunctions∨

k∈{1,...,n}

ψk

as subformulae can produce situations in which a formula M(P,I,C)(i) has several
reasonable satisfying Kripke models. For example, a Kripke model with s  ψ1

can be reasonable as well as one with s  ψ2. Therefore, we guide the tableau to
each of these Kripke models by subsequent blocking of these disjuncts (Algorithm
4.1). Further we need to use the strictly left expanding variant of the tableau here
(Definition 3.9). Now a minimal network state for an interaction can be defined. We
assume that an interaction for which we investigate a minimal network state is not
perturbed in any way (neither directly nor indirectly due to other perturbations).

4.11 Definition (Minimal Network State). Consider a protein hypernetwork
(P, I, C) with an interaction i ∈ I. Let ({s}, R,) be a satisfying Kripke model
derived from the application of Algorithm 4.1 onto ∧

q∈P↓∪I↓

¬q

 ∧M(P,I,C)(i)

with perturbed proteins P↓ ⊆ P and interactions I↓ ⊆ I \ {i}. Then the set of
necessarily possible proteins or interactions is denoted as

Nec := {i} ∪ {q | q ∈ P ∪ I, s  q, q subformula of an active c ∈ C},

whereas the set of impossible proteins or interactions is denoted as

Imp := {q | q ∈ P ∪ I, s  ¬q,¬q subformula of an active c ∈ C}.

The pair (Nec, Imp) is called minimal network state for interaction i.

Minimal network states are a condensed version of the valuable information for the
possiblity of an interaction contained in the Kripke model. Since Algorithm 4.1 may
lead to several Kripke models, there may be several minimal network states for one
interaction. An example illustrates why it is reasonable to include only propositions
or negated propositions that are subformulae of the right part of active constraints
into Nec and Imp:

4.12 Example. Assume a protein hypernetwork with proteins P = {A,B,C,D},
interactions I = {{A,B}, {A,C}, {C,B}, {C,D}} and constraints C = {{A,B} ⇒
{C,B}, {A,C} ⇒ ¬{C,D}, {C,D} ⇒ ¬{A,C}}. In other words, the interaction
between A and B is dependent on the possibility of the interaction between C and
B. Further the interactions {A,C} and {C,D} are mutually exclusive, for example

31



4 Protein Hypernetworks

{A,B} {C,B} {A,C} {C,D} M(P,I,C)({A,B}) Network state

1 1 0 0 1
A B

C D

1 1 1 0 1
A B

C D

Table 4.3: A reduced truth table for the minimal network state formula of Example 4.12.
The first row represents the state of a Kripke model for this formula. The second row is a
satisfying Kripke state too, but the interaction {A,C} is unnecessarily satisfied.

by competition on the same binding domain. The minimal network state formula
for the interaction {A,B} is given by

M(P,I,C)({A,B}) ={A,B}∧
({A,B} ⇒ {C,B})∧
({A,C} ⇒ ¬{C,D}) ∧ ({C,D} ⇒ ¬{A,C}).

A suitable satisfying Kripke model ({s}, R,) for this formula is shown in the first
row of Table 4.3. As the interaction between protein A and C is not necessary for the
interaction between A and B, it is not satisfied by the Kripke model. The minimal
network state for this example is

({{A,B}, {C,B}, A,B,C}, ∅).

That is, the interaction {C,B} is necessary for interaction {A,B}, and there are
no impossible interactions when A is interacting with B. Further, the proteins A,
B and C have to be necessarily possible together with {A,B}. Neither {A,C} nor
{C,D} are assumed to be impossible, because they are not negated due to an active
constraint. That is obviously correct since the interaction between A and B is not
dependent on those at all.

Now we define a relation clashing, which describes a situation where two minimal
network states cannot be combined with each other without producing a conflict.

4.13 Definition (Clashing Minimal Network States). Two minimal network
states (Nec, Imp) and (Nec′, Imp′) are clashing iffNec∩Imp′ 6= ∅ or Imp∩Nec′ 6= ∅.

4.14 Theorem. Let (P, I, C) be a protein hypernetwork with perturbations P↓ ⊆ P
and I↓ ⊆ I \ {i, j} and two arbitrary interactions i, j ∈ I, i 6= j. Consider the two
minimal network states mi := (Neci, Impi) and mj := (Necj , Impj) for these
interactions. If mi and mj are not clashing, then i and j are possible simultaneously.

32



4.2 Data Mining in Protein Hypernetworks

Proof. The simultaneous possiblity of i and j under all constraints and perturbations
can be described by the conjunction

ξ :=

 ∧
q∈P↓∪I↓

¬q

 ∧
∧
c∈C

c

 ∧ i ∧ j.
We will show that ξ is satisfiable if mi and mj are not clashing. Therefore we define
a Kripke model ({s}, R,) and retrieve the satisfiability relation  out of the two
minimal network states. If the Kripke model then satisfies ξ, the proof is finished.
Using a set Pos := Neci ∪Necj of positive propositions, we assume s  q for each
q ∈ Pos. Further the set Neg := (P ∪I)\Pos determines the rest of the satisfiablity
relation by setting s  ¬q′ for q′ ∈ Neg.
From the definition of minimal network states we know that (P↓∪I↓∪Impi∪Impj) ⊆
Neg. The Kripke model is well defined – thus there is no proposition q with s  q
as well as s  ¬q – because we know that Pos ∩Neg = ∅.
Now we show that all conjuncts of ξ are satisfied by the Kripke state s. The conjuncts
i and j are satisfied since i ∈ Neci and j ∈ Necj . The conjunct∧

q∈P↓∪I↓

¬q

is satisfied because (P↓ ∪ I↓) ⊆ Neg. We investigate the last conjunct of ξ∧
c∈C

c.

For each c = (r ⇒ φ) there may appear two cases:
In the first case, s satisfies r (s  r). This means that r ∈ Pos. Without loss of
generality we assume r ∈ Neci ⊆ Pos and see that c has to be satisfied and active
in the Kripke model (Si, Ri,i) that lead to the minimal network state mi. Thus
the propositions q1, . . . qn that are needed to satisfy φ are either contained in Neci
or Impi and thus also either in Pos or Neg.
In the second case s does not satisfy r. Then c is satisfied by s regardless of the
satisfaction of φ because of the definition (Definition 3.3) of the operator ⇒.
Since the Kripke model satisfies all conjuncts of ξ, we know that ξ is satisfiable so
that i and j are simultaneously possible. �

Theorem 4.14 shows that not clashing minimal network states can be combined to
receive proteins and interactions that are possible simultaneously. This approach
will be used later for the prediction of protein complexes (Chapter 5.3). The proof
contains an alternative test for the simultaneous possiblity of two interactions: The
tableau algorithm could be used to check the satisfiability of the formula ξ. However
this would only reveal a part of the information inherent in minimal network states.

33





5 Prediction of Protein Complexes

Protein hypernetworks allow for improvements in the analysis of protein networks.
The prediction of protein complexes serves as both an example for this and as a
platform for two new methods of analysis which are proposed later (Chapter 6).

In literature, protein complexes (Chapter 1) are assumed to correspond to dense
regions in protein networks (Li et al., 2005). Evidence for this is given by Spirin and
Mirny (2003), showing that generally all proteins in a dense region are responsible
for the execution of the same biological function. This observation matches the
interpretation of protein complexes being molecular machines (Chapter 1).

A dense region in a protein network (P, I) is a connected (Definition 2.6) subgraph
induced by a subset of proteins P ′ ⊆ P (Definition 2.7) with a significantly higher
connectivity than its environment. A measurement for the connectivity of a subgraph
is the density or clustering coefficient (Li et al., 2005):

5.1 Definition (Density). Let (V,E) be an undirected, loop-free graph. The den-
sity or clustering coefficient of this graph is defined as

cc((V,E)) :=
|E|

|V |(|V | − 1)/2
=

2|E|
|V |(|V | − 1)

.

The denominator |V |(|V | − 1)/2 describes the maximum number of edges in the
graph. Accordingly a fully connected graph (that is, a clique) will have a density
of 1, whereas a graph without any edge will have a density of 0. We denote a protein
complex in the following way:

5.2 Definition (Protein Complex). Let (P, I) be a protein network. A protein
complex is a subset c ⊆ P of proteins with a connected induced subgraph S(P,I)(c).

Since complexes are considered to be sets of nodes, which can be represented as a
subgraph, we use the overlapping score (Jung et al., 2010) to measure their similarity.
In the literature, this score is also referred as neighbour affinity (Li et al., 2005).

5.3 Definition (Overlapping Score). For an arbitrary common superset S, given
two sets A ⊆ S and B ⊆ S, their overlapping score is defined as

OS(A,B) :=
|A ∩B|2

|A| · |B|
.

If two sets A and B are equal, then OS(A,B) equals 1. If they do not overlap at
all, OS(A,B) equals 0.

Two example complex prediction algorithms that both use density to predict likely
complexes are MCODE (Bader and Hogue, 2003) and LCMA (Li et al., 2005). Since

35



5 Prediction of Protein Complexes

these procedures only rely on protein networks, they are called network based in the
following as a distinction to hypernetwork based complex prediction.

The MCODE (Molecular Complex Detection) algorithm (Bader and Hogue, 2003)
consists of three steps. First it calculates a score for each protein, roughly based on
the density of its neighbourhood (see chapter 2.1). Afterwards it predicts complexes
by starting from a seed protein and moving recursively outwards adding proteins as
long as their score is not more than a given percentage below the score of the seed
protein. During this step, each protein will be visited only once and the seed proteins
are selected descendingly according to their score. Hence the predicted complexes
do not overlap. The third step provides a mechanism to allow overlapping complexes
and cutting of loosely connected proteins. The time complexity of MCODE for a
protein network (P, I) is O(|P | |I|h3) with h being the average neighbourhood size
in (P, I).

According to Li et al. (2005), LCMA offers better results and a more efficient run-
time. Hence it was decided to concentrate on this algorithm in this thesis (Chapter
5.2). However, concerns remain about the comparison of results by Li et al. (2005)
which we will investigate later.

5.1 Measuring Prediction Quality

In order to measure the quality of complex prediction, we use the MIPS Comprehen-
sive Yeast Genome Database (ftp://ftpmips.gsf.de/yeast/). Firstly, it contains
the definition of the yeast protein network. Secondly it contains a database of known
yeast protein complexes – in the following referred as MIPS complexes. The latter
consists of 1142 complexes from which 267 are annotated with their biological func-
tion. In the literature (Li et al., 2005; Jung et al., 2010), the functionally annotated
complexes are considered to be more reliable, thus only annotated complexes are
used as a benchmark for complex prediction on the yeast protein network.

