
Faculty of Computer Science
Algorithm Engineering (Ls11)
44221 Dortmund / Germany
http://ls11-www.cs.uni-dortmund.de/

Algorithms for Planar Graph

Augmentation

Bernd Thomas Zey

Algorithm Engineering Report
TR09-1-009
Dec. 2009

ISSN 1864-4503

Diplomarbeit

Algorithms for Planar Graph
Augmentation

Bernd Thomas Zey

15. Dezember 2008

Gutachter:
Prof. Dr. Petra Mutzel
Dipl.-Inform. Carsten Gutwenger

Fakultät für Informatik
Algorithm Engineering (Ls11)
Technische Universität Dortmund
http://ls11-www.cs.uni-dortmund.de

Acknowledgement

The reader may forgive me for writing this in German:

An dieser Stelle möchte ich mich bei all jenen bedanken, die mich während der
Erstellung dieser Diplomarbeit und während des gesamten Studiums unterstützt
und begleitet haben.

Als erstes danke ich meinen beiden Betreuern, Prof. Petra Mutzel und Carsten
Gutwenger, für die vielen guten Gespräche, die hilfreichen Ideen und Korrekturen.
Martin Gronemann danke ich für die unzähligen Diskussionsrunden und für die
gemeinsame Studienzeit. Ein großer Dank geht an meine Eltern, die mich immer
unterstützt und mein Studium überhaupt ermöglicht haben. Außerdem möchte ich
meinen Großeltern für die tägliche Versorgung mit Kaffee und Kuchen danken.

i

Short Abstract

This diploma thesis deals with several special cases of the Planar Augmentation
Problem. Here, we search for a minimum number of edges whose addition bicon-
nects the graph while planarity is preserved. In general, this optimization problem is
NP-hard and the previously best known approximation algorithm achieves a ratio
of 5

3
. However, we present a counter-example which shows that its ratio is only two.

By constructing a polynomial-time reduction from the Planar Vertex Cover Prob-
lem, we prove that the problem remains NP-hard even in the restricted case where
all cutvertices belong to one biconnected component and the related SPQR-tree
(without Q-nodes) of this subgraph has height one. Furthermore, we present a new
polynomial-time approximation algorithm for this special case with ratio 5

3
. The

approach relies on the decomposition of the biconnected core into its triconnected
components by the SPQR-tree. Another special case considers the planar augmen-
tation on graphs with additionally fixed embedding. Here, an optimal augmenting
set can be computed efficiently. The developed algorithm works on the BC-tree and
runs in time O(|V |+ |E|+ α(|V |)|V |).

ii

Zusammenfassung

Diese Diplomarbeit behandelt mehrere Spezialfälle des Planaren Augmentierungs-
problems. Dabei wird eine minimale Kantenmenge gesucht deren Hinzufügen den
gegebeneen Graphen zweizusammenhängend macht und die Planarität beibehält.
Im allgemeinen Fall ist dieses Problem NP-schwierig und der beste bekannte Ap-
proximationsalgorithmus erreicht eine Güte von 5

3
. Allerdings präsentieren wir ein

Gegenbeispiel, welches zeigt, dass die Güte lediglich zwei beträgt. Durch eine
polynomielle Reduktion von dem Planar Vertex Cover -Problem können wir zeigen,
dass das Problem sogar für den eingeschränkten Fall NP-schwierig bleibt, bei dem
alle Schnittknoten zu derselben Zweizusammenhangskomponente gehören und der
zugehörige SPQR-Baum (ohne Q-Knoten) eine Höhe von eins hat. Darüber hinaus
präsentieren wir für diesen Spezialfall einen polynomiellen Algorithmus mit Güte
5
3
. Der Ansatz basiert auf der Zerlegung des zweizusammenhängenden Kerns in die

Dreizusammenhangskomponenten durch den SPQR-Baum. Ein weiterer Spezial-
fall betrachtet die planare Augmentierung auf Graphen bei denen die Einbettung
zusätzlich fixiert ist. Hierfür kann eine optimale Lösungsmenge effizient berech-
net werden. Der entwickelte Algorithmus arbeitet auf dem BC-Baum und hat eine
Laufzeit von O(|V |+ |E|+ α(|V |)|V |).

iii

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Diplomarbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, sowie Zitate
kenntlich gemacht habe.

(Bernd Thomas Zey)

iv

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Graph Theory . 5

2.2 Planar Graphs . 6

2.3 BC-Tree . 8

2.4 SPQR-Tree . 9

2.4.1 Definition . 10

2.4.2 Example Decomposition . 12

2.4.3 Properties of SPQR-Trees . 14

2.5 NP-Completeness . 15

3 (Planar) Augmentation Problems 19

3.1 Problem Definitions . 19

3.2 Basics . 20

3.3 NP-Completeness . 23

3.4 Approximation Algorithms . 25

3.5 Connectivity . 28

4 Planar Augmentation with Fixed Embedding 33

4.1 The Algorithm . 33

4.2 Optimality . 39

4.3 Running Time and Space . 44

5 Planar Augmentation for Almost Biconnected Graphs 47

5.1 Introduction . 47

5.2 NP-Completeness . 50

5.3 The Approximation Algorithm . 55

5.3.1 R-Node . 57

5.3.2 S-Node . 60

5.3.3 P-Node . 60

5.4 Approximation Ratio . 61

5.5 Running Time . 67

6 Summary and Outlook 69

v

CONTENTS

List of Figures 71

List of Algorithms 73

Bibliography 75

vi

Chapter 1

Introduction

Graphs are a mathematical structure that represent objects and their relations.
In classical graph theory, the objects are called vertices or nodes and a relation
between two objects is called an edge. Graphs are utilized to visualize informations
in a wide field of applications, not only in mathematics and computer science, but
also in everyday life. Roadmaps, genealogical trees and organigrams are only three
examples. Figure 1.1 illustrates a typical subway map, in this case of London. The
stations are the vertices and the rail tracks between the stations correspond to the
edges.

Of course, graphs play a very important role in various fields of computer science,
for example:

• Software Engineering : Graphs and diagrams illustrate workflows and rela-
tionships between objects. Examples are UML (Unified Modeling Language)
diagrams like class, activity, sequence, and state diagrams.

• Database Design: (S)ER ((Structured) Entity Relationship) diagrams model
the relationship between the different tables of a database.

• VLSI (Very-Large-Scale Integration) – Chip Design: Chip designers use graphs
to visualize the wiring scheme.

• General computer science: BBD’s (Binary Decision diagrams) are a graph-
based data structure for boolean formulas and petri nets describe discrete
distributed systems.

The main advantage of representing information as graphs is the possibility of
visualizing graphs by drawing them into the plane and making the information
readable and easier accessible. But not every drawing of a graph is “good”. Simple
graphs with few objects are easy to draw by hand, but since graphs grow in complex-
ity and size, it becomes more difficult to find an appropriate layout. The problem
of computing a nice drawing is known under the term (automatic) graph drawing,
which is an important research field in computer science. Introductory information
about graph drawing algorithms can be found in [1], [29], and [34].

1

Chapter 1. Introduction

Figure 1.1: An excerpt of London’s subway map.

Like mentioned above, not all drawings are nice and easy to read. There do
exist certain aesthetic criteria, which should, if they are optimized, lead to good
drawings.

• Minimum number of crossings : Crossings reduce the readability of a draw-
ing, since they make it more difficult to follow the edges and understand the
structure of the graph. This criterion is often considered to be the most im-
portant one. In VLSI design it is very important that the number of crossings
is minimized, since a crossing of two wires increases the number of layers of
the chip.

• Minimum number of bends : The number of bends is important for orthogonal
drawings and the minimization of this criterion leads to simpler drawings.

