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Abstract

Designing oligonucleotide sequences that are suitable for applications in nanobio-
technology or DNA Computing is not feasable without the help of computers. Such
molecules have to hybridize specifically and with high and homogeneous efficiency to
their respective complement. A computer program called dsc (DNA Sequence Com-
piler) translates specifications of physical, chemical and logical properties of DNA
molecules into base sequences meeting these specifications. It maps the search for
DNA sequences to the search for paths through a graph of base tuples with a fixed
length.

Two extensions of the underlying algorithm are described here, grouping se-
quences for a parallel path search and tolerating violations against the sequence
dissimilarity rule that enforces hybridization specificity. The effects of these exten-
sions on success probabilities and sequence quality is examined, and some strategic
hints on how to use dsc are given.

1 Introduction

The careful design of oligonucleotide sequences is an important step in rational en-
gineering nanobiotechnology constructs, implementing DNA Computing algorithms
and selecting probes for DNA microarrays. Such oligonucleotides are chains com-
posed of the four nucleobases adenine, cytosine, guanine and thymine, connected
through a sugar-phosphate backbone. The two distinct ends of the chain are la-
belled 5′ and 3′. In texts and databases they are usually represented as strings of
the characters A, C, G and T, written (if not stated otherwise) in 5′-to-3′ direc-
tion. A and T are called complementary bases because they may form base pairs
by forming hydrogen bridges. The same applies to C and G. If several consecu-
tive bases of a DNA molecule in 5′ − 3′-direction are complementary to a stretch
of consecutive bases of another molecule in 3′ − 5′-direction, these stretches are
also called complementary and they may form the famous double-helical duplex in
a reaction called hybridization. Since this reaction is, under proper environmental
conditions, occurring spontaneously, and is directed by the choice of base sequences,
DNA hybridization is an excellent molecular implementation of programmable self-
assembly, a bottom-up construction method in nanotechnology. Besides the rather
simple hybridization of single DNA strands on microarrays or in many DNA Com-
puting algorithms, larger sets of well-designed oligomers may also form complex two-
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or three-dimensional structural motifs, which can be employed as building blocks in
further self-assembly reactions [12].

Oligomers for nanotechnology or similar applications are supposed to hybridize
specifically with their intended partner (usually the perfect Watson-Crick-complement)
and avoid cross-hybridization with other DNA molecules that are partially comple-
mentary. Hybridization has to occur with high and homogeneous efficiency, in order
to gain high yields of intermediate and final products and to avoid a bias in self-
assembly. Depending on the application, additional requirements may emerge. For
example, certain subsequences like restriction sites might be fixed, or such sequences
may not occur in any oligomer. Since the number of different base sequence pools
grows exponentially with the number of nucleotides in all oligomers of the set, the
use of computers is essential for finding an oligomer pool meeting all requirements.

Seeman, the pioneer of DNA nanotechnology, also pioneered in the field of DNA
sequence design software with his program SEQUIN [31]. It supports the user in
designing DNA sequences for branched junction motifs. The user may manually add
single bases or short series of bases, and the program indicates whether short base
tuples of a preset length occur more than once (which should be avoided). Starting
with the famous experiment of Adleman in 1994 [2], the field of DNA Computing
emerged and grew, and so did DNA sequence design software.

While it was sufficient for Adleman’s demonstration to choose the sequences com-
pletely by random [2], it is more advisable to at least filter the random sequences for
having undesirable properties, like being too similar, having a wrong GC content, or
melting at too diverse temperatures [3, 5, 9]. More elaborate search strategies com-
prise stochastic local search [36, 37], adaptive walk [1, 23], simulated annealing [35],
or evolutionary algorithms [6, 7, 3, 27, 28, 17, 29, 32, 21, 22, 33]. The main objec-
tive, i.e. the likeliness of crosshybridization, has been modelled e.g. with Hamming-
distance [3, 36, 6], H-measure, a variant of Hamming distance measured against
the complement of the second sequence, and where the sequences are also shifted
against each other [18, 35, 32, 21], computational incoherence, a thermodynamic-
based measure for the rate of undesired hybridizations [26, 17, 27, 28], or the energy
gap, a safety distance between the least stable desired and the most stable unde-
sired hybridization [1, 23]. All these search methods have in common that they first
generate sequence sets and then evaluate and select them. Other methods enforcing
sequences dissimilarity already during the construction process are the template-
map method, where a small set of bitstrings with a minimum Hamming distance
and an error-correcting code are mapped onto a large set of DNA sequences with the
same minimum Hamming distance [15], a similar shuffle operator mapping sets of
short sequences on larger sets of sequences with a minimum H-measure [24], and the
use of DeBruijn-sequences [8] which restrict the occurence of short tuples and have
been extended to regard also the complements of tuples [34]. In recent years, some
tools with graphical user interfaces supporting the construction of the structural
motif have been published like Uniquimer [38], Tiamat [40] or GIDEON [4].

2 The DNA Sequence Compiler

The DNA Sequence Compiler (dsc) uses SEQUIN’s approach to sequence dissim-
ilarity, i.e. it avoids multiple occurrence of tuples of length nb, but it automates
the search process [10, 13]. It also enforces its dissimilarity restriction during the
construction process. A set of sequences is said to be nb-unique if every nb-tuple
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that is part of a sequence in the set occurs only once in this set, and its comple-
ment does not occur at all. In dsc, all nb-tuples for a chosen nb are arranged in a
directed graph (Figure 1), in which an edge between tuples t1 and t2 exists iff the
last nb − 1 bases of t1 are identical with the first nb − 1 bases of t2 (i.e., t2 may
follow t1 immediately in a sequence, with nb − 1 bases overlapping).

acgcgc

cgcgca

cgcgcc

cgcgcg

cgcgct

gcgcta

gcgctc

gcgctg

gcgctt
= acgcgctc

Figure 1: Graph of nb-tuples. A sequence of length 8 is represented by a path of 8−6+1 =
3 vertices containing 6-tuples. The vertex cgcgcg is self-complementary and therefore not
used.