Following Jung et al. (2010), if P is the set of predicted protein complexes and D
is the set of known complexes from the database, then the set of true positively
predicted complexes is denoted as

TPP := {p ∈ P | ∃m ∈ D : OS(p,m) > 0.2}, (5.1)

whereas the set of true positively matched known complexes from the database is

TPD := {m ∈ D | ∃p ∈ P : OS(p,m) > 0.2}. (5.2)

It can be seen that the overlapping score (Definition 5.3) is used to measure the
similarity between a predicted complex and a database complex. Further the set of
false positive predictions is denoted as

FP := P \ TPP (5.3)

and the set of false negatives, in other words the set of not matched complexes from
the database, is denoted as

FN := D \ TPD. (5.4)

36

ftp://ftpmips.gsf.de/yeast/


5.2 The LCM Algorithm

The quality of prediction can now be described by the three measurements recall,
precision and F-measure.

5.4 Definition (Recall, Precision and F-Measure). Let D be a set of known
protein complexes and P be a set of predicted complexes. The recall is defined as

r :=
TPD
|D|

and the precision is defined as

p :=
TPP
|P |

.

The F-measure is defined as the combination of recall and precision

2rp

r + p
.

The recall of a prediction describes the ability to recognize the complexes of a given
database. The precision characterizes the ability to avoid erroneous predictions.
The maximum value of all three measures is 1. If a prediction P leads to a higher
recall than a prediction P ′, it better recognizes the complexes in D. If the prediction
P leads to a higher precision than P ′, it contains less false predictions.

5.2 The LCM Algorithm

LCMA (Local Clique Merging Algorithm, Li et al., 2005) follows a bottom-up strat-
egy to find dense regions in a loop-free undirected graph (V,E) (Definition 2.2).
First, it detects local cliques by investigating the neighbourhood of each protein. In
a second step, the algorithm merges local cliques with a significant overlap as long
as the average density of all detected dense regions is high enough.

5.2.1 Detecting local cliques

In order to find a local clique, the density of a neighbourhood n(V,E)(v) with v ∈ V is
investigated. As long as it raises the density, the neighbour with the lowest degree is
removed from the neighbourhood. Algorithm 5.1 shows the details of this procedure.
For each node v ∈ V at first the subgraph induced by its neighbourhood including
itself is generated (Line 3). The density of the subgraph and the node with minimal
degree are recorded (Lines 14, 5). In a loop, the node with minimal degree is removed
from the neighbourhood if that raises the subgraph’s density (Line 6). The subgraph
is updated accordingly including edges and degrees of nodes. As the maximum value
of density is 1, this loop stops once the subgraph is fully interconnected, in other
words if it is a clique (Li et al., 2005). Of course this can also be the case due to the
subgraph being a trivial clique, containing only one or two nodes. Only non-trivial
cliques are considered to be a valid result (Line 12).

37



5 Prediction of Protein Complexes

Input: Graph (V,E)
Output: A set of local cliques C

1: C := ∅
2: for v ∈ V do
3: (V ′, E′) := S(V,E)(n(V,E)(v) ∪ {v})
4: λ := cc((V ′, E′))
5: v′ := arg min

v∈V ′
deg(V ′,E′)(v)

6: while cc(S(V ′,E′)(V
′ \ v′)) > λ do

7: (V ′, E′) := S(V ′,E′)(V
′ \ v′)

8: v′ := arg min
v∈V ′

deg(V ′,E′)(v)

9: λ := cc((V ′, E′))
10: end while
11: if |V ′| > 2 then
12: C := C ∪ {V ′}
13: end if
14: end for
15: return C

Algorithm 5.1: LCM algorithm (detect local cliques).

Input: Graph (V,E), a set of local cliques C, an overlapping threshold ω
Output: A set of dense regions D

1: D := C
2: λ := 1
3: loop
4: D′ := ∅
5: for d1 ∈ D do
6: d := d1

7: for d2 ∈ D do
8: if d1 6= d2 and OS(d1, d2) > ω then
9: d := d ∪ d2

10: end if
11: end for
12: D′ := D′ ∪ {d}
13: end for
14: λ′ := 1

|D′|
∑
d∈D′

cc(S(V,E)(d))

15: if λ′ <= 0.95λ or no merge performed then
16: return D′

17: else
18: D := D′

19: λ := λ′

20: end if
21: end loop

Algorithm 5.2: LCM algorithm (merge dense regions).

38



5.2 The LCM Algorithm

5.2.2 Merging dense regions

After the detection of local cliques, a second step (Algorithm 5.2) merges them to
bigger but still dense regions: they are iteratively merged until the average density is
below 95% of the previous average density. The algorithm starts with the detected
local cliques as dense regions D (Line 1). First the average density λ is set to 1,
since the algorithm starts with entirely local cliques as dense regions (Line 2). In
an iterative process the next set of dense regions (Line 4) is computed. Each region
d ∈ D is merged together with all dense regions d′ ∈ D, for which the overlapping
score (Definition 5.3) is higher than a given threshold ω. The parameter ω can be
used to ensure that a merge is occuring only for significantly overlapping regions.
The combination with the termination criterion (Line 15) shall ensure that the
results after merging can still be considered dense. If the termination criterion is
not met, another iteration is performed, using the new average density λ′ and the
new dense regions D′ (Lines 18,19).

5.2.3 Implementation

Naive calculation of the overlapping score for two dense regions OS(d, d′) – needed
for the check in line 8 of the merge step (Algorithm 5.2) – involves the intersection
of the two. If using a hash set implementation for dense regions, the intersection
always takes O(|d|) operations provided |d| ≤ |d′|. Algorithm 5.3 performs the check
OS(d, d′) > ω in the best case in one iteration, and |d| iterations in the worst case.

Recalling the density formula (Definition 5.1), we see the necessity of tracking the
number of edges in dense regions in order to be able to calculate the average density
in line 14 of Algorithm 5.2. In other words, for each dense region d the subgraph
S(V,E)(d) has to be retrieved, which takes O(|E|) operations in the worst case. Ac-
cepting a loss in precision of density calculation, this can be sped up significantly.
Therefore, we record the number of edges |E|d for each dense region d. When Algo-
rithm 5.2 is started, each dense region d ∈ D is a clique (Line 1), thus its number

Input: Two dense regions d, d′, an overlapping threshold ω
Output: True if OS(d, d′) > ω

1: c = 0
2: u = 1

|d|·|d′|
3: for all v ∈ d do
4: if v ∈ d′ then
5: c = c+ 1
6: if c2 · u > ω then
7: return True
8: end if
9: end if

10: end for
11: return False

Algorithm 5.3: LCM algorithm (fast check for overlapping dense regions).

39



5 Prediction of Protein Complexes

of edges is |E|d = 1
2 |d|(|d| − 1). During the merge of two dense regions d and d′

(Line 9), the new edge number can be approximated by

|E|d∪d′ := |E|d + |E|d′ −
1

2
|d ∩ d′|(|d ∩ d′| − 1). (5.5)

Using this, the edge number for the merged dense region can be calculated in O(|d|)
operations, assuming |d| ≤ |d′| without loss of generality. Here, 1

2 |d∩ d
′|(|d∩ d′| − 1)

describes the number of edges in a clique induced by the intersection of d and d′.
Hence, if d and d′ are cliques, this approximation calculates the size of the union
between the edges of the two cliques, while it misses all edges between nodes of d
and d′ which are not contained in any of the cliques. We will now estimate the worst
case approximation performance for d and d′ being cliques. The maximum number
of missed edges occurs if d and d′ do not have any edge in common (|d ∩ d′| = 1),
and the subgraph induced by the merged region S(V,E)(d∪d′) is a clique, again. The
optimal solution – in other words, the real number of edges for the merged region –
can be written as

OPT (d ∪ d′) =
1

2
|d ∪ d′|(|d ∪ d′| − 1)

=
1

2
(|d|+ |d′| − |d ∩ d′|)(|d|+ |d′| − |d ∩ d′| − 1)

=
1

2
(|d|+ |d′| − 1)(|d|+ |d′| − 2)

=
1

2
(|d|2 + |d′|2 + 2|d||d′| − 3|d| − 3|d′|+ 2).

According to formula (5.5), the approximated number of edges is

|E|d∪d′ =
1

2
(|d|(|d| − 1) + |d′|(|d′| − 1))− 1

2
|d ∩ d′|(|d ∩ d′| − 1)

=
1

2
(|d|2 − |d|+ |d′|2 − |d′|).

Without loss of generality we assume that |d| ≥ |d′|. Now the approximation per-
formance can be estimated as

OPT (d ∪ d′)
|E|d∪d′

=
1
2(|d|2 + |d′|2 + 2|d||d′| − 3|d| − 3|d′|+ 2)

1
2(|d|2 − |d|+ |d′|2 − |d′|)

=
|d|2 − |d|+ |d′|2 − |d′|+ 2|d||d′| − 2|d| − 2|d′|+ 2

|d|2 − |d|+ |d′|2 − |d′|

= 1 +
2|d||d′| − 2|d| − 2|d′|+ 2

|d|2 − |d|+ |d′|2 − |d′|

< 1 + 2
|d′|2 − 2|d′|+ 1

2|d′|2 − 2|d′|

= 1 +
|d′|2 − |d′| − |d′|+ 1

|d′|2 − |d′|

= 2− |d′| − 1

|d′|2 − |d′|
= 2− 1

|d′|.

Since this result resembles the worst case, we can guarantee the method to be a
2-approximation for the merging of two cliques.

40



5.2 The LCM Algorithm

Algorithm Recall Precision F-Measure

MCODE 0.213 0.314 0.254
LCMA 0.401 0.098 0.158

Table 5.1: Comparison of MCODE and LCMA prediction quality. Tests were performed
with the protein network and complex data from the MIPS Comprehensive Yeast Genome
Database (Jung et al., 2010).

The approximation becomes worse when merging two dense regions which are al-
ready merged cliques themselves. However, complex prediction on the yeast protein
network showed no difference at all between the approximation and accurately cal-
culating the subgraphs.

5.2.4 Discussion

Li et al. (2005) argue that LCMA outperforms MCODE regarding performance and
prediction results. The prediction results are measured in the same way as by Bader
and Hogue (2003). This means – differing from this thesis and Jung et al. (2010) –
that the recall (which is called sensitivity by Bader and Hogue (2003)) is defined

as |TPP |
|TPP |+|FN | . In the case of Bader and Hogue (2003) this definition equals our

definition of the recall: this is because MCODE does not predict fully overlapping
complexes, so that |TPP | = |TPD| and |TPD| + |FN | = |D|. For LCMA this is
not the case. The fact that a predicted complex can be fully contained in another
predicted complex, causes |TPP | to be always greater or equal than |TPD|. Thus
the prediction quality presented by Li et al. (2005) is most likely overestimated. A
fair comparison was performed by Jung et al. (2010). It can be seen that MCODE
has a better precision but LCMA has a greater recall value (Table 5.1).