• Minimum drawing area: Usually, diagrams are presented on paper or an output
device, which have limited visible area. A large drawing has to be scaled down
to fit the output size, thus decreasing its readability.

• Maximum angle: Adjacent edges should have an adequate angle at the com-
mon vertex because otherwise it is difficult to distinguish between single edges.

• Small edge-length: Unnecessary long distances between adjacent vertices com-
plicate the identification of relations.

• Symmetries : If a graph contains symmetries then the drawing should make
them visible.

In general, it is not possible to optimize all criteria. The minimization of cross-
ings is actually an NP-hard problem, see [17]. Furthermore, the optimization of
two criteria sometimes works conversely. For example, a layout that emphasizes
symmetric structures might have more crossings than a non-symmetric layout.

There are many different approaches for graph drawing algorithms. One of them
is the class of straight-line grid drawings for planar graphs which are based on an

2

(a) (b)

Figure 1.2: (a) An example for the layout computed by a straight-line algorithm
and (b) the same graph layouted by the mixed-model algorithm.

ordering of vertices, namely the canonical ordering. De Fraysseix, Pach, and Pollack
introduced the ordering for maximal planar graphs, see [14]. Kant generalizes the
ordering in [30] to work on triconnected planar graphs, too. A typical result of a
straight-line layout is presented in Figure 1.2 (a), whereas Figure 1.2 (b) illustrates
a drawing computed by the mixed-model algorithm.

These algorithms require planar and triconnected graphs. In [20], Gutwenger
and Mutzel modified the first phase of the algorithms to work also for biconnected
planar graphs. Both authors also improved the mixed-model algorithm in [21].

To apply such an algorithm on general graphs, they have to be made biconnected
by adding new edges. Afterwards, an appropriate layout can be computed and the
inserted edges can be removed. Since the added edges have a great influence on the
layout, we search for the minimum number of edges to be added. Furthermore, it is
necessary that the inserted edges preserve planarity. The optimization problem of
inserting the minimum number of edges into a planar graph for obtaining a planar
and biconnected graph is called the Planar Augmentation Problem. It has been
introduced by Kant and Bodlaender in [31] and is investigated further within this
work.

This thesis is organized as follows. In Chapter 2, we introduce the fundamentals
needed throughout this thesis. We will define the central terms around embeddings,
planar graphs and biconnectivity, as well as two data structures for graph decom-
position, the BC- and the SPQR-tree. Chapter 3 gives an introduction to augmen-
tation problems with focus on the Planar Augmentation Problem. Furthermore, we
present complexity results, previous ideas, and approaches for several augmentation
problems. Chapter 4 deals with a restricted version of the Planar Augmentation
Problem. Here, the embedding of the graph is fixed and thereby, an optimum solu-
tion becomes efficiently solvable. Another special case of the Planar Augmentation
Problem is considered in Chapter 5. There, the input graphs have a restricted bi-
connected structure, that is all cutvertices belong to one biconnected component.
Although this problem seems not as complex as the general case, we show that it
is also NP-hard. This new polynomial-time reduction implies that the problem
remains NP-hard even in case the SPQR-tree (without Q-nodes) has only height

3

Chapter 1. Introduction

one. We introduce a new approximation algorithm based on SPQR-trees for this
special case with approximation ratio 5

3
. Finally, the last chapter summarizes the

results and gives an outlook on possible future work.

4

Chapter 2

Preliminaries

In this chapter we introduce the fundamentals required throughout this thesis. We
start in Section 2.1 with basic terms and results from graph theory. In Section
2.2, we consider planar graphs and their combinatorial embeddings. Further, we
give a detailed introduction to BC-trees (Section 2.3) and SPQR-trees (Section 2.4),
which are the two central data structures of the algorithms presented in the following
chapters. In the last section, we take a short look at the complexity of algorithmic
problems and define the terms concerning NP-completeness.

2.1 Graph Theory

The following definitions are based on Diestel [9].

Definition 2.1 (Graph). A graph G = (V,E) is a pair, consisting of the finite
set V and the finite multiset E. The elements of V are the vertices (or nodes), the
elements of E are its edges. An edge e is a pair of distinct vertices v, w ∈ V , denoted
by e = (v, w).

Notice that the above definition prohibits self-loops, i.e. there is no vertex related
to itself. A graph is considered simple, if and only if the edge set E is not a multiset,
hence every edge is unique. Let G = (V,E) be a graph. A graph G′ = (V ′, E ′) with
V ′ ⊆ V and E ′ ⊆ E is called a subgraph of G.

Definition 2.2 ((Un)Directed Graph). A graph is directed if its edges are defined
as an ordered pair, otherwise the graph is undirected.

In this thesis, we will consider undirected graphs unless stated otherwise.
Let e = (v, w) be an edge. We say e connects the two vertices v and w, which are

called its endpoints. The vertices v and w are adjacent to each other and incident
to e. On the other hand, e is incident to v and w. Two edges e1 6= e2 are adjacent
if they share a common endpoint.

The degree of a vertex v is its number of incident edges and is denoted by deg(v).
In a complete graph every pair of vertices is adjacent. If the vertex set of a graph

can be divided into two disjoint subsets V1, V2 ⊂ V , with V1, V2 6= ∅ and the property
that no edge has both endpoints in one set, then the graph is called bipartite.

5

Chapter 2. Preliminaries

A path P = (V,E) is a directed or undirected graph with distinct vertices
x0, ..., xk and edge set E = {e0, ..., ek−1} such that ei connects xi and xi+1 (i =
0, ..., k− 1). The length of a path is its number of edges. A path augmented by one
edge between xk and x0 is a cycle.

We denote by G − v and G − X the graph that results from G by deleting a
single vertex v or a subset of vertices X, respectively, including the incident edges.
A graph G is connected if there exists a path between each pair of vertices. Instead
of calling a graph ‘not connected’, it is called disconnected. The maximal connected
subgraphs of G are called the connected components of G.

Definition 2.3 (k-Connectivity). An undirected graph G = (V,E) is called k-
connected, for k ∈ N, if |V | > k and G−X is still connected, for any subset X ⊂ V
with |X| < k.

An equivalent definition of k-connectivity is, that there have to exist at least k
different paths between any pair of vertices v, w that are pairwise vertex-disjoint
except for their endpoints.

For the cases k = 2 and k = 3, a graph is called biconnected and triconnected,
respectively. The biconnected subgraphs are called the biconnected components or
short blocks (compare Section 2.3).

We say that a subset of vertices X ⊂ V separates a connected graph G, if G−X is
disconnected. A separating set of size one is a cutvertex and of size two a separation
pair. If a separation pair {v, w} is adjacent then the corresponding edge (v, w) is a
bridge. Thus, the bridges of a graph are those edges that do not lie on any cycle.
The bridge-connected components of a graph are the connected components that
arise after deleting all bridges. A graph is bridge-connected if it does not contain
any bridge.

Definition 2.4 (Forest, Tree). An acyclic graph, one not containing any cycle, is
called a forest. A tree T is an acyclic and connected graph.

We will refer to the vertices of trees as nodes.
The nodes of degree one in a tree are its leaves, whereas all other nodes are inner

nodes. A tree can have a designated node, the root. We then speak of a rooted tree
and every edge of the tree has an orientation, that is they are all directed towards
or away from the root. A node v is the parent of node w if they are adjacent and v
lies on the unique path from w to the root. Then w is a child of v.

The height of a rooted tree is the length of the longest path from the root to a
leaf.

2.2 Planar Graphs

Graphs are basically utilized to represent the relations between certain objects. By
drawing graphs on the plane, they get a graphical representation and a certain
topological structure. Furthermore, drawings of graphs lead to an important type
of graphs, namely the planar graphs.

The following definitions are based on [43].