Using this graph, nb-unique sequences can be mapped to vertex-disjoint paths,
with the additional requirement that also complementary tuples of visited vertices
do not appear in the solution path set. The DNA Sequence Compiler uses a simple
algorithm starting at random vertices, extending paths by randomly choosing un-
used successor vertices and backtracking when a tuple has no more unused successors
[13]. Additional requirements are also enforced, e.g. fixed subsequences determine
the choice of successor vertices, violation of restrictions concerning melting tem-
perature or GC-ratio of the molecule also trigger backtracking etc. A description
language for nucleic acid molecules called DeLaNA has also been developed as an
in- and output format for the compiler [11]. Since it allows the decomposition of
strands into substrands which are intended to hybridize with distinct other (parts
of) molecules or to stay single stranded in the nanotechnology application, a variety
of target structures for diverse applications can be specified and instantiated with
appropriate base sequences. A complete description of DeLaNA and all features
of the software can be found in the manual, available at http://ls11-www.cs.uni-
dortmund.de/molcomp/downloads/CANADA/Manual.pdf.

3 Grouping Sequences

3.1 Parallel path growth

The basic algorithm searches sequences one after another, i.e. the search for a
path is only started after the path for the predecessing sequences is completely
found. Backtracking tries only to find alternative paths for the currently generated
sequence, all sequences that have been generated before are no longer subject to cor-
rection. The path search algorithm gains more flexibility when it can grow several
paths in parallel, and particularly when it can still correct several paths by back-
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tracking. Thus, the parallel growth of paths increases the chances for successfully
finding sequences meeting all given requirements [13].

One would expect, following the arguments above, that most flexibility and
highest chances for success can be gained when generating all sequences in parallel.
Unfortunately, this is not feasable. It is possible to construct concatenations of
sequences such that choosing the successor of a particular nb-tuple retroactively
restricts the already made choice of previously selected tuples. Programming and
runtime effort for recognizing and resolving such conflicts would be quite high,
therefore a compromise between one-sequence-at-a-time and all-sequences-at-once
has been implemented: Assigning sequences to groups each of which is generated
in parallel such that no pair of sequences within the same group produces such a
conflict. This can be assured when no two sequences are generated in parallel that
are specified as concatenated in the in vitro application. This also includes sequences
that are, within the concatenation, seperated by another substring that is shorter
than the tuple length nb. For the sake of brevity more detailled explanations are
omitted here, because these would have to be long and would not add important
insight.

3.2 Grouping and Coloring

The problem of finding groups of ”independend” sequences can be mapped onto
the graph coloring problem. All sequences are arranged as vertices in a graph.
Two vertices are connected by an edge if the according sequences are specified as
concatenated in the application. This holds also if the two sequences are seperated
by another sequence shorter than nb or by a concatenation of sequences that has a
total length below nb. A pair of sequences will not produce a conflict as described
above if they are not adjacent (connected by an edge). Thus, solving the coloring
problem on this graph, i.e. labelling each vertex with a color such that no two
adjacent vertices have the same color, is the same as dividing all sequences into
conflict-free groups.

For quickly finding a good coloring, dsc uses the algorithm of Welsh and Powell
[39]. This heuristic greedy algorithm first sorts all vertices in decreasing order of
their degree. Then it proceeds through the vertices in this order and allocates each
vertex the first color that is not yet allocated to an adjacent vertex.

3.3 Effect of grouping on run time and success rate

3.3.1 Materials and methods

In order to verify the hypothesis whether grouping sequences for a parallel search
really benefits the search, i.e. increases the probability for a successful search and
maybe even lets dsc make fewer steps through the graph, 14 different test cases
were examined. For each such input scenario, dsc tried to find according sequences,
100 times with sequential search (called g1 strategy) and 100 times with grouping
and parallel search (gc strategy). In some cases (9 through 14), a third path search
strategy (gb) was applied (see below). Success rate (number of successfull runs /
100), the number of steps the algorithm makes through the graph, and the run-time
in ms were measured.

Table 1 gives a short summary of the examined scenarios. There are three groups
of test cases. The ”artificial” cases (1 – 4, see Figure 2) represent several scenarios
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Case Description

1 100 sequences of length 20, no concatenations, nb = 6 (positive control)
2 10-mer with 3’-end concatenation to four different 10-mers, nb = 5
3 10-mer with 3’-end concatenation to five different 10-mers, nb = 4,

violation tolerance
4 10-mer with 3’-end concatenation to five different 10-mers, nb = 4, no

violation tolerance (negative control)

5 3-armed junction, arm length = 10, sticky end length = 6, nb = 4
6 DAE-DX-tile comprising four 11-mers and two 10-mers, nb = 5
7 4× 4-tile comprising eight 10-mers and eight 11-mers, nb = 5, violation

tolerance
8 binary random number generator comprising four 20-mers, one 10-mer

and two preset 6-mers, nb = 4, violation tolerance

9 two groups of four 10-mers, four concatenation pairs, nb = 4
10 like case 9, with four additional concatenations, nb = 4
11 like case 9, with six additional concatenations, nb = 4
12 identical to case 11, but with violation tolerance
13 like case 9, with all concatenations between groups, nb = 4
14 identical to case 13, but with violation tolerance