The algorithm does not define what happens if several nodes of minimal degree
exist in a neighbourhood. This gives rise to the problem that for the same input
two distinct implementations of the algorithm can produce different local cliques.
Figure 5.1 shows an example for such a situation.

AB

C

D

E

Figure 5.1: Example for LCMA predicting different cliques depending on selection of node
with minimal degree. The shown graph is assumed to be the neighbourhood graph of node
A. The nodes B, C, D and E all have a degree of 2, so one of them is selected to be
removed in step one (Algorithm 5.1) of the LCM algorithm in order to detect a local clique
from node A. If one of the nodes B or C is removed, the clique {A,D,E} will be detected.
Analogously the removal of D or E causes the detection of the clique {A,B,C}.

41



5 Prediction of Protein Complexes

5.3 Complex Prediction with Protein Hypernetworks

Complex prediction out of a protein hypernetwork should take advantage of the in-
cluded constraints. Jung et al. (2010) provide an approach which retrieves networks
of simultaneously possible protein interactions out of information about mutually
exclusive ones, and uses these to refine the network based complex prediction. Our
approach is more general since the possibility of proteins and interactions can be –
in the scope of propositional logic – arbitrarily constrained.

We use minimal network states to know about necessary and impossible interactions
or proteins for each interaction. This information is used to predict complexes which
contain only simultaneously possible proteins and interactions and do not lack any
necessary interaction. For a protein hypernetwork (P, I, C) the prediction of likely
complexes can be achieved as follows:

1. Perform perturbations and reveal not perturbed interactions and proteins.

2. Predict complexes on the protein network of all possible interactions and pro-
teins with a network based complex prediction.

3. Compute minimal network states for all possible interactions.

4. Refine predicted complexes using minimal network states.

Similar to Jung et al. (2010), we do not modify a network based complex prediction
algorithm but rather use its predicted complexes to obtain refined ones that respect
the provided additional information.

5.3.1 Perform Perturbations

The effects of perturbations P↓ ⊆ P and I↓ ⊆ I can be predicted by using the
perturbation formula (Definition 4.8) as described in Theorem 4.9. Doing this, we
retrieve a set

Q ⊆ P ∪ I (5.6)

of not perturbed proteins and interactions. If P↓ and I↓ are empty, thus no pertur-
bation was applied, then Q equals P ∪ I.

5.3.2 Network Based Complex Prediction

This step is taken to divide the network into smaller subnetworks. First, the set of
not perturbed proteins and interactions (5.6) is translated into a protein network
(Definition 4.1).

5.5 Definition (Not Perturbed Protein Network). Let (P, I, C) be a protein
hypernetwork and Q ⊆ P ∪ I be a set of not perturbed interactions and proteins.
Then (PQ, IQ) with PQ := P ∩Q and IQ := {{p1, p2} | {(p1, d1), (p2, d2)} ∈ I ∩Q}
defines the not perturbed protein network.

42



5.3 Complex Prediction with Protein Hypernetworks

As can be seen, we abandon the domain information of the interactions from the
protein hypernetwork, because network based complex prediction algorithms are
restricted to undirected graphs.

Secondly, a network based complex prediction algorithm (here for example the LCM
algorithm) is used to predict complexes C′ ⊆ 2PQ on the not perturbed protein
network (PQ, IQ). If the algorithm for network based complex prediction is not
able to handle loops (which is the case for LCMA), they have to be removed from
(PQ, IQ).

5.3.3 Compute Minimal Network States

The retrieval of all simultaneously necessary and impossible interactions or proteins
for each interaction is done by the computation of all minimal network states for
each not perturbed interaction i ∈ Q∩ I, as shown in chapter 4.2.2. By this we gain
a set of minimal network states

Mi = {(Nec1, Imp1), . . . , (Necn, Impn)} (5.7)

for each not perturbed interaction i.

5.3.4 Refine predicted complexes

On the one hand, a network based predicted complex c ⊆ PQ can contain interactions
or proteins which may not be possible at the same time due to some constraints.
On the other hand, refinement has to take care that a predicted complex does not
miss any necessary interaction or protein. Thus the refinement process consists of
two distinct steps:

1. For each network based predicted complex, generate subnetworks of simulta-
neously possible proteins and interactions, and again perform a network based
prediction on those.

2. For each of these newly predicted complexes, add all interactions and proteins
that are necessary for any contained interaction (according to its minimal
network states).

In the first step, for each complex c ⊆ PQ we collect all minimal network states for
contained interactions i ∈ Ic with (Pc, Ic) = S(PQ,IQ)(c):

Mc := {(Nec, Imp) | (Nec, Imp) ∈Mi, i ∈ Ic} (5.8)

Algorithm 5.4 provides a map

clash : Mc → 2Mc (5.9)

which maps each minimal network state m ∈Mc onto all clashing minimal network
states in Mc, in other words onto states that may not be combined with m (Definition
4.13).

43



5 Prediction of Protein Complexes

Input: set of minimal network states Mc = {m1, . . . ,mn}
Output: map clash : Mc → 2Mc , which maps each minimal network state onto all

clashing minimal network states.
1: for k ∈ {1, . . . , n} do
2: (Neck, Impk) := mk

3: for l ∈ {k + 1, . . . , n} do
4: (Necl, Impl) := ml

5: if Neck ∩ Impl 6= ∅ or Impk ∩Necl 6= ∅ then
6: clash(mk) := clash(mk) ∪ {ml}
7: clash(ml) := clash(ml) ∪ {mk}
8: end if
9: end for

10: end for

Algorithm 5.4: Find clashes between minimal network states.

Algorithm 5.5 takes the set of minimal network states Mc (Set (5.8)) and the map
clash : Mc → 2Mc (Map (5.9)) to build a tree (R,E) of removal instructions. Each
path from the root to a leaf represents a sequence of minimal network states the
removal of which turns Mc to be free of clashing minimal network states. The
maintained tree is defined as follows:

5.6 Definition (Minimal Network State Tree). Let Mc be a set of minimal
network states. A tree (R,E) is called minimal network state tree if there exists a
map state : R → Mc, so that each node v ∈ R \ {Root(R,E)} is mapped onto a
minimal network state state(v) = m ∈Mc. We say that v is referencing m. A path
p in the tree is called a path referencing M ⊆Mc iff for all minimal network states
m ∈M there exists a node v ∈ p with state(v) = m.

Consequently, Algorithm 5.5 manages a map state : R → Mc, which maps each
node v ∈ R\{Root(R,E)} onto a minimal network state m ∈Mc. For each minimal
network state m ∈ Mc, the algorithm tries to extend all paths from root to leafs
to reflect the removal of either m or clash(m) = {m1, . . .mn}. This is achieved by
traversing the tree recursively (Procedure Append of algorithm 5.5).
Upon the encounter of a leaf v (Lines 1 to 8), the procedure appends a node v′

with state(v) = m to the leaf. Further it appends a path of elements referencing
elements of clash(m) as a sibling of v′ to v. However not all elements of clash(m)
are referenced in the path. The elements that were encountered along the path from
the root to v are left out. This is reasonable, since the path from the root to v
already instructs their removal, so that there is no need to remove them again. In
order to manage this information, the procedure uses bit vectors b. For an element
mk ∈ clash(m) a value of b[k] = 1 means that it was not yet encountered on that
path and shall therefore be referenced by the path appended to a leaf.
Upon the encounter of an inner node v (Lines 10 to 20), the procedure investigates
all children v′ of v. If state(v′) = m, recursion is not performed on that child because
the instruction of the removal of m by v′ turns the removal of elements of clash(m)
superfluous. Else, a new bit vector b′ = b is instantiated, and eventually the bit
at position r with state(v′) = mr ∈ clash(m) is set to zero in order to reflect that
the removal of mr is already instructed on this path. If there are still elements of

44



5.3 Complex Prediction with Protein Hypernetworks

Input: A set of minimal network states Mc, a map clash : Mc → 2Mc .
Output: Tree (R,E) of removing instructions and a map state : R → Mc, which

maps each node of the tree onto a minimal network state.
1: R := {root}, E := ∅
2: for all m ∈Mc do
3: if clash(m) 6= ∅ then
4: Append(root,m, clash(m), b ∈ {1}|clash(m)|)
5: end if
6: end for

Procedure Append
Input: Node v ∈ R, a minimal network state m ∈Mc, a set of clashing minimal net-

work states clash(m) = {m1, . . . ,m|clash(m)|} and a bit vector b ∈ {0, 1}|clash(m)|

1: if v is a leaf then
2: append a new node v′ with state(v′) = m as new child to v
3: for all j ∈ {1, . . . |clash(m)|} do
4: if b[j] = 1 then
5: append a new node v′ with state(n′) = mj as new child to v
6: v := v′

7: end if
8: end for
9: else

10: for all v′ child of v do
11: if state(v′) 6= m then
12: b′ := b
13: if state(v′) = mr ∈ clash(m) then
14: b′[r] := 0
15: end if
16: if ∃k ∈ {1, . . . , |b|} : b[k] = 1 then
17: Append(v′,m, clash(m), b′)
18: end if
19: end if
20: end for
21: end if

Algorithm 5.5: Algorithm to build a tree of removal instructions.

clash(m) that are not yet removed – in other words, if the bit vector b′ still contains
a bit of value 1 (Line 16) – the procedure is invoked recursively on the child v′ with
the updated bit vector b′.

The tree (R,E) produced by Algorithm 5.5 can now be used to generate sets of not
clashing minimal network states by subtracting all minimal network states that are
referenced by a path from the root to a leaf:

Mc \ {state(v) | v ∈ (root(R,E), . . . , l) with a leaf l}. (5.10)

However there may exist paths that lead to an unneeded removal of minimal network
states. Such paths are called redundant.

45



5 Prediction of Protein Complexes

m1

m4 m2

m5 m3

m2

m3

Figure 5.2: Example for a redundant path in a tree of removal instructions (R,E) produced
by Algorithm 5.5. This shows a part of an exemplary tree of removal instructions for a set
of minimal network states Mc = {m1,m2, . . . }. Nodes are annotated with the referenced
minimal network state. Different colors separate different steps of appending a minimal
network state mk with its clashes clash(mk) – for example m1 with clash(m1) = {m2,m3}
(green). The path (root(R,E),m1,m2,m3) (thick) is redundant because it suggests the
removal of m1 although clash(m1) = {m2,m3} is removed later on.

5.7 Definition (Redundant path). Let (R,E) be a tree of removal instructions.
A path p is called redundant if it is referencing both m ∈ Mc and clash(m). The
set of all not redundant paths from the root to a leaf in (R,E) is denoted as P(R,E).

An example for a redundant path is shown in figure 5.2. We are now ready to provide
the set Mall

c ⊆ 2Mc of all maximal combinations of minimal network states

Mall
c := {Mc \ {state(v) | v ∈ p} | p ∈ P(R,E)}, (5.11)

while a maximal combination of minimal network states is defined as follows:

5.8 Definition (Maximal combination of minimal network states). The set
M ⊆ Mc is called a maximal combination of minimal network states iff there exist
no m1,m2 ∈ M with m1 clashing with m2, and the inclusion of a minimal network
state m3 leads to a clash.