6

2.2. Planar Graphs

(a) (b) (c) (d)

Figure 2.1: Four different drawings of the same planar graph.

Definition 2.5 (Drawing). A drawing Γ of a graph G = (V,E) is a function
that maps each vertex v ∈ V of G to a point Γ(v) in the plane and each edge
e = (v, w) ∈ E to a curve Γ(e) with endpoints Γ(v) and Γ(w). A drawing is planar
if no two curves Γ(e1) and Γ(e2) cross each other, except in their endpoints.

Definition 2.6 (Planar Graph). A graph G is called planar if there exists a planar
drawing of G.

A planar drawing of a graph partitions the plane into connected regions, bounded
by the curves of the edges. These regions are called faces. The boundary of a face
f consists of the vertices and edges whose image forms the boundary of f in the
drawing. The unbounded face enclosing the graph is called the external face. An
outerplanar graph is a planar graph where all vertices lie on the external face.

A drawing Γ is the description of a graphical representation of a graph. Two
drawings of the same graph can look very different but have the same topologi-
cal structure. To define the topological equivalence, we introduce two equivalence
classes. We say that two planar drawings Γ1 and Γ2 of a graph G = (V,E) are weakly
equivalent, if for every vertex v ∈ V , the circular order of the incident edges around
v in clockwise order is the same in Γ1 and Γ2. Furthermore, two planar drawings are
strongly equivalent, if they are weakly equivalent and the external face is the same
in both drawings.

Definition 2.7 (Combinatorial Embedding). The combinatorial embeddings of
a planar graph are the equivalence classes of its drawings with respect to the weak
equivalence relation.

Definition 2.8 (Planar Embedding). The planar embeddings of a planar graph
are the equivalence classes of its drawings with respect to the strong equivalence
relation.

Hence, the cyclic order of incident edges of every vertex defines a combinatorial
embedding. An additionally given external face defines a planar embedding of the
graph.

We will use the term embedding both for combinatorial and planar embedding,
if it is clear from context which is the desired one.

Figure 2.1 illustrates a graph with four different drawings. The drawings in (a)
and (b) are strongly equivalent, since only the positions of the vertices are slightly

7

Chapter 2. Preliminaries

modified, hence they have the same planar embedding. Drawing (c) looks different
to the first two ones, but is weakly equivalent to them, because the cyclic order of
the incident edges is the same. Only the external face differs, since in (a) and (b)
the face bounded by vertices {0, 1, 4, 3, 2} is the external one, whereas in (c) the
vertex set {0, 2, 1} forms the external face. Drawing (d) looks quite similar to (a),
but the cyclic order of the incident edges around the vertices is different. In fact,
the sequences of incident edges of each vertex are mirrored. Therefore, the drawings
are not weakly equivalent.

Deciding whether a graph is planar or not is a well-studied problem. The first
linear-time algorithm is due to Hopcroft and Tarjan [25]. In [5], Boyer and Myrvold
presented a simpler approach based on Depth-First-Search, that also returns an
embedding of the graph, if planar.

One sufficient criteria for planarity is the well-known theorem by Kuratowski [35].
Let Kn denote the complete graph on n vertices and Kn,m the complete bipartite
graph G = (V1 ·∪V2, E) with |V1| = n and |V2| = m. A subdivision of a graph
G = (V,E) emerges from a series of split-operations on the edges of E. A split-
operation on edge e = (v, w) replaces e by two edges (v, w′) and (w′, w). Subdivisions
of K5 and K3,3 are called Kuratowski subdivisions.

Theorem 2.1. A graph is planar if and only if it does not contain a subgraph that
is a K5– or K3,3–subdivision.

In [6], Chimani, Mutzel, and Schmidt presented a linear time algorithm that
extracts the Kuratowski subdivisions, based on the algorithm by Boyer and Myrvold
[5].

An important fact on planar graphs is its bounded size in the number of vertices.
The upper bound can be concluded from Euler’s formula for polyhedra.

Theorem 2.2. Let G = (V,E) be a planar connected graph with n := |V | > 1 and
m := |E|, Π a planar embedding of G and f the number of faces. Then the following
equation is true:

n−m+ f = 2

Corollary 2.3. A planar graph G = (V,E) with |V | ≥ 3 has at most 3|V |−6 edges,
hence the number of edges is linearly bounded by the number of vertices.

2.3 BC-Tree

A block-cutvertex-tree, or short BC-tree, represents the biconnected structure of a
graph.

Definition 2.9 (BC-Tree). For a connected graph G = (V,E) the corresponding
BC-tree bc(G) = (Vbc, Ebc) is defined as follows:

• The node set Vbc is the union of two disjoint sets Vb and Vc.

• Each block in G is represented by one b-node in Vb and each cutvertex by one
c-node in Vc.

8

2.4. SPQR-Tree

(a) (b) (c)

Figure 2.2: (a) A connected graph, (b) its blocks B1, B2, B3, B4, and (c) the corre-
sponding BC-tree rooted at the b-node B1; the cutvertices are 2,3, and 7.

• A b-node b ∈ Vb and a c-node c ∈ Vc are adjacent, if and only if the cutvertex
represented by c belongs to the block represented by b.

A BC-tree has a designated root that is always an inner node, except for the
trivial case where the graph is already biconnected. Figure 2.2 presents an example
of a graph and its related BC-tree. In this thesis, we will represent b-nodes by
rectangles and c-nodes by circles.

Since cutvertices belong to at least two blocks, c-nodes have degree ≥ 2. There-
fore, a c-node cannot be a leaf and hence, all leaves in a BC-tree are b-nodes.

Each induced subgraph of a leaf-block always consists of at least one vertex that
is no cutvertex. We refer to these vertices of the graph as simple vertices.

Let G = (V,E) be a connected graph and bc(G) = (Vbc, Ebc) its related BC-tree.
Obviously, the number of c- and b-nodes in Vbc is O(|V |). The number of edges in
a tree with n nodes is always n − 1. Therefore the total size of a BC-tree is linear
in the number of vertices of the underlying graph.

A BC-tree can be computed by using a well-known Depth-First-Search approach,
see [39]. The running time is also linear in the input size of the graph. We gather
the last two results in the following corollary:

Corollary 2.4. A BC-tree of a graph G = (V,E) can be computed in O(|V |+ |E|)
time and uses O(|V |) space.

2.4 SPQR-Tree

The SPQR-tree data structure represents the decomposition of a biconnected graph
into its triconnected components. The data structure was first introduced by Di
Battista and Tamassia [2]. Their definition of the decomposition tree is based on
the ideas of Bienstock and Monma [4] and is related to the classical decomposition
of biconnected graphs into triconnected components by Tutte [40] and Hopcroft
and Tarjan [24]. In [2], SPQR-trees were originally used for incremental planarity

9

Chapter 2. Preliminaries

(a) (b) (c)

Figure 2.3: (a) Biconnected graph, (b) the split components with respect to split
pair {0, 7}, and (c) split pair {1, 6}.

testing. Since then, SPQR-trees were utilized for solving many problems in graph
theory.

Later on, we will show how SPQR-trees can be used to enumerate all combinato-
rial embeddings of a biconnected graph (Section 2.4.3). Unfortunately the number of
embeddings is exponential in general. However, there are several problems, mostly
concerning planar graphs, that can be solved in linear time using the SPQR data
structure. An example is the problem of inserting an edge into a planar graph
with the minimum number of crossings, where all crossings involve the new edge.
Gutwenger, Mutzel, and Weiskircher showed in [23] that this problem can be solved
in linear time.

2.4.1 Definition

Our definition of the SPQR-tree data structure is adopted from the one of Di Battista
and Tamassia in [3]. A slightly modified, detailed introduction can be found in [43].