Table 1: Overview of input scenarios. Test cases 1 – 4 are ”artificial”, 5 – 8 are ”real-
world” examples and 9 – 14 are ”bipartite” sequence sets. Variants of cases 2 and 3 (see
text) are not listed. See Figures 2 – 4 for sketches of the scenarios.

that motivated the hypothesis that parallel path search will improve the chance of
success. Case 1 is a simple pool of 100 sequences without any concatenation. This
case should not pose any problem to dsc and serves as a positive control. Cases 2
and 3 are typical ”branching” scenarios, where one sequence is concatenated with
several different other sequences, so that the path representing the first sequence
has to branch to several different paths. In case 3, the first path has to branch
to five different paths, but its last vertex has only four successors. Thus, in order
to make these five concatenations possible, it is necessary to tolerate violation of
the nb-uniqueness, i.e. dsc is allowed to use nb-tuples more than once here. This
violation tolerance is restricted to the first successor of the last vertex of the first
sequence. In case 4, such violations are not tolerated, so dsg must not find sequences
for this case, which serves as a negative control. Several different variants of cases
2 and 3 were examined (2a – 2g and 3a – 3c, Figure 2) in order to identify the
scenario properties that have the strongest influence on success chances and runtime.
Test cases 5 through 8 represent ”real-world” scenarios (Figure 3). They describe
structural motifs designed for nanotechnology applications. This group comprises
a three-armed branched junction [30], a double-crossover tile of the type DAE-DX
[16], a cross-shaped motif called 4× 4 motif [41], and duplexes with sticky ends for
the linear assembly of long helices representing binary random numbers [25, 10].
The last group of test cases (9 – 14, Figure 4) describes sequence sets that can
be devided into two independend groups, i.e. there are no concatenations of two
sequences of the same group. For these ”bipartite” cases, an additional grouping
strategy was applied. The identifiers for sequences of the first group all started with
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the letter ’x’, sequences of the second group carried identifiers starting with ’y’.
Thereby, dsc could explicitely devide the sequences into two user-defined groups for
parallel path search, without using the graph coloring algorithm. In all bipartite
cases, each sequence group comprises four sequences, with different concatenations
(Figure 4). Case 9 simply connects these sequences to four pairs. Four additional
concatenations are added in case 10, such that each sequence is concatenated with
two partners. Some more concatenations make case 11 more difficult, particularly
because one sequence (x4) now has four concatenation partners. Case 12 reduces
the difficulty for this scenario by tolerating violations of nb-uniqueness. In cases
13 and 14, each sequence has four partners, with violations forbidden in 13 and
tolerated in 14.

x

a

b

c

d

x

a

b

c

d

(nb = 4, all 20mers)2f

(nb = 4; a, b, c, d 20mers)2d

(nb = 4, all 10mers)2b

(nb = 5, all 10mers)2

(nb = 4, all 20mers)2g

(nb = 4; a, b, c, d 20mers)2e

(nb = 4, all 10mers)2c

(nb = 5, all 10mers)2a

x

a

b

c

d

x

a

b

c

d

(nb = 4, vt = 0, all 10mers)4

(nb = 4, vt = 1; a, b, c, d 20mers)3b

(nb = 4, vt = 1, all 10mers)3

e e

(nb = 4, vt = 1; a, b, c, d 20mers)3c

(nb = 4, vt = 1, all 10mers)3a

Figure 2: Concatenation diagrams of artificial test cases. Boxes represent sequences with
the 5’-end at the left and the 3’-end at the right end. Dashed lines show which sequences
are concatenated, and at which ends. In cases 2, 2b, 2d and 2f, the path for sequence x
must diverge into four paths for the sequences a through d. In the other variants of case 2,
four paths converge to one. In case 4 and the variants of case 3, x has five concatenation
partners. Length of unique tuples nb is varied as well as sequence length. vt=0 means no
violation of nb-uniqueness is allowed, whereas with vt=1 uniqueness violation is tolerated
in the first step of path branching.

Experiments were done using the -t option of dsc, version 3.04, on a Centrino
Duo processor with 2 GHz, 1 GB RAM, under Windows XP with Service Pack 2. All
DeLaNA files describing the input scenarios can be found at http://ls11-www.cs.uni-
dortmund.de/molcomp/downloads/example inputs.jsp. Because the pseudo ran-
dom number generator implemented in dsc uses a different random seed every sec-
ond, a pause of one second was enforced between successive runs.

3.3.2 Results and discussion

In all examined cases, the Welsh-Powell algorithm was able to find the optimal
number of colors (Table 2). This is not very surprising because the graphs are
rather small. For the bipartite cases 9 – 14, it is noteworthy that the gc strategy
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Figure 3: Structural sketches of real world cases. Colored arrows represent oligonucleotide
backbones, pointing towards the 3’-end. Light gray lines show base pairs (long) or un-
paired bases (short). Please note that in these sketches the number of lines does not
have to match the number of bases in the actual scenarios. Labels identify subsequences
treated as sequence objects by dsc. A bar above a label indicates the Watson-Crick com-
plement. For example, the green strand in structure 5 is the concatenation of seA, A and
the complement of B. The cases comprise a three-armed branched junction with sticky
ends (5), a double-crossover (DX-) tile (6), a 4x4-tile (7), and a set of duplexes with sticky
ends that can self-assemble to long double helices representing random binary numbers.
HindIII and BamHI are recognition sites for restriction enzymes.

also seperates all sequences into two groups, and thus should be comparable to the
gb method.

case 1 2 3 4 5 6 7 8 9 10 11 12 13 14
colors 1 2 2 2 3 2 3 2 2 2 2 2 2 2

Table 2: Number of colors found by the Welsh-Powell algo. For each test case, the optimal
number of colors was found.