In the following, we will prove that the set (5.11) contains indeed all maximal com-
binations of minimal network states. The following lemma provides a useful insight
for paths in the tree of removal instructions:

5.9 Lemma. Let (R,E) be a tree of removal instructions produced by algorithm 5.5
for a given set of minimal network states Mc and a map clash : Mc → 2Mc. For
each node m ∈Mc with clash(m) 6= ∅, a not redundant path (root(R,E), . . . , l) from
the root to a leaf of (R,E) either references m or clash(m).

Proof. The path p = (root(R,E), . . . , l) has to contain a node v that was a leaf when
m and clash(m) were appended to the tree. We investigate the successors v in p.
In the first case, the successor v′ of v in p is referencing m. Then the path referencing
elements of clash(m) was appended as a sibling node of v′. Further we know that p
may not be referencing clash(m) due to another appending procedure because p is
not redundant.
In the second case, p is of the form (root(R,E), . . . , v, v1, v2, . . . , vn, . . . , l) so that it
holds that C ′ = {state(vk) | k ∈ {1, . . . , n}} ⊆ clash(m). We know then that a node
referencing m was appended as a sibling of v1. For each m′ ∈ clash(m) \ C ′ there

46



5.3 Complex Prediction with Protein Hypernetworks

has to be a node v′ on the path (root(R,E), . . . , v) with state(v′) = m′.1 Hence we
know that p is referencing clash(m). Further p may not contain a node referencing
m because it is not redundant. �

5.10 Theorem. Let (R,E) be a tree of removal instructions produced by algorithm
5.5 for a given set of minimal network states Mc and a map clash : Mc → 2Mc.
Then a set

M ′c := Mc \ {state(v) | v ∈ p},
with p = (root(R,E), . . . l) being a not redundant path between the root of (R,E)
and a leaf l, does not contain any pair of clashing minimal network states.

Proof. Assuming that there exists a pair of clashing minimal network states inside
M ′c we will prove the theorem by producing a contradiction. Let m1,m2 ∈ M ′c
be two clashing minimal network states. Then it holds that m2 ∈ clash(m1) and
m1 ∈ clash(m2). Since m1,m2 ∈ M ′c it follows that both m1 and m2 are not
referenced by p.
However, clash(m1) 6= ∅ and p is a not redundant path from the root to a leaf. Hence
we know that either m1 or clash(m1) has to be referenced by p and analogously for
m2 and clash(m2). Path p referencing m1 contradicts our assumption, as does
p referencing clash(m1) because m2 ∈ clash(m1). Analog considerations lead to
contradictions for p referencing m2 of clash(m2). Thus there must not exist such a
pair m1,m2. �

5.11 Theorem. Let (R,E) be a tree of removal instructions produced by algorithm
5.5 for a given set of minimal network states Mc and a map clash : Mc → 2Mc.
Then for a set

M ′c := Mc \ {state(n) | n ∈ p},
with p = (root(R,E), . . . l) being a not redundant path between the root of (R,E)
and a leaf l, each minimal network state m ∈ Mc \M ′c is clashing with one of the
elements of M ′c.

Proof. Let m1 ∈Mc \M ′c be a minimal network state not included in M ′c. Assuming
that there exists no m2 ∈M ′c such that m1 is clashing with m2 we try to produce a
contradiction.
If clash(m1) = ∅ – that is, if m1 does not clash at all – then algorithm 5.5 does not
invoke the procedure Append for m1 and clash(m1). Likewise there is no m3 ∈Mc

with m1 ∈ clash(m3). This means that the tree (R,E) may not contain any node
v with state(v) = m1. Hence m1 may also not be removed from Mc by the path p
and m1 ∈M ′c. That is a contradiction to the assumption m1 ∈Mc \M ′c.
If clash(m1) 6= ∅, we know that either m1 or clash(m1) is referenced by p because
p is not redundant. If m1 is referenced, then p may not be referencing clash(m1).
Thus there exists a minimal network state m2 ∈ M ′c with m2 ∈ clash(m1), leading
to a contradiction. If clash(m1) is referenced by p, then m1 may not be referenced
either, so that m1 ∈M ′c, leading again to a contradiction. �

The setMall
c with all maximal combinations of minimal network states (5.11) is now

used to predict protein complexes again. For each maximal combination M ′c ∈Mall
c

we generate the corresponding subnetwork of (PQ, IQ) (Definition 5.5).

1Otherwise, m′ would not have been removed by setting its index to 0 in the bit vector.

47



5 Prediction of Protein Complexes

5.12 Definition (Simultaneous Protein Subnetwork). Let (PQ, IQ) be a pos-
sible protein network and M ′c ∈Mall

c be a maximal combination of minimal network
states. Then

(PM ′
c
, IM ′

c
) = S(PQ,IQ)(PM ′

c
)

with PM ′
c

= {p | p ∈ Nec with (Nec, Imp) ∈ M ′c} is called simultaneous protein
subnetwork.

All proteins and interactions in (PM ′
c
, IM ′

c
) may exist simultaneously in the context

of protein hypernetwork (P, I, C) because the minimal network states in M ′c do
not clash with each other. In comparison to the subnetwork for the network based
predicted complex (Pc, Ic), the subnetwork (PM ′

c
, IM ′

c
) may have lost as well as gained

several interactions or proteins.

We now compute the simultaneous protein subnetworks (PM ′
c
, IM ′

c
) for all M ′c ∈

Mall
c . On each (PM ′

c
, IM ′

c
) we perform a network based complex prediction again2,

with the same algorithm as during the initial step (Chapter 5.3.2). From the simul-
taneous protein subnetwork they were predicted on, the new complexes inherit the
property of being simultaneously possible.

Although each simultaneous protein subnetwork contains all simultaneously neces-
sary interactions and proteins for the contained ones, the network based complex
prediction algorithm may miss some of them. Therefore the last step adds all nec-
essary proteins and interactions:

5.13 Definition (Refined Protein Complex). Let (PM ′
c
, IM ′

c
) be a simultane-

ous protein subnetwork. Let c′ ⊆ PQ with the corresponding subgraph (Pc′ , Ic′) =
S(PM′

c
,IM′

c
)(c
′) be a protein complex predicted on (PM ′

c
, IM ′

c
) by the network based

complex prediction algorithm. Let

M{p1,p2} := {(Nec, Imp) ∈Mi | i = {(p1, d1), (p2, d2)} ∈ I}

be the set of minimal network states for an interaction {p1, p2}, and let

MIc′ :=
⋃

{p1,p2}∈Ic′

(M{p1,p2} ∩M
′
c)

be the set of minimal network states for all interactions in the complex c′.

Then the refined protein complex is

crefined := c′ ∪ {p | p ∈ Nec ∩ P with (Nec, Imp) ∈MIc′}
∪ {p1, p2 | {(p1, d1)(p2, d2)} ∈ Nec ∩ I with (Nec, Imp) ∈MIc′}.

2Here, it should be noted that the used network based complex prediction may produce different
results when it runs solely on the subnetwork. In our case, the number of iterations in the
second step (Algorithm 5.2) of the LCM algorithm depends on the average density of all dense
regions. Consequently, the number of iterations may differ when only investigating a subnetwork.
Therefore we forced LCMA to perform the same number of iterations as in the initial network
based complex prediction.

48



5.3 Complex Prediction with Protein Hypernetworks

5.3.5 Implementation

The refinement of each network based predicted complex is independent from the
others’ refinement. Our implementation uses this for parallelization: After the min-
imal network states are computed, each complex refinement takes place in an in-
dependent processor thread. An internal scheduler ensures that not more than one
thread for each processor core runs at the same time. This reduces the amount of
occupied memory. The refinement step is the most expensive part of hypernetwork
based complex prediction, so that its parallelization provides scalability to multi-core
environments.

5.3.6 Discussion

The described steps transform all network based predicted complexes to refined
ones. Since refined complexes do not contain simultaneously impossible interactions
or proteins and further include necessary interactions and proteins, it is reasonable
to assume that the prediction quality is superior to network based complex predic-
tion.

Without the application of constraints, the protein hypernetwork based complex
prediction provides the same results as the network based approach using the same
complex prediction algorithm: On a not perturbed instance complexes are predicted
network based, already providing the same results as the purely network based
approach. For each interaction i = {(p1, d1), (p2, d2)} ∈ I exactly one minimal
network state

(Nec, Imp) = ({i, p1, p2}, ∅)

appears, since there is no constraint that can lead to additional negative or positive
literals in the minimal network state formula. Thus the refinement step behaves like
an identity map: For each complex exactly one simultaneous protein subnetwork
is created, containing all proteins and interactions of the complex. The complex is
predicted again on this network and the second refinement step does not add any
protein or interaction of Nec since they are contained already.

To evaluate our approach we use the yeast protein network together with the MIPS
complexes provided by the MIPS Comprehensive Yeast Genome Database (Chapter
5.1). As constraints we apply information about mutually exclusive interactions
published by Jung et al. (2010). Those are translated to logic formulae as shown in
Example 4.6, so that we gain the yeast protein hypernetwork

(Pyeast, Iyeast, Cyeast).

As network based complex prediction algorithm, LCMA with a threshold of ω = 0
(as suggested by Li et al. (2005)) is used. The results of complex prediction on this
hypernetwork are compared to the MIPS complexes with the methods described
in chapter 5.1. Figure 5.3 shows the development of precision and recall values in
dependency of the percentage of used constraints. For each percentage step from 1,
2, 3, up to 99 we took 50 random samples of the 458 constraints derived from Jung
et al. (2010).

49



5 Prediction of Protein Complexes

0 20 40 60 80 100
% of constraints

170

180

190

200

210

220

230

|F
N|

b

0 20 40 60 80 100
% of constraints

0

200

400

600

800

1000

1200

1400
|F

P|

a

0 20 40 60 80 100
% of constraints

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ec

is
io

n

c

0 20 40 60 80 100
% of constraints

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
re

ca
ll

d

Figure 5.3: Complex prediction quality in dependence of the percentage of applied con-
straints. The red point indicates the case of not constrained prediction, coloured green is
the case of 100% of applied constraints. (a) Number of false positive predictions plotted
against percentage of applied constraints. Values above 1400 false positives were cut off. (b)
Development of the amount of false negatives plotted against the percentage of applied con-
straints. (c) Precision of the prediction plotted against the percentage of applied constraints.
(d) Recall of the prediction plotted against the percentage of applied constraints.