Before we can define the SPQR-tree we have to introduce a few more terms. Let
G be a biconnected graph. A split pair of G is either a separation pair or a pair of
adjacent vertices. A split component of a split pair {v, w} is either an edge (v, w)
or a maximal subgraph G′ of G such that {v, w} is not a split pair of G′. Let {s,t}
be a split pair of G. A maximal split pair {v, w} of G with respect to {s, t} is such
that, for any other split pair {v′, w′}, vertices s, t, v, and w are in the same split
component; for an example see Figure 2.3.

Let e be an edge of G between vertices s and t, called the reference edge. The
SPQR-tree T of G with respect to e describes a recursive decomposition of G induced
by its split pairs.

Definition 2.10 (SPQR-Tree). Tree T is a rooted ordered tree whose nodes are
of four types: S, P, Q, and R. Each node µ of T has an associated biconnected
multigraph called the skeleton of µ and denoted by skeleton(µ). Tree T is recursively
defined as follows:

Trivial Case: If G consists of exactly two parallel edges between s and t, then T
consists of a single Q-node whose skeleton is G itself.

Parallel Case: If the split pair {s, t} has at least three split components G1, ..., Gk

10

2.4. SPQR-Tree

(a) (b) (c)

Figure 2.4: Pertinent graphs on the left and the related skeletons of (a) S-, (b) P-,
and (c) R-nodes on the right with reference edge e.

(k ≥ 3), the root of T is a P-node µ. The graph skeleton(µ) consists of k
parallel edges between s and t, denoted e1, ..., ek, with e1 = e.

Series Case: Otherwise, the split pair {s, t} has exactly two split components,
one of them is the reference edge e, and we denote the other split component
by G′. If G′ has cutvertices c1, ..., ck−1 (k ≥ 2) that partition G into its blocks
G1, ..., Gk, in this order from s to t, the root of T is an S-node µ. Graph
skeleton(µ) is the cycle e0, e1, ..., ek, where e0 = e, c0 = s, ck = t and ei connects
ci−1 with ci (i = 1, ..., k).

Rigid Case: If none of the above cases applies, let {s1, t1},...,{sk, tk} be the max-
imal split pairs of G with respect to {s, t} (k ≥ 1), and, for i = 1, ..., k, let Gi

be the union of all the split components of {si, ti} but the one containing the
reference edge e. The root of T is an R-node µ. Graph skeleton(µ) is obtained
from G by replacing each subgraph Gi with the edge ei between si and ti.

Except for the trivial case, µ has children µ1, ..., µk in this order, such that µi is
the root of the SPQR-tree of the (multi) graph Gi ∪ ei with respect to reference edge
ei (i = 1, ..., k).

The tree so obtained has a Q-node associated with each edge of G, except the ref-
erence edge e. We complete the SPQR-tree by adding another Q-node, representing
the reference edge e, and making it the parent of µ so that it becomes the root.

We need to introduce some further notations. Let µ be an S-, P-, or R-node
with the children µ1, ..., µk and related reference edges ei = (si, ti), such that µi is
the root of the SPQR-tree of Gi ∪ ei. The endpoints of edge ei are called the poles
of node µi. Edge ei is said to be the virtual edge of node µi in the skeleton of µ and
of node µ in the skeleton of µi. We call node µ the pertinent node of ei in skeleton
of µi, and µi the pertinent node of ei in the skeleton of µ. The virtual edge of µ in
the skeleton of µi is called the reference edge of µi.

Let eν be an edge in skeleton(µ) and ν the pertinent node of eν . Deleting
edge (µ, ν) in T splits T into two connected components. Let Tν be the connected
component containing ν. The expansion graph of eν , denoted with expansion(eν),
is the graph induced by the edges that are represented by the Q-nodes in Tν . We

11

Chapter 2. Preliminaries

(a) (b) (c)

Figure 2.5: (a) Biconnected graph, (b) the skeleton µ of an R-node in the SPQR-tree
with virtual edges e1, e2, and e3, and (c) the graph expansion+(e1).

further introduce the notation expansion+(eν) for the graph expansion(eν)∪ eν . An
example is given in Figure 2.5.

The pertinent graph of a tree node µ results from replacing all edges in skele-
ton(µ) by its expansion graph except for the reference edge of µ and is denoted
with pertinent(µ). Hence, if eν is a skeleton edge and ν its pertinent node, then
expansion+(eν) equals pertinent(ν). For a vertex v in G, we call a node in T whose
skeleton contains v an allocation node of v. Figure 2.4 gives examples for pertinent
graphs and their related skeletons for the different node types.

2.4.2 Example Decomposition

In this section we perform an example decomposition of the biconnected graph G
shown in Figure 2.6 (a). The resulting SPQR-tree T , with the associated skeleton
graphs of each tree-node, is presented in Figure 2.6 (b).

As reference edge for the first decomposition step we select edge e = (0, 1). The
graph G has two split components with respect to e: C1 and C2. Let C1 be the
split component that only consists of edge (0, 1) and let C2 be G − (0,1). Because
C2 is biconnected, the rigid case holds. The maximal split pairs of G are (0, 8),
(1, 8) and (2, 8). Therefore the skeleton graph of the R-node consists of the vertex
set {0, 1, 2, 8} and edges (0, 1), (0, 2), (0, 8), (1, 8), and (2, 8). The current R-node
becomes the root of the SPQR-tree and the decomposition proceeds recursively with
the subgraphs induced by the split pairs which are augmented with their reference
edges. Let G1 be the subgraph induced by (0, 8), G2 by (1, 8) and G3 by (2, 8).
Additionally, the three Q-nodes associated with the edges (0, 1), (0, 2), and (1, 2)
are created and inserted into the current SPQR-tree. For simplicity, the Q-nodes
are omitted in Figure 2.6.

We continue the decomposition with G1 and reference edge (0, 8). In this case,
the graph consists of exactly two split components, again one being the reference
edge. This time, the other split component is not biconnected and has two cutver-
tices, namely 3 and 7. Hence, an S-node and two Q-nodes are created. The related
skeleton of the S-node contains the cycle {(0, 3), (3, 7), (7, 8), (0, 8)} and the two
trivial cases occur for the edges (0, 3) and (7, 8). Furthermore there is one recursive
step for the subgraph induced by the two cutvertices.

12

2.4. SPQR-Tree

(a)

(b)

Figure 2.6: (a) Biconnected graph and (b) the related SPQR-tree rooted at the
R-node. The Q-nodes are omitted for simplicity.

13

Chapter 2. Preliminaries

This subgraph, shown in the bottom left corner of Figure 2.6 (b), is triconnected
and therefore has no more split pairs. The SPQR-tree is extended by one R-node
and five Q-nodes. The recursive construction stops and jumps back to the unfinished
decomposition in the root.

There the two subgraphs G2 and G3 still have to be proceeded. The first one
consists of the vertices 1, 5, 8, edges (1, 5), (5, 8), and reference edge (1, 8). They
describe a cycle and therefore one S-node is created with two adjacent nodes. These
nodes are both Q-nodes because their blocks each consist of one single edge, namely
(1, 5) and (5, 8), respectively.

The subgraph G3 is induced by the split pair (2, 8). It consists of three split
components, the first is reference edge (2, 8), the second one edge (2, 8), and the
third one is the chain {2, 9, 8}. Therefore the parallel case occurs and the SPQR-
tree is extended by one P-node and one Q-node associated with edge (2, 8). The
skeleton graph simply consists of the three parallel edges between the poles 2 and 8.

The final decomposition step affects the subgraph of the cycle containing the
reference edge (2, 8) and edges (2, 9) and (9, 8). Again the series case occurs and the
SPQR-tree is augmented by one S-node and two Q-nodes.