The first test case not only served as a positive control that can always be
successfully generated by dsc, as described in Table 1. In an additional experiment,
the number of sequences in the pool was increased in order to find the limit of
dsc’s capabilities. As can be seen in Figure 5, the g1 strategy starts failing to find
all sequences when the pool size exceeds 111 and cannot generate a pool of 117
sequences or more. In contrast, the success rate for the gc strategy stays at 100
% up to a pool size of 119 before it decreases a bit more slowly than for the g1
strategy, finally reaching 0 % at 127 sequences. Furthermore, both strategies need
equal numbers of steps through the graph for finding sequences for case 1, but the
gc method is much faster considering real run time (Figure 6). The g1-strategy
needs the additional time for calling the actual generation routine more often (once
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Figure 4: Concatenation diagrams of bipartite cases. See caption of Figure 2 for expla-
nation of the representation and text for description of the cases.

per sequences instead of once per group), and particularly, for preparing several
data structures before calling the routine. Thus, if there are no concatenations, it
is advisable to use the gc strategy.
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Success rates for different pool sizes
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0.6

0.8

1.0

Figure 5: Success rates for sequence pools without concatenations. With the gc method
dsc is able to generate bigger pools and success rates declines more slowly.

Cases 2e and 2g are not considered in the further discussion, because some runs
with these scenarios ran too long and had to be stopped manually, so that it was not
possible to measure 100 runs. As expected, the negative control case 4 can never
be successfully processed. The other artificial input scenarios 2 and 3, representing
the motivation for parallel sequence search, in fact show a higher success rate for gc
than for g1. But since the cases are quite similar regarding the branching pattern
(one path diverging to or paths, see Figure 2), and the success rates are in both
cases and with both methods rather high, some variants were examined (2a – 2g
and 3a – 3c). These comprised mirrored branchings (four or five paths converging
to one) and were more difficult to process, since dsc had less tuples (with smaller
length nb) available, or more tuples were needed because of longer sequences. Figure
2 gives an overview over these variant cases and the differences between them. As
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Figure 6: Time for test case 1. The boxplots show the quartiles and the medians of all 100
runs. The left diagram shows the distribution of the number of steps for both methods,
g1 and gc. The dashed horizontal line indicates the minimum number of steps needed for
pool generation. The right diagram shows the run times for both methods, measured in
milliseconds. The horizontal lines are actually very flat boxes.

shown in Figure 8, these differences lead to notable differences in success rates. In
most variant cases, the advantage of gc over g1 became clearer. In particular, the
cases 2d, 2f, 3b and 3c, which were very difficult for g1 (success rates < 20 %),
could still be successfully processed using gc (success rates > 50 %). The cases 2a
and 3a were still too easy for both strategies, so that there is nearly no difference
in success rates between g1 and gc. In particular, the differences are smaller than
for their mirror cases 2 and 3. A rather surprising result is the drastic decrease in
success between mirrored cases 3b and 3c for the gc method.

While the artificial cases confirm the hypothesis, the real-world cases 5 – 8 show
a drastically different picture. Here, g1 is consistently more successful than gc. Two
of the bipartite cases (10 and 12) show similar results. Case 9 is too easy to show
any significant difference, and 11, 13 and 14 seem to be too hard for any strategy. No
bipartite case supports the hypothesis. Interestingly, the gb strategy is only in one
case (10) superior to the other two methods. In this case, it is in particularly much
more successful than gc, despite the fact that both methods seperate the sequences
into two groups, and only one such seperation is possible (all x-sequences into one
group, all y-sequences into the other, compare Figure 4). Running dsc again for
these cases, setting the protocol level to 2 (using the -p 2 option), revealed that
both strategies generate the sequence groups in different orders. While gb is fixed
to generate the x-sequences before the y-sequences, gc processes the y-sequences
first for cases 9, 10, 13 and 14. Obviously, these different search orders lead to
drastically different chances of success.

This inconsistency is also visible when regarding the time needed for sequence
generation.1 The artificial cases 2, 3 and their variants reveal an interesting differ-
ence in runtime between successful and failed runs (Figure 9, only some representa-
tive cases are shown, the boxplot for the other cases look similar). In the diverging

1Here, only the number of steps are shown and discussed. Boxplots for real runtime in milliseconds
looked identical to those for the number of steps in all cases but 1, where the difference is shown in Figure
6.
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Figure 7: Success rates for the 14 test cases. Each column shows the successful fraction
of all 100 runs. Each group of columns belongs to one test case. Within one group, the
left column shows the success rate of method g1, the right one of gc. For the bipartite
cases 9 – 14, the success rate for gb is shown as a middle column. Case 1 is the positive
control (allways successful), case 4 serves as the negative control (never successful).
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Figure 8: Success rates for the variants of cases 2 and 3. Cases 2e and 2g are not shown
because the full set of 100 runs could not be completed (see text).
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Figure 9: Number of steps through the graph for artificial test cases. The six boxes of
each plot show the distribution of needed steps for all, successful and failed run for both
strategies, g1 and gc, respectively. The dashed horizontal lines indicate the theoretical
minimum number of steps for successful generation. Please note that a zoomed-in plot
for case 3a is shown (bottom left), where some successful outliers and all failed runs are
not visible.