It can be seen that high numbers of constraints (> 50%) always provide an im-
provement in the precision over the unconstrained instance with precision 0.17 (Fig-
ure 5.3 (c)). However the precision may initially decrease if only a few constraints
are applied. This may be due to the following situation: A false positive predicted
protein complex may contain two interactions that are mutually exclusive. Thus the
refinement step leads to two simultaneous protein networks on which again nearly
the whole original complex is predicted, but each without one of the mutual ex-
clusive interactions (Figure 5.5). Since it contains one mutual exclusive interaction
pair less, the complex is now closer to the reality, but still the constraints may not
have been complete enough to turn it into a true positive prediction. In contrast
to having the one false positive, refinement leads to two false positives in this case.
One can easily imagine that this effect can have huge impact on prediction quality

50



5.3 Complex Prediction with Protein Hypernetworks

0 50 100 150 200 250
complex sizes

1

20

40

60

80

100

%
 o

f 
co

n
st

ra
in

ts

1

1

2

4

7

12

20

33

54

o
cc

u
re

n
ce

s

M
IP

S

0 
co

ns
tra

in
ts

Figure 5.4: Size distribution of predicted complexes in dependence of the percentage of
applied constraints. For each percentage step, the histograms’ complex sizes of the 50
samples were arithmetically averaged and plotted in one row. Blueish colors mean fewer,
reddish mean more occurrences. As a control, MIPS complexes and prediction without any
constraint are separately plotted at the top.

if the number of constraints is too small. Figure 5.3 (a) shows that indeed the false
positive predictions are responsible for the dropping precision: Between 0 and 40%
one can see an increase of false positive predictions compared to the unconstrained
case, whereas all predictions above 50% exhibit a decrease. Figure 5.4 substantiates
these observations by providing a view on the size distribution of predicted com-
plexes. Compared to the MIPS complexes, the unconstrained prediction contains a
number of big complexes consisting of more than 100 proteins. Applying less than
20% of the constraints results in an increased number of big complexes. This ef-
fect gradually disappears when applying more constraints until finally no complex
contains more than 100 proteins.

The recall is not improved upon increasing the number of used constraints (Figure
5.3 (d)). In fact it even decreases slightly. This is due to a few MIPS complexes
being no longer predicted. For example the complex

{YDL014W,YLR197W,YOR310C}

is contained in the purely network based prediction and the unconstrained instance
as well as in the set of MIPS complexes. In the latter it is annotated as ribosomal
RNA processing complex 440.12.30 (as well as “Nop56p/Nop1p complex”). However
Jung et al. (2010) suggest YLR197W and YOR310C to be competing on the same
binding site of YDL014W and thus the constraints

{YDL014W,YLR197W} ⇒ ¬{YDL014W,YOR310C}

and
{YDL014W,YOR310C} ⇒ ¬{YDL014W,YLR197W}.

This implies – under the assumption that protein complexes are dense – that the
complex is not likely in reality since only a chain of YLR197W, YOR310C and

51



5 Prediction of Protein Complexes

Figure 5.5: Duplication of false positive protein complexes upon refinement with only few
constraints. Shown are three predicted complexes (green, blue, red). The two lower ones
(blue, red) are resulting from the upper (green), original complex after the refinement step.
The original complex contains two mutual exclusive interaction (in the lower right). The
refined complexes each contain one of the two interactions. Assuming that the original
complex is a false positive prediction, the situation can occur that the refined complexes
are still false positive predictions if there are not enough constraints. Application of further
constraints eliminates these false positives.

YDL014W remains. This situation either shows a shortcoming of the density as-
sumption or an error in the used data.

Above analysis shows that the prediction of protein complexes can be enhanced sig-
nificantly by using protein hypernetworks. For now it is limited by the incomplete-
ness of available data, both regarding benchmarks (MIPS complexes) and constraints
(information on mutual exclusive interactions from Jung et al. (2010)). Further, a
fair amount of the MIPS complexes contains only one (54) or two (64) proteins,
which cannot at all be predicted by the LCM algorithm (excluding these already
raises the recall to 0.35 compared to 0.29 in case of a prediction with all constraints
applied). Since logic constraints allow the modelling of scaffold dependency, the
prediction quality might be further enhanced once the data is availiable. More-
over, some of the current false positives might be real complexes that are neither
experimentally determined nor included in the MIPS database, as Li et al. (2005)
state.

52



6 Protein Hypernetwork Analysis

Based on the prediction of protein complexes, we propose two new methods of anal-
ysis. First, the prediction of master switches shows a new way to rate proteins or
interactions, estimating their expected functional importance. Secondly, the sim-
ulation of perturbation effects on predicted protein complexes is used to predict
functional similarities between proteins or interactions.

6.1 Prediction of Master Switches

It has been shown above that we can predict likely protein complexes upon the
perturbation of a protein or interaction. A big difference between the perturbed
and the native instance1 may be a hint for the functional importance of a protein or
interaction. Therefore, in the following we aim to find a measure for this. We call
a protein or interaction with a big perturbation effect a master switch. The desired
measure that estimates this importance will be called master switch score.

As the above approach for the prediction of protein complexes is already capable of
handling perturbations, the most straightforward way is to compare the predicted
complexes of the native instance to those of the perturbation. For a protein hy-
pernetwork (P, I, C) let C ⊆ 2P be the set of predicted complexes for the native
instance and Cq↓ ⊆ 2P be the set of predicted complexes upon the perturbation of
q ∈ P ∪ I (thus either P↓ = {q} or I↓ = {q}). A suitable measure for the difference
between the two sets is a map µ : 2P × 2P → [0, 1] with a result of µ(C, Cq↓) = 0
for C = Cq↓ and a result µ(C, Cq↓) = 1 for C ∩ Cq↓ = ∅. Using the overlapping score
(Definition 5.3), we obtain these properties by setting

µOS(C, Cq↓) := 1−OS(C, Cq↓). (6.1)

The well established Jaccard index, defined as Jacc(A,B) := |A∩B|
|A∪B| , produces a

similar behaviour with

µJacc(C, Cq↓) := 1− Jacc(C, Cq↓). (6.2)

Lastly the third possiblity is constituted by

µOS′(C, Cq↓) := 1−OS′(C, Cq↓) (6.3)

with OS′(A,B) := 2|A∩B|
|A|+|B| .

Figure 6.1 shows the different behaviours of the measures as a function of the size
of the intersection between C and Cq↓ . µJacc rewards big differences – or small
intersections – stronger than µOS , whereas µOS′ provides a linear behaviour. Having
the different possibilities in mind, the master switch score can now be defined.

1In the native instance of predicted complexes, no perturbation has been applied (P↓ = I↓ = ∅).

53



6 Protein Hypernetwork Analysis

0 20 40 60 80 100
% of intersection

0.0

0.2

0.4

0.6

0.8

1.0
µJacc

µOS

µOS′

Figure 6.1: Measures for the difference between sets of predicted protein complexes. The
horizontal axis shows the percentage of intersection C ∩ Cq↓ , the vertical axis shows the
corresponding output of each measure µJacc(C, Cq↓), µOS(C, Cq↓) and µOS′(C, Cq↓).

6.1 Definition (Master Switch Score). Let (P, I, C) be a protein hypernetwork.
The master switch score MSS(P,I,C) : P ∪ I → [0, 1] is defined as

MSS(P,I,C)(q) := µ(C, Cq↓)

with the predicted protein complexes C ⊆ 2P and Cq↓ ⊆ 2P for the native instance
and the perturbation of q ∈ P ∪ I.

Figure 6.2 shows the relationship between the master switch scores for the yeast
protein hypernetwork (Pyeast, Iyeast, Cyeast). It can be seen that µJacc and µOS are
resulting in mostly the same values whereas µOS′ is roughly producing a shift to
lower values. Thus it was decided to use µJacc as it is based on the most established
measure.

For a protein hypernetwork (P, I, C), master switch scores for each protein and
interaction can now be computed in the follwing way:

1. Prediction of protein complexes C for the native instance.

2. Perturbation of q ∈ P ∪ I .

3. Prediction of protein complexes Cq↓ for the perturbation.

4. Calculate the master switch score MSS(P,I,C)(q).

5. Continue at step 2 with the next q ∈ P ∪ I.

Implementation

The prediction of protein complexes is an expensive operation. Therefore it is im-
portant to avoid redundancy while iterating over all proteins and interactions in
order to calculate their master switch scores. Recalling the steps of complex predic-
tion on protein hypernetworks (Chapter 5.3) it can be seen that the refinement of
predicted complexes (Step 4) may be partially redundant: For the perturbation of
q ∈ P ∪ I, as long as a network based predicted complex c is also predicted for the

54



6.1 Prediction of Master Switches

0.0 0.1 0.2 0.3 0.4 0.5
µJacc

0.0

0.1

0.2

0.3

0.4

0.5

µ

a

µOS

µOS′

0.0 0.1 0.2 0.3 0.4 0.5
µJacc

0.0

0.1

0.2

0.3

0.4

0.5

µ

b

µOS

µOS′

Figure 6.2: Influence of different measures on master switch scores for the yeast protein
hypernetwork (Pyeast, Iyeast, Cyeast). (a) MSS(Pyeast,Iyeast,Cyeast) values using µJacc plotted
against those using µOS (green) and µOS′ (red) for all proteins p ∈ Pyeast. (b) The same
for all interactions i ∈ Iyeast.

native instance and the minimal network states for contained interactions did not
change upon perturbation of q, it is sure that the refined complex crefined is the same
for both the native instance and the perturbation. Thus only complexes for which
this is not the case are refined. For others the results from the native instance are
taken.

Since computation of the master switch score for a protein or interaction is not at
all dependent on the computation for any other protein or interaction, the process
can be parallelized easily. The implementation provides two mechanisms for paral-
lelization: On the one hand, master switch prediction can be limited to a subset of
proteins or interactions, so that several instances of the software can independently
predict master switches on different computers (for example in a cluster). On the
other hand, each master switch prediction has its own processor thread, so that all
cores of a computer can be used in parallel. Again, the internal scheduler ensures
that each processor core is only occupied by one thread to reduce memory consump-
tion. The complex prediction which is part of master switch prediction is limited to
one thread in this case.

Discussion

For a subset of the yeast protein network, Jeong et al. (2001) show that the con-
nectivity of a protein is already a hint for its functional importance: The lethality
of a perturbation was compared to the degree of the protein in the network. In the
investigated yeast network, 93% of the proteins had a degree of less than 6, but
only 21% showed a lethal effect upon perturbation. In contrast, among the proteins
with a degree of more than 15 – only 0.7% of the proteins – 63% had a lethal effect
upon perturbation. The authors infer from this that highly connected proteins are
three times more likely to be lethal – and thus functional important – than oth-
ers. In the following we will investigate how these results compare to master switch
scores. Therefore we predicted master switches on the yeast protein hypernetwork
(Pyeast, Iyeast, Cyeast) and related the master switch for each protein or interaction to
its connectivity.