2.4.3 Properties of SPQR-Trees

The main feature of SPQR-trees is that they can be used to represent every combi-
natorial embedding of the related biconnected planar graph. Furthermore, the data
structure provides a way to enumerate over all embeddings. The following theorem
was taken from [43].

Theorem 2.5. Let G be a biconnected planar graph and let T be its SPQR-tree. A
combinatorial embedding Π of G uniquely defines a combinatorial embedding of the
skeleton of each node in T . On the other hand, fixing the combinatorial embedding
of the skeleton of each node in T uniquely defines a combinatorial embedding of G.

Consider a planar embedding of G. By replacing subgraphs in G with single
edges each skeleton graph of T can be created. Hence, the embedding of G defines
the embedding of each skeleton. On the other hand, Graph G can be obtained by
merging the skeletons of T in the case they share the same reference edge until only
one skeleton is left. This skeleton is then isomorphic to the original graph, that is
there exists a bijective mapping of vertices from G to this skeleton such that the
topology is the same. Therefore, an embedding of G can be constructed from the
combinatorial embeddings of the skeletons.

For enumerating over all combinatorial embeddings, we have to choose embed-
dings for the skeletons of the nodes in the SPQR-tree. The skeletons of S- and
Q-nodes are simple cycles, so they have only one embedding. P-nodes represent a
set of multi edges between the two poles. Therefore the number of embeddings is
the number of permutations of these edges, except the reference edge. For k edges
this number equals (k−1)!. An R-node-skeleton, which is a triconnected graph, has
exactly two embeddings. Thus, if the SPQR-tree of G has r R-nodes and k P-nodes
P1, ..., Pk, where the skeleton of Pi has pi multi edges, then the total number of

14

2.5. NP-Completeness

combinatorial embeddings of G is

2r
k∏
i=1

(pi − 1)!.

Hence, the number of combinatorial embeddings of a graph can be exponential with
respect to its number of vertices.

Finally, we take a look at the total size of the generated SPQR-tree including its
skeleton graphs and the time complexity for computing a related SPQR-tree.

Let G = (V,E) be a biconnected graph.

Lemma 2.6 ([3]). The SPQR-tree T of G has |E| Q-nodes and O(|V |) S-, P-, and
R-nodes. Also, the total number of vertices of the skeleton graphs of T is O(|V |).

The algorithm for constructing the SPQR-tree relies on the ideas of the algorithm
for dividing a graph into its triconnected components by Hopcroft and Tarjan [24]. In
[22], Gutwenger and Mutzel corrected some mistakes in this approach and presented
the first linear time implementation1.

Corollary 2.7. The SPQR-tree of a biconnected graph G = (V,E) can be computed
in time O(|V |+ |E|).

Since the number of edges in a planar graph is at most 3|V | − 6, the SPQR-tree
of a planar graph can be computed in time O(|V |).

2.5 NP-Completeness

In this section we give a very short introduction to algorithms, algorithmic problems,
and complexity theory. All definitions are based on the work of Wegener [42]. Other
introductions to the terms around NP-Completeness can be found in [8] or [16].

An algorithmic problem is defined by the set of feasible inputs and a function
that maps each feasible input to a non-empty output. If the problem is to find
a solution with maximum quality it is an optimization problem. In the case, the
output can only have two feasible values “yes” and “no” (or “1” and “0”), and the
problem is to decide which one is the correct answer to a given question, then the
problem is a so-called decision problem.

An algorithm is a sequence of instructions that transform the input into the
output. If each next step of an algorithm is always well-defined then the algorithm
is called deterministic. By contrast, the next step of a randomized algorithm addi-
tionally depends on the evaluation of a random event with two outcomes, each with
probability 1

2
.

Definition 2.11 (P). An algorithmic problem belongs to the complexity class P if
there exists an algorithm that solves the problem in polynomial time in the input
size.

1A C++-implementation of SPQR-trees can be found in the OGDF (Open Graph Drawing
Framework), a self-contained C++ class library for the automatic layout of diagrams. For further
details visit the homepage on www.ogdf.net.

15

Chapter 2. Preliminaries

A nondeterministic algorithm also has the possibility to choose between two
actions in each step, but there is no rule for the selection of the next action.

Definition 2.12 (NP). A decision problem belongs to the complexity class NP
(nondeterministic polynomial time), if there exists a nondeterministic algorithm with
polynomial running time in the input size that

1. has at least one possible sequence of instructions that leads to the acceptance
of a yes-instance and

2. that rejects every no-instance.

Nondeterministic algorithms are theoretically important because they lead to the
complexity class NP . However, they are considered to be practically not feasible
because they are considered being able to “guess” the correct sequence of instructions
that lead to the acceptance of a yes-instance.

These are the two complexity classes involved in one of the most important open
mathematical problems, namely the question whether NP = P or NP 6= P .

Definition 2.13 (polynomial-time reducible). A decision problem Adec is
polynomial-time reducible to a decision problem Bdec if there exists a function f
that maps each instance I of Adec to an instance f(I) of Bdec such that I is a yes-
instance for Adec if and only if f(I) is a yes-instance for Bdec. Furthermore, the
function f has to be computable in polynomial time.

If a problem A is polynomial-time reducible to another problem B, then this is
a statement about the complexity of problem B. Since problem A can be solved by
one call of an algorithm for problem B, the second problem is not easier to solve
than the first one.

Definition 2.14 (NP-hard, NP-complete). A decision problem A is NP-hard,
if every decision problem B ∈ NP is polynomial-time reducible to A. If an NP-hard
decision problem A also belongs to NP then it is NP-complete.

Mostly, the decision version of a problem is not harder than the optimization
version. If the question of a decision problem is whether a solution exists with a
value of at most or at least a parameter k, this can be solved by computing an
optimum solution opt with the optimization algorithm, comparing the two values k
and opt , and giving the correct answer.

Although the term NP-hardness is only defined for decision problems, it is also
used for optimization problems in the case its related decision problem is NP-
complete.

A very important result in the complexity theory is due to Cook [7], who dis-
covered the first proof for the NP-completeness of a problem, namely SAT. The
Satisfiable Problem (SAT) is the problem of deciding whether a conjunction of dis-
junctions over a set of variables is satisfiable or not.

Theorem 2.8 (Theorem of Cook). SAT is NP-complete.

16

2.5. NP-Completeness

The first NP-complete problem reduces the difficulty for the prove of the NP-
completeness of other problems. Since the polynomial-time reduction is transitive,
it is sufficient to reduce a known NP-complete problem A to a problem B ∈ NP
to show the NP-completeness of problem B.

Since many problems are known to be NP-complete and no polynomial time
algorithm is found for any of them, most experts belief that NP 6= P . If one of
these problems can be solved in polynomial time, then NP = P holds and there do
exist polynomial time algorithms for all NP-complete problems. If NP 6= P , no
NP-complete problem can be solved in polynomial time.

Hence, the proof of the NP-completeness of a problem is a strong indicator that
probably no polynomial time algorithm exists for this problem.

For NP-hard optimization problems, optimum solutions can be computed in
exponential time by iterating over all possible values of the variables. Another
approach is to compute solutions in polynomial time, which are nearly optimal.
These algorithms are called approximation algorithms.

Let Π be an optimization problem, A an algorithm for Π and let OPT Π(I)
denote the optimum solution for an instance I. We say that algorithm A has an
approximation ratio of ρA ≥ 1 if, for any input I, the solution produced by the
algorithm A(I) is within a factor of ρA of the optimum solution OPT Π(I):

max

(
A(I)

OPT Π(I)
,

OPT Π(I)

A(I)

)
≤ ρA

An algorithm with approximation ratio ρ is an ρ-approximation algorithm.