11



g1.all g1.succ g1.fail gc.all gc.succ gc.fail

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

Real−world test case 5: number of steps

g1.all g1.succ g1.fail gc.all gc.succ gc.fail

0e
+

00
1e

+
05

2e
+

05
3e

+
05

Real−world test case 6: number of steps

g1.all g1.succ g1.fail gc.all gc.succ gc.fail

0
50

00
00

10
00

00
0

15
00

00
0

Real−world test case 7: number of steps

g1.all g1.succ g1.fail gc.all gc.succ gc.fail

0
50

0
10

00
15

00
20

00

Real−world test case 7: number of steps

g1.all g1.succ g1.fail gc.all gc.succ gc.fail

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06

Real−world test case 8: number of steps

g1.all g1.succ g1.fail gc.all gc.succ gc.fail

0
50

00
0

10
00

00
15

00
00

20
00

00

Real−world test case 8: number of steps

Figure 10: Number of steps through the graph for real-world test cases. The layout for
each plot is the same as in Figure 9. Please note that zoomed-in plots for cases 7 and 8
are shown, where some runs are no longer visible.
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Figure 11: Number of steps through the graph for bipartite test cases. The layout for
each plot is the same as in Figure 9, but three additional boxes show the distributions for
the gb-strategy. Please note that several zoomed-in plots are shown, where some runs are
no longer visible.
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Figure 12: Continuation of Figure 11.

cases (left column in Figure 2), the failed runs needed less steps than the successful
ones. In the converging cases (right column in Figure 2), the opposite is the case.
This effect does not depend on whether g1 or gc is used. The critical region, where
dsc is most likely to fail, is around the concatenation point. This point lies at the
begin (5’-end) of sequences a – e in the diverging cases, but at their end (3’-end) in
the converging cases. In all artificial cases, sequence x is generated before the others.
Thus, when generating sequences a – e, some bases in the overlapping region are
fixed, restricting tuple choice. In the diverging cases this critical region is processed
when dsc just starts to generate sequences a – e (all with gc, or one of them with
g1), while in the converging cases, if the algorithm fails to converge the paths, it
will try to fix this with excessive backtracking through a – e, which uses a lot of
steps. The gc strategy even enhances this effect, drastically in the diverging cases,
very slightly in the converging cases. This is visible as greater differences between
the boxes for successful and failed runs in Figure 9. In the divergent cases, gc tends
to give up quicker, because it reaches the critical region immediately after having
generated x, whereas g1 first manages to generate some of the sequences a – e before
it fails. In the converging cases, the additional flexibility of gc unfortunately causes
dsc to try longer to find suiting sequences through excessive backtracking, before it
admits failure. This effect could also explain the drastic decrease in success for gc
from case 3b to 3c observed above.

In the real-world cases, again, life is not that simple. In cases 5, 6 and 8, failed
runs needed more time than successful ones, in case 7 the opposite is true. In case
8, gc slightly enhances this difference, in cases 5 and 6 it drastically weakens this
effect. In case 7, gc needed notably more steps for successful runs than g1. This
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latter phenomenon was not experienced in any of the artificial cases.
Also in the bipartite cases, the gc strategy sometimes speed up failed runs,

sometimes it slows them down (compare for example the structurally similar cases
13 and 14 in Figure 12). Interestingly, in all cases where gc and gb generate the
sequence groups in different orders (9, 10, 13 and 14), gb is consistently faster. This
demonstrates that the order in which the sequence groups are processed strongly
affects not only the chances of success, but also run time. Furthermore, it supports
the consideration above, that it is beneficial for the algorithm to hit the difficult
region (i.e. the branching region) early (i.e. at the 5’-end) when generating the
second group of sequences, with the bases of the neighboring sequences already
fixed.

In conclusion the experiments confirm the train of thoughts that lead to the
hypothesis, but they also showed that it cannot be generalized to all input scenarios.
Thus, grouping sequences and generating them in parallel can improve chances of
success as well as run time, but it does not have to. Therefore, when using dsc for
actual applications, it is advisable to try both strategies, g1 as well as gc. Only when
there are no concatenations, gc clearly outperforms g1. It could also be seen that the
order in which the sequence groups are generated can have a drastic effect on success
and run time. The version of dsc used here determines the order with Breadth First
Search for g1 and with the degree order of the Welsh-Powell-algorithm for gc. As a
consequence of the experimental results, a new version of the design software now
includes an option to change the group order by shuffling them randomly.

4 Error Tolerance

4.1 Being less strict

So far, nb-uniqueness was strictly enforced by dsc. The only exception was the
controlled tolerance of uniqueness violations around multiple concatenations of se-
quences that correspond to branching of paths through the tuple graph. But one
can suspect that there are input scenarios for which dsc does not manage to gener-
ate the desired sequences, just because there are only a few free nb-tuples missing.
Increasing nb would result in an overall quality loss for all generated sequences. In
this situation, it seems preferable to allow a few violations, i.e. the multiple use of
some tuples, so that only a local quality loss here and there has to be accepted in
order to increase the chance of success.

Therefore, two (rather simple) strategies for allowing errors everywhere, ran-
domly, and with an adjustable error rate have been added to dsc, and the effects
these strategies and different selections of their parameters have on success rates,
run time and real error rates were examined.

4.2 Two methods

Both strategies affect the successor choice when elongating paths through the tuple
graph. The first one allows errors with a fixed error probability (ep-strategy). In the
strict case, dsc collects all vertices succeeding the current one that are not yet used
(nor are their complements), and then randomly and uniformly selects one of these
candidates as the actual successor vertex. Using ep, the path search algorithm
ignores with a user-defined probability whether a vertex is already used or not
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when collecting successor candidates. This means that p is not the probability for
actually making an error, but only for taking an ”illegal” tuple into consideration
as a candidate. Whether it is tolerated or not is individually determined for each
illegal successor vertex.