55



6 Protein Hypernetwork Analysis

0 50 100 150 200 250 300
degree

0

100

200

300

400

500

nu
m

be
r o

f p
ro

te
in

s

a

100 101 102 103

degree

100

101

102

103

104

nu
m

be
r o

f p
ro

te
in

s

c

0.0 0.1 0.2 0.3 0.4
MSS

0

100

200

300

400

500

nu
m

be
r o

f p
ro

te
in

s

b

10-3 10-2 10-1 100

MSS

100

101

102

103

104

nu
m

be
r o

f p
ro

te
in

s

d

0 50 100 150 200 250 300
degree quantiles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
SS

 q
ua

nt
ile

s

e

0 50 100 150 200 250 300
degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
SS

f

0 50 100 150 200 250 300 350
connectivity

0

200

400

600

800

1000

nu
m

be
r o

f i
nt

er
ac

tio
ns

g

100 101 102 103

connectivity

100

101

102

103

nu
m

be
r o

f i
nt

er
ac

tio
ns

i

0.00 0.05 0.10 0.15 0.20 0.25 0.30
MSS

0

200

400

600

800

1000

nu
m

be
r o

f i
nt

er
ac

tio
ns

h

10-3 10-2 10-1 100

MSS

100

101

102

103

104

nu
m

be
r o

f i
nt

er
ac

tio
ns

j

0 50 100 150 200 250 300 350
connectivity quantiles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SS

 q
ua

nt
ile

s

k

0 50 100 150 200 250 300 350
connectivity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SS

l

Figure 6.3: Master switch prediction for the yeast protein hypernetwork
(Pyeast, Iyeast, Cyeast). (a) Distribution of protein connectivity (node degree). (b)
Distribution of master switch scores. Distribution of protein connectivity (c) and of master
switch scores (d), both in logarithmic scaled plots. (e) shows a quantile quantile plot of
protein connectivity against master switch scores. (f) plots the connectivity of each protein
against its master switch score. Analogously, (g) to (l) show the same for interactions. In
(a) and (b), values above 500, in (h) values above 1000 were cut off.

Investigating the degree of proteins in the yeast protein network one can observe a
power law distribution as can be seen by the linear distribution of points in Figure
6.3 (c). A quantile-quantile plot (Figure 6.3 (e)) shows the difference between the
distribution of master switch scores and protein connectivity. We measure the con-
nectivity of interactions by summing the degrees of its interacting proteins in the
network. For an interaction {p1, p2} the connectivity is defined as

deg(p1) + deg(p2)− 2.

Here, the subtraction of 2 ensures that the interaction itself is not counted. The
comparison of the distribution of interaction connectivity to the distribution of mas-
ter switches again suggests differences. Although the master switch score of many
interactions corresponds to their connectivity, Figure 6.3 (l) shows interactions with
high connectivity but low master switch score and vice versa. Again, the quantile-
quantile plot (Figure 6.3 (k)) gives evidence for different distributions of master
switch scores and connectivity.

Altogether the discussion shows that the master switch score provides additional
information on the functional importance of proteins and interactions compared to

56



6.2 Prediction of Functional Similarity

only looking at their connectivity. Since Protein complexes execute cellular func-
tions (Chapter 1), the measurement of differences in the predicted protein complexes
after perturbation should give a good hint on the impact of a perturbation and thus
on the functional importance of the perturbed protein or interaction. Both strength
and weakness of the master switch approach is the fact that it is dependent of the
protein complex prediction quality: On the one hand, complex prediction still is
imperfect and most of the predicted protein complexes cannot be verified due to
incompleteness of databases. On the other hand, future developments in complex
prediction algorithms can directly improve the measure.

6.2 Prediction of Functional Similarity

Proteins that are involved in the same cellular function are likely to be tightly
interconnected or even cooperate in a complex for the execution of the function
(Chapter 1). Therefore they are expected to have similar effects on the protein
complexes upon perturbation. With this rationale, we evaluate if we can predict
functional classes of proteins by comparing the perturbation effects in a protein
hypernetwork (P, I, C):

1. Calculate master switch score for all proteins p ∈ P .

2. Investigate the set PMS ⊆ P of all proteins p that exhibit a master switch
score greater than zero (MSS(P,I,C)(p) > 0).

3. For each pair p1, p2 ∈ PMS calculate a similarity based on the predicted protein
complexes upon its perturbation.

4. Cluster the proteins in PMS according to their similarity.

Two proteins that appear in the same cluster are then assumed to have similar effects
upon perturbation, and thus execute the same function in the cell metabolism. We
focus here on proteins with a master switch score greater than zero, because others
do not have any perturbation effect, and thus no differences in functionality would
be observable. First we define the similarity of perturbation effects for proteins.

6.2 Definition (Similarity of Perturbation Effects). Let (P, I, C) be a pro-
tein hypernetwork. For two proteins p1, p2 ∈ P with a master switch score greater
than zero (MSS(P,I,C)(pk) > 0), the similarity of perturbation effects is defined as

− log10(µJacc(Cp1↓, Cp2↓))

with Cpk↓ ⊆ 2P being the set of predicted protein complexes upon perturbation of
pk for k ∈ {1, 2}.

We use transitivity clustering (Wittkop et al., 2010) to obtain a set of disjoint
protein clusters Γ ⊆ 2PMS . Above arguments about functional similarity due to
tight interconnection can also be applied for interactions. Since – in our system –
both proteins and interactions can be treated equally regarding perturbation and
master switch scores, the same procedure can be performed for interactions.

57



6 Protein Hypernetwork Analysis

0 10 20 30 40 50 60 70
cluster

0

2

4

6

8

fu
n
ct

io
n

6 7 14 15 16 26 29 33 34 35 40 45 50 54 59 70 72
cluster

0

2

4

6

8

fu
n
ct

io
n

0 10 20 30 40 50 60 70 80 90 100
% of cluster

metabolism functions

index function

0 Cell cycle
1 Cell polarity and structure
2 Intermediate and energy metabolism
3 Membrane biogenesis and traffic
4 Protein / RNA transport
5 Protein synthesis and turnover
6 RNA metabolism
7 Signalling
8 Transcription / DNA maintenance / chromatin structure

clusters

index size

0 – 54 2
55 – 63 3
64 – 68 4
69 – 71 5

72 7
73 274

Figure 6.4: Matching of metabolism functions to protein clusters. The considered cellular
functions are listed in the left table (based on Gavin et al. (2002)). For each function, the
set of proteins known to take part in its execution was collected from the data provided by
Gavin et al. (2002). Proteins were clustered by the similarity of predicted complexes upon
their perturbation. For each cluster the percentages of proteins executing the provided
functions were calculated. A dark red square in one of the two images means that 100% of
the clusters proteins is known to execute the function, whereas dark blue corresponds to 0%.
The second image excludes all clusters in which not all proteins are annotated. Clusters are
ordered ascending in their size, as shown in the right table.

Discussion

When performing above prediction method for the proteins of the yeast protein
hypernetwork (Pyeast, Iyeast, Cyeast), a threshold of 1.8 for transitivity clustering turns
out to be the best compromise between cluster sizes and number of clusters2. In
order to judge over the significance of the obtained clusters with respect to the
cellular functions of contained proteins, we compare them to functional annotations
of yeast proteins published by Gavin et al. (2002). From these data we extract
for each function f ∈ {0, . . . , 8} (Figure 6.4, left table) a set of proteins Pf ⊆ PMS

executing it. The resulting function sets Pf are not disjoint, there are proteins which
obviously can execute several metabolism functions (Figure 6.5). The comparison

2In the appendix, results for a different threshold show that the findings provided here are not
unique to this threshold.

58



6.2 Prediction of Functional Similarity

0 2 4 6 8
function set

0

2

4

6

8

fu
nc

tio
n 

se
t

10

20

30

40

50

60

70

80

90

100

%
 o

f i
nt

er
se

ct
io

n

Figure 6.5: Overlap between function sets. In field (f, f ′) with f ∈ {0, . . . , 8} the per-

centage
|Pf∩Pf′ |

|Pf | · 100 of Pf contained in Pf ′ is shown. The mean excluding the diagonal is

20.38%.

between predicted clusters and metabolism functions is shown in Figure 6.4. Only
clusters containing more than 1 protein are considered.

The first image of Figure 6.4 shows the percentage of proteins of each cluster γ ∈ Γ
contained in each of the functional sets Pf :

|γ ∩ Pf |
|γ|

· 100.

Because Gavin et al. (2002) do not provide an annotation for each protein in PMS ,
we now only investigate the set of clusters Γ′ = {γ | γ ∈ Γ : γ ⊆

⋃8
f=0 Pf} for which

all proteins are annotated (Figure 6.4, second image). As can be seen, among the
17 clusters of Γ′, 14 are entirely dedicated to at least one function. We count these
as true positive predictions Γ′TP ⊆ Γ′ , resulting in a precision (Definition 5.4) of

|Γ′TP |
|Γ′|

=
14

17
= 0.82. (6.4)

The probability for a completely annotated cluster γ ∈ Γ′ to appear entirely at least
in one of the function sets Pf by chance can be estimated by

P(γ ⊆ Pf ) :=

 |Pf |
|
⋃8
f=0 Pf |

|γ|

when considering clusters of size |γ| ≤ 7. We can assume that the function sets are
disjoint and estimate the probability for cluster γ to appear entirely in one of the
function sets Pf as

P(∃f ∈ {0, . . . , 8} : γ ∈ Pf ) ≤
8∑

f=0

P(γ ⊆ Pf ).

This is reasonable because the overlapping of the function sets is mostly around
20% (Figure 6.5). Figure 6.6 shows that the probabilites for a cluster to be entirely
dedicated one of the functions by coincidence are at 0.3 for clusters with two proteins

59



6 Protein Hypernetwork Analysis

2 3 4 5 6 7
cluster size

10-3

10-2

10-1

100

pr
ob

ab
ili

ty
Figure 6.6: Probability for clusters of sizes from 2 to 7 entirely execute one metabolism
function. The vertical axis is logarithmic.

and decreasing rapidly with the size of the cluster. Now, the estimation of the
probability to obtain an at least as good precision as above (6.4) by chance is∏

γ∈Γ′
TP

P(∃f ∈ {0, . . . , 8} : γ ∈ Pf ) ≤ 4.479 · 10−11,

so that it can be assumed that the observed prediction quality is no coincidence.

Since the prediction is based on the comparison of perturbation effects on predicted
complexes, the clusters might resemble protein complexes. Spirin and Mirny (2003)
show protein complexes to be entirely dedicated to one function. It can be assumed
that this effect fades with the application of constraints. This is because a per-
turbation can start a cascade of effects which are propagated to other parts of the
network through the constraints. In our case, among the 74 clusters, only 8 have an
overlapping score (Definition 5.3) of more than 0.5 to one of the underlying com-
plexes. Accordingly application of constraints already decoupled functional clusters
from protein complexes.