17

Chapter 3

(Planar) Augmentation Problems

After introducing the basic notations and data structures, we are now able to define
the central augmentation problems studied in this thesis. In Section 3.1, we give
a general survey and present the results for several augmentation problems. Some
problems are known to be NP-hard, whereas some other problems can be solved
exactly in polynomial time. Further, we introduce the basic ideas for solving bi-
connectivity augmentation problems in Section 3.2 and determine the complexity
of the Planar Augmentation Problem in Section 3.3. Afterwards, in Section 3.4, we
consider two approximation algorithms with ratio 2 and 5

3
, respectively. However,

we present a counter-example for the latter approach implying that its ratio is also
only two. Finally, in the last section of this chapter, we discuss the subproblem of
connecting a disconnected graph.

3.1 Problem Definitions

The problem of adding edges to a graph to satisfy a given connectivity condition
under several constraints and the optimization of an objective function is called
Augmentation Problem.

Although there are several augmentation problems concerning directed or even
mixed graphs, e.g., [11, 13, 15, 19, 38], we focus on the cases where the input graphs
are undirected.

The General Augmentation Problem is to add the minimum number of edges
to an undirected graph such that the resulting graph is k-connected, for a fixed
k ∈ N. In [11], Eswaran and Tarjan gave a lower bound on the required number of
edges for biconnectivity augmentation, c.f. Theorem 3.3, and proved that this bound
is also sufficient. Hsu and Ramachandran [27] presented a linear time algorithm
that achieves this bound, based on the ideas of Rosenthal and Goldner [37]. Due
to Watanabe and Nakamura, the problem of triconnectivity augmentation can be
solved in linear time, too, cf. [41].

For k = 4 only algorithms were known that work on already triconnected graphs,
see [26], and augmentation of graphs to reach k-connectivity with k ≥ 5 was for a
long time an open problem. Recently, Jackson and Jordán [28] found a polynomial
time algorithm for a fixed k > 2. This algorithm runs in time O(n5) +O(f(k)n3),

19

Chapter 3. (Planar) Augmentation Problems

where n is the size of the input graph and f is an exponential function.
The weighted version of the General Augmentation Problem, that is there are

additionally edge-costs and the objective is to minimize the total costs of the inserted
edges, is NP-hard for all k > 1.

In this thesis we study unweighted biconnectivity augmentation problems with
an additional requirement for planarity. The main problem was first introduced by
Kant and Bodlaender in [31].

Definition 3.1 (PA). Let G = (V,E) be a planar, connected, and undirected graph.
The Planar Augmentation Problem (PA) is the problem of finding the smallest set
of edges E ′ such that G = (V,E ∪ E ′) is planar and biconnected.

In the same work, Kant and Bodlaender showed, that the Planar Augmentation
Problem is NP-hard, for the proof see Section 3.3. Furthermore, they presented
a rather simple approximation algorithm with approximation ratio 2 and running
time O(|V | log |V |). We will present the general ideas of this algorithm in Section
3.4

They also considered a special case of PA with the precondition, that all cutver-
tices of the input graph belong to the same triconnected component. We refer to
this problem as PATric. By restricting PA to this types of graphs it becomes solvable
in polynomial time, more precisely O(|V |2.5), compare [31] and Section 5.1.

Since the general case PA is NP-hard, and special graphs which are valid for
PATric can be augmented in polynomial time, it is interesting to investigate another
special case that seems to be more complex than PATric but not as difficult as PA.

Definition 3.2 (PABic). The Planar Augmentation Problem for graphs with the
constraint that all cutvertices belong to one biconnected component is called PABic.

PABic is the central problem of this thesis and will be investigated in Chapter 5.
Another variation of the Planar Augmentation Problem arises when the embed-

ding of the graph is fixed:

Definition 3.3 (PAFix). Let G = (V,E) be a planar, connected, and undirected
graph and Π(G) a combinatorial embedding of G. The Planar Augmentation Problem
with fixed embedding (PAFix) is the problem of finding the smallest set of edges E ′

such that G = (V,E ∪ E ′) is planar and biconnected and Π(G) is preserved.

An exact algorithm for PAFix is presented in Chapter 4.

3.2 Basics

As described in Section 2.3, a BC-tree represents the biconnected structure of the
underlying graph and therefore, it is an adequate data structure for finding solu-
tions for the biconnectivity augmentation problems. Most of the known algorithms
are iterative and repeat roughly three steps. They consider the BC-tree, insert a
profitable edge into the graph, update the BC-tree, and continue until the graph is
biconnected.

20

3.2. Basics

(a) (b)

(c) (d)

Figure 3.1: (a) Connected graph and its blocks, (b) the same graph with the updated
biconnected components after adding edge (6, 10), (c) the BC-tree of the original
graph with the corresponding edge, and (d) the resulting BC-tree.

We will define later, what properties classify a new edge as a profitable one.
First, we will discuss how the BC-tree is affected by the insertion of a new edge into
the BC-tree and into the corresponding graph, respectively. A new edge between
two vertices of the same biconnected component does not require any update. To
decrease the number of blocks and therefore, reduce the size of the BC-tree, the new
edge needs to induce a new cycle. The maximum cycles are obviously achieved by
connecting two vertices that belong to biconnected components of leaves.

Furthermore, edges need to be added between simple vertices, since an edge with
an cutvertex as endpoint makes only one incident block being part of the new cycle.
Hence, the cycle would not be maximized. Although inner b-nodes can consist only
of cutvertices, leaves always contain at least one simple vertex.

The following observation is adopted from [27].

Observation 3.1. Let G = (V,E) be a connected graph, bc(G) its BC-tree, and
b1, b2 two distinct leaves of bc(G). Let C be the cycle formed by the unique path
between b1 and b2 and the edge (b1, b2) in bc(G). Let G′/bc(G′) be the graph/BC-tree
obtained from G by adding an edge between simple vertices v and w which belong to
the blocks represented by b1 and b2. The following relations hold between bc(G) and
bc(G′).

1. Nodes and edges of bc(G) that are not on C remain the same in bc(G′).

2. All b-nodes on C are contracted to one b-node b′.

3. Any c-node on C with degree two is eliminated.

21

Chapter 3. (Planar) Augmentation Problems

4. A c-node c∗ on C with degree ≥ 3 remains in bc(G′) with edges incident to
nodes not in the cycle. The c-node is also connected to the new block b′. It
follows directly that the degree of c∗ decreases by one.

An example of a BC-tree and the effects of updates after inserting an edge is
illustrated in Figure 3.1.

The following property specifies which nodes in the BC-tree are especially suit-
able for being connected.

Definition 3.4 (Leaf-Connection Condition [27]). Let G = (V,E) be a con-
nected graph. Two distinct leaves b1 and b2 in bc(G) satisfy the leaf-connection
condition, short lcc, if and only if the path between b1 and b2 in bc(G) contains
either

1. two nodes of degree ≥ 3, or

2. one b-node of degree ≥ 4

An edge (b1, b2) in bc(G) is called profitable, if b1 and b2 satisfy the leaf-connection
condition. The reason is given by the following lemma.

Lemma 3.2. Let G = (V,E) be a connected graph, bc(G) its BC-tree and b1 and b2

two leaves in bc(G) that satisfy the leaf-connection condition. Furthermore, let v and
w be two simple vertices of the biconnected components of b1 and b2, respectively.
The insertion of edge (v, w) in G decreases the number of leaves in bc(G) by two.