The second strategy always considers already used tuples as appropriate succes-
sors, but prefers legal ones with a fixed bias (fb-strategy). This means that all four
successor vertices are considered as candidates, but the probability for each illegal
candidate is p times the probability for any legal one, where p is again a user-defined
parameter. For p = 1.0, each candidate is drawn with 25% probability, regardless of
whether it has been already used or not; for p = 0.5 each legal vertex is drawn with
1/3 and each illegal one with 1/6 probability. As a consequence of this strategy,
dsc always succeeds in generating sequences for any input scenario.2 Even when
there are no more unused vertices left, all four successors are taken as candidates,
nevertheless, and one of them is randomly drawn.

4.3 Effect on success rate, run time, error rate and error
position

Allowing dsc to (sometimes) use nb-tuples multiple times should definitely raise
chances for successful sequence generation. Furthermore, run time for successful
runs should decrease, because less backtracking will be necessary. On the other
hand, runs that fail to find all desired sequences may run longer, since the error
tolerance introduces more flexibility that dsc might exploit before admitting failure.
The rate of actually made errors should, of course, increase with parameter p, but
their location may be interesting. For the ep-strategy, errors should be uniformly
distributed over all positions within all sequences. But when regarding only success-
ful runs, i.e. runs where dsc has managed to find tuples around critical points like
multiple concatenations, errors in these regions might be necessary for success, and
therefore, errors might concentrate around critical points. For the fb-strategy, errors
should also occur more frequently later during the generation process, because then
there are fewer legal tuples left. In order to test these hypotheses, experiments were
made with both strategies.

4.3.1 Materials and methods

As input scenarios, a selection of the cases described in Table 1 was examined. Pools
of unconcatenated 6-unique 20mers are comprised under case 1. For evalutation of
the effects on success rates, varying pool sizes were examined. For other measure-
ments, pool size was fixed to 118 (run time and error rate) and 150 (error position).
Two pairs of mirrored artificial scenarios were selected (2b/2c and 2f/2g), as well
as a scenario where dsc has to make at least one error in order to be successful.
This case was examined in two variants, one where this error is allowed by violation
tolerance (3c), and a new case where this is not allowed, and the search algorithm
must fail with strict successor choice (3i). Three real-world cases 6, 7 and 8 were
also examined.

For these experiments, version 3.05 of dsc was used3. Successor-choice strategy
and the according parameter was varied by altering dsc’s configuration file. Sequence

2This holds only if no restrictions of other sequence properties like melting temperature are applied.
3The difference to version 3.04 used in the grouping experiment is the facility to allow errors.
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grouping using the coloring algorithm was applied in all experiments. Hardware is
the same as specified in section 3.3.1.

For the ep-strategy, success rates, run time, error rate and error position were
measured over 100 runs per test case. Since the fb-strategy always succeeds with-
out any backtracking, only error rates and error position were measured for this
variant. Run time is measured in steps through the tuple graph, error rate as
1 − number of different tuples used

number of tuples needed in strict case . For error position analysis, sequence number
and position in the sequence for nb-tuples occurring more than once were extracted
from the ReappearingBaseStrands.txt output files, and histograms were produced.
For case 1, ”typical” output files were selected, for other cases, the results of 10
different runs were accumulated to get meaningful numbers. For the ep-strategy,
parameter p was chosen from p ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, except for case 1 where
p = 0.4 and p = 0.5 were omitted. For fb, p ∈ {0.0, 0.1, 0.2, 0.5, 1.0, 2.0}.

4.3.2 Results and discussion

For the sake of brevity, not all results for each test case are presented, only some
representative examples are shown and discussed here. Missing results are similar
to those shown here or did not contribute anything helpful to the discussion.
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Figure 13: Success rates for case 1, ep-strategy. With growing p, bigger sequence pools
can be generated, and the decline of success rate becomes slower.

As shown in Figure 13, bigger pools can be generated with increasing p, which is
no surprise. More interesting, the distance between pool sizes that can reliably be
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generated from one p-value to the next increases with p, too. The maximum pool
sizes with success rates of 1.0 are 118, 121, 132, and 147 for p = 0.0, 0.1, 0.2, 0.3,
respectively, with distances of 3, 11 and 15. Furthermore, the distance between the
greatest pool size with success rate 1.0 and the smallest pool size with success rate
0.0 grows with p. Both effects are probably caused by a kind of positive feedback
loop, where higher p allows dsc to make more errors, so that it can generate more
sequences; and in these additional sequences, it can make even more errors, etc. If
one sets p to the maximum value of 1.0, errors are always allowed, and an infinite
set of pools can be generated.
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Figure 14: Success rates for artificial test cases, ep-strategy. All scenarios benefit from
error tolerance, but in notably different ways.

For p = 0.0, the convergent artificial test cases 2c and 2g start with lower success
rates than their divergent mirrored counterparts 2b and 2f, but with growing p, their
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success rates become quickly higher than those of their mirror cases (Figure 14).
Obviously, the convergent cases benefit more from the ep-strategy. In these cases,
the critical regions (path branching points) where uniqueness violations are most
helpful are processed rather late, when there are not much unused tuples left and
errors are more often necessary for success. In contrast, in the divergent cases these
critical regions are processed earlier, when there are still a lot of unused, legal tuples
available, and allowing used, illegal tuples has a weaker effect. The steep rise of the
columns for case 2g clearly suggests the existence of a ”bottleneck”. In order to cope
with a particularly difficult point in the path search, a certain p-level is necessary.
When this level is reached, the rest of the sequences obviuosly pose no problem for
the search algorithm. This can also be seen in case 3i, where at least one error
is necessary for success, since the first tuple of x must have five predecessors, but
there are only four tuples that would fit there (see Figures 1 and 2). When p is high
enough to reliably make this error, the rest of sequence x is no problem. Here, a
really high error probability (p = 0.4) is necessary, which leads to drastically more
errors than the one that is really needed (error rate of 25 %, compare Figure 18). In
order to keep the error rate small, the controlled tolerance of uniqueness violations
around path branching points still is a sensible strategy.
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Figure 15: Number of steps through the graph for artificial test cases, ep-strategy. The
boxes within one plot show the distributions for different values of p for successful or
failed runs only. Please note that zoomed-in plots for successful runs of cases 2c and 2g
are added, where some runs are no longer visible.