One can conclude that perturbations simulated with protein hypernetworks provide
significant evidence for functional similarities: two proteins which have a similar
perturbation effect are likely to execute the same function in cell metabolism. Re-
garding interactions, similar results are likely, however functional annotations are
not easily obtainable at the moment.

60



7 Conclusion and Outlook

The goal of this thesis was the propagation of interaction logic toward protein hy-
pernetworks – a model for protein networks that provides information of higher
dimensionality in order to improve the results of conventional computational anal-
ysis as well as giving rise to new approaches. This was grounded by the idea, that
dependencies between interactions contain information valuable for the inference of
cellular functions in protein networks. It was shown that constraints using proposi-
tional logic are suitable to model the interaction logic in terms of scaffold dependency
and competition on the same binding domain. Nevertheless, it was decided to use
modal logic as a superset of propositional logic. This way it was possible to combine
the propositional logic constraints in a single modal logic formula for the prediction
of perturbation effects in the whole network. Further, the decision was taken with
the flexibility regarding future extensions to probabilistic approaches in mind. Pre-
diction of perturbation effects also illustrates the overall idea used in this thesis: A
certain behaviour or situation is modeled with a (modal) logic formula in a way that
allows a solution – in other words, a Kripke model – to directly contain the desired
information. Using this approach, it was possible to compute the mentioned pertur-
bation effects, as well as minimal network states for an interaction. The central tool
for the work was the modal logic tableau algorithm. Apart from its common purpose
to prove the satisfiability of a modal logic formula, it was used to retrieve the desired
Kripke model, which raised the need for a modification (Chapter 3.2.3).

Protein hypernetworks turned out to be useful for the computational analysis of
protein networks. Regarding the prediction of protein complexes, the usage of inter-
action logic in the form of constraints raised the quality by increasing the precision.
Despite the general improvements, the application of only a few constraints for mu-
tual exclusive interactions turned out to duplicate false positive predictions and
therefore decreased prediction quality. Thus hypernetwork based complex predic-
tion needs a sufficiently high number of constraints in order to work correctly. The
method utilizes an arbitrary conventional network based complex prediction algo-
rithm, here the LCM algorithm was selected. Since the approach is based on multiple
invocations of the network based complex prediction for simultaneous protein sub-
networks, speed was focused when implementing the LCM algorithm. Therefore the
clique merging was implemented using an approximation for the number of edges
in the merged region. The possibility to replace the network based complex pre-
diction algorithm makes protein hypernetwork based complex prediction open to
future improvements. Furthermore, since it is possible to simulate perturbation ef-
fects with protein hypernetworks those can be propagated to predicted complexes,
allowing new methods of analysis like the master switch score and the prediction of
functional similarity.

As an estimation of functional importance of proteins and interactions, the master
switch score was proposed. Ideally, a protein or interaction changing all complexes

61



7 Conclusion and Outlook

in a network upon its perturbation is a master switch of maximum functional impor-
tance, whereas a protein or interaction the perturbation of which has no influence
on protein complexes at all, is rather unimportant for the function of the network.
Relying on protein complexes for this estimation seemed reasonable because these
execute important functions in a network (Alberts et al., 2007). Master switch predic-
tion makes use of the already existing implementation of protein complex prediction,
so that it will directly benefit from improvements in this area.

Lastly the thesis provides a method to predict functional similarity of proteins and
interactions. It relies on the clustering of proteins or interactions based on the
similarity of their perturbation effects on predicted protein complexes. An evaluation
showed that this method is already reliable, and it will again directly benefit from
improvements in protein complex prediction.

The analyses implemented so far can be subjects of improvements without changing
the basic ideas of protein hypernetworks: Network based protein complex predic-
tion can be replaced by new developments in this field. Candidates are the SPICi
algorithm (Jiang and Singh, 2010) which promises to be of comparable quality but
faster than MCODE, and DECAFF (Li, Foo, and Ng, 2007) which combines the
LCM approach with rating the reliability of interactions. Furthermore, Brohee and
Helden (2006) show that using the Markov Cluster Algorithm might be a superior
alternative to those specialized complex prediction algorithms. This motivates to
generally review the usage of clustering algorithms for protein complex prediction
and evaluate newer developments like transitivity clustering (Wittkop et al., 2010).
Moreover, the prediction of functional similarities could be automated by the incor-
poration of transitivity clustering into the implementation.

Apart from those presented here, further analysis methods based on protein hyper-
networks are thinkable:

In the literature, it is assumed, that protein networks consist of several indepen-
dent functional modules that communicate with each other (Hartwell et al., 1999).
Thereby each module works like a blackbox that, upon a certain input, generates
an output that is received and processed from an associated module. The represen-
tation of modules in a protein network is assumed to be dense and only sparsely
connected to its environment. This definition already shows a similarity to protein
complexes. Spirin and Mirny (2003) state that distinguishing between complexes
and modules is important because of their different biological meanings:

A protein complex is a molecular machine that consists of several pro-
teins (nucleic acids and other molecules) that bind each other at the
same place and time [...]. On the contrary, a functional module consists
of a few proteins (and other molecules) that control or perform a par-
ticular cellular function through interactions between themselves. These
proteins do not necessarily interact at the same time and place, or form
a macromolecular complex [...]. (Spirin and Mirny, 2003)

Spirin and Mirny (2003) mention that making the distinction is hard in many cases
because temporal and spatial information is not available. Now protein hyper-
networks at least give the temporal information in the form of the possibility of
simultaneous interaction or protein occurrences. Consequently, dense regions the

62



interactions of which do not appear simultaneously could give hints where to search
for functional modules. Such regions could be found by performing a network based
complex prediction to find all dense regions, and afterwards filtering out all regions
that do not contain any pair of clashing minimal network states. A fast test for
the latter is provided in the proof of Theorem 4.14: the satisfiability of the defined
formula ξ can be checked with the tableau algorithm again.

For protein networks it can be observed that small subgraphs that represent certain
patterns of interacting proteins – network motifs – occur far more often than in
a random network. Some motifs like the feed forward loop are common to even
non biological networks and suspected to be their basic building blocks (Milo et
al., 2002). However Ingram, Stumpf, and Stark (2006) warn that the functional
properties of motifs are not clearly determined by their pattern, thus limiting the
insight provided by motif search. With further information about logic dependencies
between interactions available, it might be useful to search for logic motifs: For a
protein hypernetwork (P, I, C) a logic motif could be an arbitrary propositional
logic formula m ∈ Prop(P ∪ I). The containment of such a motif in the protein
hypernetwork could be determined by proving that

∧
c∈C

c

⇒ m

holds. Here, again the tableau algorithm could be used to prove that
∧
c∈C c ∧

¬m is unsatisfiable. Using wildcard propositions, logic motifs could describe logic
relationships between arbitrary instead of specific proteins and interactions. In order
to measure the significance of a motif, its occurrences in the hypernetwork would
have to be compared to its occurences in a suitable null model. Network generators
for creating random instances to simulate scale-free or modular behaviour, which
most biological networks exhibit (Guimera and Sales-Pardo, 2010; Jeong et al., 2001),
are already available – like an approach based on stochastic block models by Guimera
and Sales-Pardo (2010) – and used for conventional motif search. In order to gain a
null model for logic constraints, common rules have to be found that underly their
distribution.

When further biological information about interaction dependencies becomes avail-
able, it might be useful to assign probabilities to proteins and interactions. A straight
forward interpretation of probabilities would be the expected concentration of each
protein and interaction in a hypothetic volume. Here the flexibility of modal logic
becomes obvious: The two modal operators 3 and 2 can be replaced by operators
4ρ annotated with a probability ρ ∈ [0, 1] (Doberkat, 2009). Semantic is now cap-
tured by a stochastic Kripke model (S,K,) with K : S → (2S → [0, 1]) being a
stochastic relation. Concerning the new modal operators 4ρ,

s  4ρφ

63



7 Conclusion and Outlook

holds iff K(s)(JφK(S,K,)) ≥ ρ. In this context, JφK(S,K,) is the extension of formula
φ – the set of satisfying states – analogously to Definition 3.3.1 Moreover, we can
define operators 4=ρ with 4=ρφ = 4ρφ ∧41−ρ¬φ as a shortcut, so that

s  4=ρφ

holds iff K(s)(JφK(S,K,)) = ρ. A stochastic protein hypernetwork (P, I, C,P) can
then be provided by the addition of a map P : P ∪ I → [0, 1] associating an a priori
probability to each protein and interaction. These probabilities can be integrated
into the logic formulae by using4=P(q)q as a statement about the a priori probability
of q ∈ P ∪ I instead of only the proposition q as a statement about the possibility
of q. Constraints could make use of further probability assumptions: For example
¬41¬i1 ⇒ 40.25i2 would mean that for interaction i1 ∈ I to have a probability
greater that zero, interaction i2 ∈ I is required to have a probability of at least 0.25.
In a conjunction

4=0.5i14=0.1i2 ∧ (¬41¬i1 ⇒40.25i2)

with an a priori probability of 0.5 for i1 and 0.1 for i2, 40.25i2 would lead to a clash
in a state s ∈ S because of

K(s)(Ji2K(S,K,)) = 0.1 < 0.25.

Thus the formula would be not satisfiable. In contrast, using an a priori probability
of for example 0.5 for i2 would lead to satisfiability of the formula. This gives rise
to an adapted perturbation formula (Definition 4.8)

∧
q∈P∪I


4=P(q)q ∧

∧
c∈C(q)

c

 ∨41¬q

 ,

provided that all constraints are formulated in the above way. The interpretation is
straight forward: each protein or interaction q ∈ P ∪ I has its a priori probability
P(q) if all of its constraints are satisfiable. If not, it has a probability of 0 instead.
A minimal network state formula (Definition 4.10) would analogously translate to

4=P(i)i ∧
∧
c∈C

c,

and a minimal network state for an interaction i could consist of a set containing
all proteins and interactions with a probability necessarily greater than zero, and a
set of proteins and interactions that have a probability of zero in the solution of the
formula – in other words, that are impossible to appear simultaneously with i.

In due course when data about interaction logic becomes widely availiable, protein
hypernetworks provide a way to effectively represent this information. In turn they
provide a platform for further analysis, including an improved prediction of protein
complexes as well as new approaches like the prediction of master switches and
functional similarity. Lastly, the extension to a probabilistic approach might even
allow for the incorporation of more detailed biological knowledge in the future.

1It is possible to translate conventional modal operators to this logic: A necessity statement 2φ
translates to 41φ. A possibility statement 3φ means that it is not impossible to reach a state
which satisfies φ, and the translation ¬41¬φ is obviously consistent with Lemma 3.4.

64



Further Informations

The informations provided here are complemented by an appended DVD which
contains additional data. In the folder tests, the DVD contains the raw data for
all performed tests, as well as the python scripts used for analysis and plotting.
Furthermore, it contains a reference implementation of the methods developed in
this thesis, which is described in the following.