Proof. Assume that the first case of the leaf-connection condition holds, i.e. there
are two nodes n1 and n2 with degree at least three on the path between b1 and b2.
Let n′1 and n′2 be adjacent nodes of n1 and n2, respectively, that do not lie on the
cycle. From Observation 3.1, it follows that b1, b2, and all other b-nodes on the cycle
are contracted to one b-node b′. On the one hand, if ni, i ∈ {1, 2}, is a b-node then
n′i has to be a c-node. The corresponding cutvertex remains a cutvertex for the new
block b′. On the other hand, if ni is a c-node then it is connected to a b-node n′i
which is not affected by the inserted edge. Therefore, ni is still a cutvertex in the
block of b′. Altogether, the new b-node has at least degree two and the number of
leaves decreases by two.

Now, assume the second case holds with a b-node b∗ with deg(b∗) ≥ 4. This
b-node is obviously connected to at least four c-nodes. Two of them define the path
to the newly connected leaves. The two other nodes are unchanged. Thus, b∗ cannot
become a leaf and the number of leaves also decreases by two.

As mentioned above, Eswaran and Tarjan found a lower bound for the General
Augmentation Problem that is also sufficient for biconnecting a given graph, cf. [11].

Theorem 3.3 (Lower bound on connected graphs). Let G = (V,E) be a
connected graph. Let p be the number of leaves and d the maximum degree of a
c-node in bc(G). Then max{d− 1,

⌈
p
2

⌉
} edges are necessary and sufficient to make

G biconnected.

22

3.3. NP-Completeness

The idea of the theorem is as follows. Removing a c-node c∗ splits the BC-tree
in deg(c∗) subtrees and disconnects the graph into an equal number of connected
components. To avoid this, at least deg(c∗)−1 edges need to be inserted. Moreover,
each new edge can obviously eliminate at most two leaves. Since a biconnected
graph does not contain any leaves, at least

⌈
p
2

⌉
new edges are necessary.

The original theorem gives a lower bound for disconnected graphs, too. We
consider this theorem and the problem of connecting a disconnected planar graph
in Section 3.5.

Definition 3.5 (Massive c-node, balanced BC-tree). Let bc(G) be a BC-tree
and p the number of leaves in bc(G). A c-node c∗ is called massive if and only if
deg(c∗) ≥

⌈
p
2

⌉
+ 2. A BC-tree is balanced if it does not contain any massive c-node.

Otherwise, the BC-tree is unbalanced.

It follows directly from the property of a massive c-node, that there can exist
at most one in a BC-tree. Otherwise, a BC-tree with p leaves would have at least⌈
p
2

⌉
+ 1 +

⌈
p
2

⌉
+ 1 leaves, what is a contradiction.

The existence of a massive c-node c∗ implies that the lower bound is dominated
by the term d− 1, since d− 1 = deg(c∗)− 1 ≥

⌈
p
2

⌉
+ 1 >

⌈
p
2

⌉
. In case of a balanced

BC-tree, d − 1 = deg(c) − 1 ≤
⌈
p
2

⌉
holds for the c-node c with maximum degree.

Therefore, the exact number of required edges for biconnectivity augmentation de-
pends on the existence of a massive c-node.

Corollary 3.4. Let G = (V,E) be a connected graph, bc(G) the corresponding BC-
tree and p the number of leaves in bc(G).

If the graph does not contain any massive c-node then
⌈
p
2

⌉
edges are necessary

and sufficient to biconnect the graph. Otherwise, if c∗ is a massive c-node in G then
this number equals deg(c∗)− 1.

3.3 NP-Completeness

Obviously, the bound of Theorem 3.3 is also a lower bound for the Planar Augmen-
tation Problem. Unfortunately, max{d− 1,

⌈
p
2

⌉
} is in general not sufficient, because

planarity needs to be preserved. The exact number of required edges is probably
not computable in polynomial time, due to the complexity of this problem.

Theorem 3.5 ([31]). The Planar Augmentation Problem is NP-hard.

Proof. We consider the decision version of the optimization problem, denoted by
PAdec. The input is a planar, connected graph and a positive integer k. The question
is whether the graph can be made biconnected by adding at most k edges. We show
that PAdec is NP-complete.

The decision problem belongs to the complexity class NP , since for any graph
and an added edge set it is possible to verify in polynomial time whether the resulting
graph is planar and biconnected, or not.

To prove NP-completeness, we construct a polynomial-time reduction from a
strong NP-complete problem, namely 3-Partition, to PAdec.

23

Chapter 3. (Planar) Augmentation Problems

Figure 3.2: The constructed graph for the polynomial-time reduction from 3-
Partition to PAdec.

Let a1, ..., a3m be 3m elements and B a positive integer. Further, let s(ai) ∈
N denote the size of each element ai, i = 1, ..., 3m, with B

4
< s(ai) < B

2
, and

3m∑
i=1

s(ai) = mB. 3-Partition is the problem of deciding whether the 3m elements

can be partitioned into m disjoint subsets Sj ⊂ {a1, ..., a3m} such that
∑
ai∈Sj

s(ai) = B

holds for each j = 1, ...,m. From the definition of the element-sizes it follows directly
that each subset needs to consist of exactly three elements.

For an instance of 3-Partition, we construct a connected graph with 2mB leaves
with the property, that it can be made biconnected with mB edges if and only if
the original instance has a valid partition.

The graph has a triconnected structure with a central cutvertex c∗ and m relevant
faces. On the one hand, each element ai is represented by a simple tree with s(ai)
leaves. Each root is adjacent to the central vertex c∗. On the other hand, there
are m identical subgraphs representing the m sets Sj. These subgraphs are also
trees but they are located inside the m separated faces. Since they represent the
sets Sj, each tree contains exactly B leaves. Figure 3.2 illustrates a scheme of the
constructed graph. The shaded area represents a triconnected subgraph, the dark
vertices at the top are the Sj-sets, the bright ones at the bottom correspond to the
elements ai.

Let I be an instance for 3-Partition with the described variables. The con-
structed graph G(I) consists of exactly 2mB leaves. It is important that the leaves
corresponding to the Sj-sets are embedded into separate faces fj and cannot be
connected among each other. Moreover, all s(ai) leaves representing an element ai

24

3.4. Approximation Algorithms

can only be embedded into one face fj and therefore, they can only be connected to
the leaves of one Sj-set.

If I is an acceptable instance for 3-Partition, that is there exists a valid partition,
we can construct a solution for the Planar Augmentation Problem by embedding
each tree ai into the face fj and connecting the a(si) leaves with the B-leaves, if ai
belongs to the set Sj in the partition. Since

∑
si∈Sj

s(ai) = B, for all j = 1, ...,m, each

leaf can be connected to one leaf of another tree. Hence, mB edges are sufficient to
biconnect G(I).

Conversely, assume G(I) has an augmenting set with exactly mB edges. The
connection of two leaves from the same tree reduces the number of leaves only by
one. Since the total number of leaves is 2mB each leaf has to be connected to
one leaf of another tree. Therefore, the added edges reflect the assignment of the
elements to the sets in the partition.

Altogether, G(I) can be augmented with mB edges if and only if I can be
partitioned into m subsets with the described constraints.

The graph can be constructed in polynomial time in the total size of the integers
s(ai) and m. Since 3-Partition is NP-complete in the strong sense there does not
exist a pseudo-polynomial algorithm, unless NP = P holds. Hence, the decision
problem of PA is NP-complete and the theorem follows.

3.4 Approximation Algorithms

Like mentioned above, Kant and Bodlaender also described a 2-approximation al-
gorithm for the Planar Augmentation Problem in [31]. Although there are several
suggestions and ideas for new methods, two is the best known approximation ra-
tio and the running time of this algorithm is only O(|V | log |V |). The approach is
straightforward and it is outlined in algorithm PA 2-Approximation.