For pools of unconcatenated sequences, the run time measured in steps through
the tuple graph steadily decreases with p, as expected, because allowing more errors
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Figure 16: Continuation of Figure 15.

means less backtracking that has to be done (Figure 15). The same picture can be
seen for the successful runs of cases 2f, 2g, 3c and 3i, as well as for failed runs of
2c (Figures 15 and 16.) But in several cases (2g, 3c, 3i, 8), the failed runs show
a suprisingly different behaviour. There, run time first decreases with growing p,
before starting to increase again for higher values of p. This effect can also be seen
for the successful runs of case 8 (Figure 17). The successful runs of case 2c show
a reverse phenomenon, with run time first increasing and showing the expected
decrease only for p ≥ 0.2. In cases 6 and 7, run time grows continually over the
whole range of examined values of p. The runs and cases not yet mentioned did
not show much change over the examined range of p, mainly because they had not
much potential for reducing their run time. While the hypothesis that successful
runs need less and failed runs need more time with higher p is overall supported
by many testcase, it has to be refined in order to be generally valid. Failed runs
can benefit from small values of p, too, needing less time. The reason for this
phenomenon is not quite clear. Maybe dsc can here reach a critical point more
quickly that causes it to fail. On the other hand, an increase in run time can
be observed for successful runs if p is high enough or the input scenario is difficult
enough. Increasing p also means enlarging the search space, because the search is no
longer limited to the space of nb-unique sequence sets. Obviously, tolerating errors
has always a time-increasing as well as a time-decreasing effect, and it depends on
the actual value of p and the input scenario which of the two influences dominates
the actual net effect on run time.

The actual error rate grows with increasing p, which is as expected. but only
in some cases (like 2f, see Figure 18) this growth can be called linear. For the
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Figure 17: Number of steps through the graph for real-world test cases, ep-strategy. Plot
layout is the same is in Figure 15. Please note that the upper left plot (successful runs of
case 6) is zoomed in, so that some high outliers are not visible.
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Figure 18: Real error rates, ep-strategy. See text for details on how the error rate is
calculated. The real error rates grow with p, but only seldomly with a constant slope.
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unconcatenated case 1, the rate first grows nicely linear, but then makes a jump at
p = 0.4. The reason for this strange behaviour is yet unknown. An easier to explain
phenomenon is a kind of saturation effect that occurs in some cases (2c, 3i, 7). The
error rate first grows rather steadily, but between the rates for p = 0.4 and p = 0.5
there is no longer a notable difference. In the beginning of the path search process,
there are only legal, yet unused tuples. Therefore, a certain amount of legal tuple
choices is inevitable.

For error position analysis, case 1 had a pool size of 150 sequences, so dsc had
to make errors in order to be successful. The strategy parameter was set to p = 0.3.
These errors seem arbitrarily spreaded over all sequences in the pool (Figure 19).
Error frequencies for higher positions within the sequences (i.e. closer to the 3’-end,
and later in the generation process that tries to find all paths in parallel) seem a
little bit higher than for lower positions. Maybe the difference is so small because
more errors are made later, when there are less legal tuples to choose from, but the
other occurrence of any illegally chosen tuple is somewhere at an earlier position,
leading to a measured error there, too.

Because in the artificial cases sequences have different length, and in particular
the concatenation regions are shorter than the actual sequences, error frequencies
have been normalized for these cases by dividing the number of errors in a sequence
by the number of nb-tuples needed for the complete sequence. The resulting his-
tograms clearly support the hypothesis (Figure 19). For the variants of case 2,
the first 5 columns show frequencies of illegal tuples that lie completely in the se-
quences defined in the input file. The remaining columns show the frequencies of
illegal tuples that overlap two sequences at the concatenation site. For 3c and 3i,
concatenations start with the seventh column. These results confirm our hypothesis
that errors tend to accumulate around concatenation sites where paths through the
tuple graph have to branch.

Fixed bias
For case 1, two pool sizes, 118 and 214, were examined. Even with strict search

strategy allowing no errors, dsc should have no problem to generate 118 sequences.
For 214 sequences, setting p = 1.0 (legal and illegal tuples are chosen with equal
probability) resulted in a real error rate very close to 0.5, so this is a kind of
equilibrium point. If dsc would manage to put all legal tuples into the pool, and
then add the same number of illegal ones, one should get 2× 118 = 236 sequences.
Apparently, dsc does not exploit the full potential for choosing legal tuples so that
the equilibrium between legal and illegal tuples is alread reached at 214 sequences.
Regarding the real error rates for different settings of p for both pool sizes, a growth
with a rather narrow distribution can be seen (Figure 20, left hand plots). The right
hand plots in Figure 20 show the medians alone in a scatterplot with cartesian axes.
Saturation effects, as discussed above, can clearly be seen.