Implementation

As part of the thesis, the presented protein hypernetwork approach was imple-
mented in a collection of cross-platform JavaTM libraries and corresponding fron-
tends, which are published under the BSD License. For implementation, apart from
the JavaTM Class Libraries, the JUNG Java Universal Network/Graph Framework
from the University of California (jung.sourceforge.net) and the Commons Col-
lections Generic from Larva Labs (larvalabs.com/collections) were used. The
sources of this implementation are found on the DVD in the folder tool.

For storage of protein hypernetwork definitions, PHXML an XML based format
for proteins, interactions and logic constraints was developed. The document type
definition is provided on the DVD under tool/PHXML.dtd.

Modal logic together with the tableau algorithm is provided by the library LibModal-
Logic2. The library LibProteinHypernetwork2 provides an implementation of protein
hypernetworks, as well as facilities to save and load from the PHXML format, and
the possibility to import protein networks defined as simple interaction format (.sif)
files from cytoscape (cytoscape.org) or PSIMAP (psimap.com) files. An imple-
mentation of the methods presented in Chapter 4.2, Chapter 5 and 6.1 is provided
by LibModalLogicProteinHypernetwork. ProteinHypernetworkEditor is a graphical
user interface frontend to LibProteinHypernetwork2 that allows the editing and def-
inition of protein hypernetworks, loading from and saving to the PHXML format,
as well as importing from the above specified formats. ProteinHypernetworks is a
frontend to LibModalLogicProteinHypernetwork that allows the execution of the
above mentioned methods with a graphical user interface or a command line inter-
face. Further, the results can be visualized with the JUNG framework; examples
are shown on the next pages. The two frontends are provided as .jar executa-
bles in the folder tool of the DVD (tool/ProteinHypernetworkEditor.jar and
tool/ProteinHypernetwork.jar).

65

tests
jung.sourceforge.net
larvalabs.com/collections
tool
tool/PHXML.dtd
cytoscape.org
psimap.com
tool
tool/ProteinHypernetworkEditor.jar
tool/ProteinHypernetwork.jar


Further Informations

The prediction of master switches can be visualized by displaying the protein net-
work as an undirected graph and changing the size of nodes and the thickness of
edges according to their master switch score:

The visualization of protein complexes consists of three steps. First, each complex
is displayed as a node in an undirected graph. An edge between two complexes
symbolizes a significant overlap between them (A jaccard index of more than 0.2):

66



Secondly, complexes that were selected in this graph can be separately displayed as
simultaneous protein subnetworks:

Lastly the selected complexes can be displayed as hyperedges in a hypergraph of
proteins. A hypergraph is a generalization of an undirected graph, provided by al-
lowing edges to be sets of nodes with arbitrary cardinality.2

2For this, the code of the project JUNG Framework Enhancement - Hypergraph Visualization from
the Swiss Federal Institute of Technology Zürich (ETH Zürich) was fixed and adapted.

67



Further Informations

Prediction of Functional Similarity

0 10 20 30 40 50
cluster

0

2

4

6

8

fu
n
ct

io
n

13 14 15 23 28 32 38 41 44 53 54 55
cluster

0

2

4

6

8

fu
n
ct

io
n

0 10 20 30 40 50 60 70 80 90 100
% of cluster

metabolism functions

index function

0 Cell cycle
1 Cell polarity and structure
2 Intermediate and energy metabolism
3 Membrane biogenesis and traffic
4 Protein / RNA transport
5 Protein synthesis and turnover
6 RNA metabolism
7 Signalling
8 Transcription / DNA maintenance / chromatin structure

clusters

index size

0 – 45 2
46 – 54 3

55, 56 7
57 8
58 9
59 658

Matching of metabolism functions to protein clusters when using transitivity clus-
tering with an alternative threshold of 1.4 (Chapter 6.2). The used functions are
listed in the left table. For each function, the set of proteins known to take part in
its execution was collected from the data provided by (Gavin et al., 2002). Proteins
were clustered by the similarity of predicted complexes upon their perturbation.
For each cluster the percentages of proteins executing the provided functions were
calculated. A dark red square in one of the two images means that 100% of the
clusters proteins is known to execute the function, whereas dark blue corresponds to
0%. The second image excludes all clusters in which not all proteins are annotated.
Clusters are ordered ascending in their size, as shown in the right table.

Here, a distribution of cluster sizes that is worse than with the originally selected
threshold of 1.8 still allows a precision of 8

12 = 0.67.

68



Figures

1.1 Binding of a protein to another molecule . . . . . . . . . . . . . . . . 1
1.2 Scaffold dependent interaction . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Competition of two proteins on the same binding domain . . . . . . 2

3.1 Example formula tree for A ∧B . . . . . . . . . . . . . . . . . . . . . 12
3.2 Example tableau for (2¬A) ∧ (3A ∨3B) . . . . . . . . . . . . . . . 13
3.3 Backjumping example . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Dynamic backtracking example . . . . . . . . . . . . . . . . . . . . . 16

5.1 Example for LCMA predicting different cliques . . . . . . . . . . . . 41
5.2 Example for a redundant path in a tree of removal instructions . . . 46
5.3 Complex prediction quality in dependence of the percentage of applied

constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Predicted complex size distribution dependent on the number of con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Duplication of false positive complexes upon refinement with only few

constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Measures for the difference between sets of predicted complexes . . . 54
6.2 Influence of different measures on master switch scores . . . . . . . . 55
6.3 Master switch prediction for the yeast proteins . . . . . . . . . . . . 56
6.4 Matching of metabolism functions to protein clusters . . . . . . . . . 58
6.5 Overlap between function sets . . . . . . . . . . . . . . . . . . . . . . 59
6.6 Probability for predicted protein clusters of different sizes to entirely

execute one metabolism function . . . . . . . . . . . . . . . . . . . . 60

69





Tables

3.1 Deterministic expansion rules for modal logic tableau . . . . . . . . . 14
3.2 Non-deterministic expansion rule for modal logic tableau . . . . . . . 14

4.1 Truth table for a constraint modelling scaffold dependency . . . . . . 25
4.2 Truth table for constraints modelling competition on the same binding

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Truth table illustrating Kripke model for minimal network state formula 32

5.1 Comparison of MCODE and LCMA prediction quality . . . . . . . . 41

71





Algorithms

3.1 The modal logic tableau . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 The modal logic tableau (formula expansion) . . . . . . . . . . . . . 19
3.3 The modal logic tableau (dynamic backtracking) . . . . . . . . . . . 20
3.4 The modal logic tableau (modification of dynamic backtracking) . . 21

4.1 Find all Kripke models for a minimal network state formula . . . . . 30

5.1 LCM algorithm (detect local cliques) . . . . . . . . . . . . . . . . . . 38
5.2 LCM algorithm (merge dense regions) . . . . . . . . . . . . . . . . . 38
5.3 LCM algorithm (fast check for overlapping dense regions) . . . . . . 39
5.4 Find clashes between minimal network states . . . . . . . . . . . . . 44
5.5 Algorithm to build a tree of removal instructions . . . . . . . . . . . 45

73





Bibliography

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2007).
Molecular Biology of the Cell. 5th ed. Garland Science.

Bader, G. and Hogue, C. (2003). An automated method for finding molecular com-
plexes in large protein interaction networks. BMC Bioinformatics 4.1, 2–29.

Brohee, S. and Helden, J. van (2006). Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics 7.1, 488–507.

Doberkat, E.-E. (2009). Stochastic Coalgebraic Logic. Tech. rep. Chair 10 of Com-
puter Sciences,TU Dortmund.

Gavin, A.-C. C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A.,
Schultz, J., Rick, J. M., Michon, A.-M. M., Cruciat, C.-M. M., Remor, M.,
Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K.,
Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse,
B., Leutwein, C., Heurtier, M.-A. A., Copley, R. R., Edelmann, A., Querfurth,
E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B.,
Kuster, B., Neubauer, G., and Superti-Furga, G. (2002). Functional organiza-
tion of the yeast proteome by systematic analysis of protein complexes. Nature
415.6868, 141–147.

Guimera, R. and Sales-Pardo, M. (2010). Missing and spurious interactions and the
reconstruction of complex networks. Proceedings of the National Academy of
Sciences 106.52, 22073–22078.

Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999). From molec-
ular to modular cell biology. Nature 402.6761 Suppl, C47–C52.

Ingram, P. J., Stumpf, M. P., and Stark, J. (2006). Network motifs: structure does
not determine function. BMC genomics 7.1, 108–120.

Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001). Lethality and
centrality in protein networks. Nature 411.6833, 41–42.

Jiang, P. and Singh, M. (2010). SPICi: a fast clustering algorithm for large biological
networks. Bioinformatics (Oxford, England) 26.8, 1105–1111.

Jung, S. H., Hyun, B., Jang, W.-H., Hur, H.-Y., and Han, D.-S. (2010). Protein
complex prediction based on simultaneous protein interaction network. Bioin-
formatics 26.3, 385–391.

Kreuzer, M. and Kühling, S. (2006). Logik für Informatiker. Pearson Studium.
Li, X.-L. L., Foo, C.-S. S., and Ng, S.-K. K. (2007). Discovering protein complexes

in dense reliable neighborhoods of protein interaction networks. Computational
systems bioinformatics / Life Sciences Society. Computational Systems Bioin-
formatics Conference 6, 157–168.

Li, X.-L. L., Tan, S.-H. H., Foo, C.-S. S., and Ng, S.-K. K. (2005). Interaction graph
mining for protein complexes using local clique merging. Genome informatics.
International Conference on Genome Informatics 16.2, 260–269.

Li, Z. (2008). “Efficient and Generic Reasoning for Modal Logics”. PhD thesis. School
of Computer Science, University of Manchester, UK.

75



Bibliography

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.
(2002). Network Motifs: Simple Building Blocks of Complex Networks. Science
298.5594, 824–827.

Monod, J., Wyman, J., and Changeux, J.-P. (1965). On the nature of allosteric
transitions: A plausible model. Journal of Molecular Biology 12.1, 88–118.

Spirin, V. and Mirny, L. A. (2003). Protein complexes and functional modules in
molecular networks. Proceedings of the National Academy of Sciences of the
United States of America 100.21, 12123–12128.

Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J. H., Böcker,
S., Stoye, J., and Baumbach, J. (2010). Partitioning biological data with tran-
sitivity clustering. Nature methods 7.6, 419–420.

76



Acknowledgements

I want to thank my supervisors Prof. Dr. Sven Rahmann and Dr. Eli Zamir, who
always offered me advice and support. Further, thank goes to the group of Dr. Eli
Zamir at the Max Planck Institute of Molecular Physiology Dortmund, who were so
kind to let me take part in their meetings and daily work. Lastly I want to thank
everybody who supported me in writing this thesis.





Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zi-
tate kenntlich gemacht habe.

Dortmund, den 27. August 2010

Johannes Köster

79