Because the gc-strategy is applied, the errors are more or less uniformly dis-
tributed over the sequences (data not shown), but a clearly higher error concen-
tration at later positions within the sequences (i.e. closer to the 3’-end) can be
witnessed for p ≤ 0.2 (Figure 21). Obviously, dsc had only few legal tuples left
when reaching these late positions. For p ≥ 0.5, errors are so abundant that no
position-dependent differences in frequency are visible.

As representatives of the other test cases, only 3c and 3i are shown and discussed
here, the other cases show a similar behaviour. The difference between these input
scenarios is that violations around the path branching points are tolerated in 3c
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Error frequency per sequence, case 1, error prob., p = 0.3
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Figure 19: Error positions, ep-strategy. Each histogram shows distributions of positions
where multiply occurring tuples are located. The upper right plot shows the error fre-
quency for each position within the 20mers of case 1, all other diagrams show error
distributions over the sequences. For the artificial cases, the last few columns correspond
to regions comprising tuples that overlap two concatenated sequences. Please note that
frequencies for these cases are sequence length normalized (see text).
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Figure 20: Real error rates, test case 1, pool sizes 118 and 214, fp-strategy. The boxes in
the left hand plots show the distributions of all respective 100 runs, the right hand plots
show only the medians with a properly scaled abscissa.
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Error frequency per position, case 1, fixed bias, p = 0.1
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Figure 21: Error frequency per position in sequence, test case 1, pool size 214, fp-strategy.
For small p, error accumulate at late positions (top row), for higher p, this difference
disappears (bottom row).
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Figure 22: Real error rate, artificial cases, fp-strategy. The plot layout is the same as in
Figure 20.
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Figure 23: Error frequency per sequence, artificial cases, fp-strategy. Errors tend to
accumulate in concatenation regions (left-hand columns). Please note that the error
frequencies are sequence-length-normalized (see text).
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but not in 3i. As the real error rates shown in Figure 22 clearly demonstrate,
this difference does not play a role anymore as soon as the fb-strategy is applied.
The left-hand plots also show saturation effects. The error frequency histograms for
p = 1.0 in Figure 23 again show slightly higher error frequencies in the concatenation
regions.

Discussion of ep and fp
Overall, the hypotheses are generally supported, but clearly have to be refined

and applied with care. Raising p of course improves the chances for a successful
sequence generation, but it is very difficult to predict the influence of a concrete
value for p on the actual success probability for a given input scenario. Run time for
successful as well for failed runs first decreases with growing p, as expected, but for
higher p it increases again. A smaller pressure to use backtracking (decreasing run
time) and a larger search space (increasing run time) for growing p have differently
strong influence on run time. For small p, the first effect dominates net run time,
for greater p, it becomes dominated by the second effect. While the real error
rate certainly grows with p, a saturation effect can often be witnessed, where a
basic amount of legal tuples seems to be inevitable. For small enough p, errors
concentrate around difficult path branching points, but for higher p, errors become
more uniformly distributed.

5 Conclusion and Outlook

In conclusion, both newly introduced strategies, sequence grouping for parallel path
search as well as allowing some multiple occurrences of tuples, make DNA sequence
design with dsc more flexible, since they allow to increase chances for successful se-
quence generation. But some surprising results contradicting the initial hypotheses,
particularly for the real-world input scenarios, demonstrate that it is difficult to
give general guidelines for strategy and parameter choice. But at least, some rules
of thumb can be derived from the experiments reported here:

• When there are no concatenations, always use the gc-strategy.

• Otherwise, it strongly depends on the actual input case whether g1 or gc has
higher chances of success. When in doubt, try both.

• The order in which the sequences or sequence groups are generated can have
a striking effect on success probability. Shuffle this order randomly, which is
now possible with a new version of dsc (version 3.09).

• If one decides to allow errors, always try the controlled violation tolerance
around path branching points first, before changing to less specific strategies
ep and fb. This loss of specificity becomes stronger with increasing p.

• The fb-strategy always succeeds in finding all desired sequences, but may amass
more errors than necessary. Also, errors will probably accumulate in sequences
or regions within sequences that are generated later. It is preferable to try ep
with a small p.

• A run with fp and a very small p may at least give a good hint at the rate of
errors that is necessary for success.

In all the experiments reported here, no other restrictions, concerning for ex-
ample melting temperature, GC-ratio or predetermined subsequences were applied.
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Adding such requirements may make the prediction of the influence of the presented
strategies on success rates, run time or real error rates even more complicated. But
a thorough investigation does not seem sensible, since the somewhat inconsistent
results show that it is already difficult enough to predict anything without these
restrictions. Judging from the author’s everyday experience with the software, ad-
ditional requirements tend to make dsc fail more often, and do so quicker.

Further developments of the design software may improve user-convenience by
automizing repetition of path search algorithm runs, with different parameters,
different strategies, different sequence orders, following the rules of thumb listed
above. Another desirable feature would be a graphical user interface that allows
the user to design the targeted spacial structure of the DNA molecules by drawing
double- and single-stranded molecules on the screen, with an automized translation
of such a drawing into a DeLaNA-description. A more functional development
could improve the position specificity of tolerated errors. After one has mananged to
successfully generate sequences with the ep-strategy using a certain p, most probably
there are a lot of multiple occurrences of nb-tuples that are not really necessary. In
a postprocessing step, dsc could try to get rid of these errors. For example, a simple
evolutionary algorithm could mutate the sequences, i.e. replace single nucleotides, in
the illegal tuples, measuring whether this improves the error rate or not. Improved
sequence sets are then further mutated and so on.

Finally, in vitro investigations in whether a certain amount of errors really has
measurable effects on the yield and purity of the target structures assembled from
the designed sequences would be extremely helpful in choosing sensible search strate-
gies and parameters.
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