Algorithm 1 PA 2-Approximation

Input: planar Graph G = (V,E)
Output: set of edges E ′ such that G = (V,E ∪ E ′) is planar and biconnected

1: compute the BC-tree bc(G)
2: while (number of b-nodes is ≥ 1) do
3: c← cutvertex that has only leaves as children in bc(G)
4: if (c has more than one child) then
5: connect all children of c such that a single leaf b arises
6: else
7: b← single leaf attached to c
8: end if
9: connect b with the highest b-node in bc(G) with regard to planarity

10: update bc(G)
11: end while

25

Chapter 3. (Planar) Augmentation Problems

(a) (b)

Figure 3.3: (a) BC-tree with dashed edges representing the solution of PA 2-
Approximation and (b) the optimum solution.

By Theorem 3.3, the size of an augmenting edge set is at least
⌈
p
2

⌉
. In PA 2-

Approximation, every leaf gets at least one additional edge. Moreover, the al-
gorithm may be forced to insert more edges due to planarity. But in an optimum
solution planarity has to be preserved, too.

It seems, that the PA 2-Approximation-algorithm can be improved, because
the connection of two leaves, which satisfy the leaf-connection condition, would
decrease the number of leaves by two in each iteration. In this approach, the number
of leaves decreases only by one with each inserted edge and the relation between
leaves is completely disregarded. Figure 3.3 (a) illustrates a primitive BC-tree with
2k leaves and hence 2k inserted edges by PA 2-Approximation. An optimal
augmenting edge set has cardinality k, cf. Figure 3.3 (b).

In [31], Kant and Bodlaender suggested another algorithm with ratio 3
2
. Fialko

and Mutzel detected problems in this approach and presented a counter-example
that yields approximation ratio two, compare [12]. In the same work, they in-
troduced a new 5

3
-approximation algorithm. Unfortunately, this upper bound is

incorrect. At the end of this section, we present a counter-example showing that
this algorithm has only ratio 2.

Although the desired approximation ratio cannot be achieved, we will describe
the algorithm and the corresponding ideas, because they will be adopted for the
algorithms in Chapter 4 and Chapter 5. Furthermore, the algorithm has a good
practical behaviour, since the computed solutions in the experiments are often op-
timum. In the other cases the solutions mostly contain only one or two more edges
than in the optimum solution, cf. [12].

First we need to introduce some further notations and definitions, most of them
are taken from [12].

As naming convention we call a leaf in the bc-tree a pendant, denote the set of
pendants by P and its cardinality by p. A set B ⊆ P is a bundle of pendants if the
following three conditions hold:

1. Every pair of pendants p1, p2 ∈ B can be connected without losing planarity.

2. Adding a new edge between two pendants p1, p2 ∈ B leads to a new pendant.

3. The set B is maximal with respect to all sets satisfying the first two conditions.

26

3.4. Approximation Algorithms

Condition 2 and Lemma 3.2 guarantee that the path between two pendants of
the same bundle contains exactly one bc-node with degree at least three. We call
this bc-node the parent of the pendants belonging to the bundle and refer to the
pendants as children. The parent of a bundle is either a b-node or a c-node. In the
first case the b-node has exactly degree three, whereas in the latter case the c-node
has degree at least three.

If the bundle contains exactly one pendant, say p1, the parent c of p1 is defined
as the c-node satisfying the following three conditions.

1. All inner vertices on the path between p1 and c have degree two.

2. Adding the edge (p1, c) preserves a planar graph, where c is the only cutvertex
to the new pendant.

3. The path from p1 to c in the BC-tree is the longest among all c-nodes satisfying
the two previous conditions.

Definition 3.6 ((b/c)-Label). A bundle of pendants together with its parent is
called label. If the parent is a c-node the label is also called c-label, otherwise it is
called b-label.

The size of a label l1 is the number of pendants contained in the bundle and is
denoted by size(l1).

The path from a pendant to the parent of the corresponding label contains only
nodes with degree two. Therefore, these simple paths starting at parent v∗ are called
v∗-chains.

The mechanism of labels reflects the idea of profitable edges, since two pendants
of different labels always satisfy the leaf-connection condition. This leads to the
main ideas of the algorithm by Fialko and Mutzel: Select the label with maximum
size, say l1, find the largest label l2 that is planar to l1 and connect as many pendants
as possible between l1 and l2. Two labels are planar if and only if their parents can
be connected without losing planarity. In this case, min{size(l1), size(l2)} edges can
be added between appropriate pendants of the two labels. An outline of the main
procedure is presented by algorithm PA Approximation.

If no planar label can be found (line 4), the algorithm works exactly like algorithm
PA 2-Approximation by adding edges between the pendants of the same label and
connecting the resulting pendant; cf. line 6.

The structure of a counter-example for the approximation quality of this algo-
rithm is illustrated in Figure 3.4. The graph has two parallel structures which again
consist of alternating serial and parallel structures. Furthermore, this graph has
four triconnected subgraphs with two labels of size three attached on each side, and
two subgraphs with only one label of size three. The triconnected subgraphs are
represented by the shaded areas.

In general, there are l+2 triconnected subgraphs, l with two labels and two with
one, each. Each of the l labels has size k, with k, l ∈ N and l being even. Figure 3.4
(a) illustrates a possible result of the first iteration. The algorithm might select one
of the two central labels as l1 and the other one as l2. After adding k edges, no other

27

Chapter 3. (Planar) Augmentation Problems

Algorithm 2 PA Approximation

Input: planar Graph G = (V,E)

1: compute the BC-tree, pendants, and labels
2: while (number of labels ≥ 1) do
3: l1 ← label with maximum size
4: l2 ← largest label planar to l1; nil if none is planar
5: if (l2 = nil) then
6: connect all pendants of l1 among each other and connect the arising

↪→ pendant with the highest possible b-node in the bc-tree
7: else
8: connect all pendants of l2 with pendants of l1
9: end if

10: update the bc-tree and labels
11: end while
12: if (number of labels = 1) then
13: connect the pendants of the remaining label
14: end if

two labels are planar to each other and each remaining pendant has to be connected
by a single edge. Therefore, the total number of inserted edges is (l + 1)k. Figure
3.4 (b) presents an optimal solution. There, only (l

2
+ 1)k edges are necessary to

biconnect the graph. Hence, the ratio equals

(l + 1)k

(l
2

+ 1)k
=
l + 1
l
2

+ 1
.

For sufficient large l, the ratio can be made to be as close to two as desired.
The major problem of this approach is the fact, that the connection of two

pendants can fix the whole embedding in such a way, that all following profitable
edges would destroy planarity.

3.5 Connectivity

So far we considered only connected graphs. Like mentioned above, Theorem 3.3
is an adoption from the original lower bound by Eswaran and Tarjan [11]. In this
section, we give the general lower bound and discuss how a disconnected graph can be
made connected with a minimum number of edges. Furthermore, it is important that
the added edges for connectivity do not affect the lower bound of the biconnectivity
augmentation. It must be no difference if the graph is made biconnected at once or
if the graph is made biconnected in two steps.

Theorem 3.6 (General lower bound). Let G be an undirected graph with h
connected components, let q be the number of isolated b-nodes, p the number of
pendants and d the maximum degree of a c-node in bc(G).

Then max{d+ h− 2,
⌈
p
2

⌉
+ q} edges are necessary and sufficient to biconnect G.

28

3.5. Connectivity

(a)

(b)

Figure 3.4: (a) A worst-case instance for the approximation algorithms with k in-
serted edges after the first iteration and (b) the optimal augmentation solution.

29

Chapter 3. (Planar) Augmentation Problems

(a) (b) (c)

Figure 3.5: (a) Graph with two connected components and 2k+ 1 pendants, (b) the
situation after connecting the second connected component to the single pendant,
and (c) the optimal connection.

Our definition of BC-trees also requires a connected graph. For disconnected
graphs, the computation can be applied to each connected component separately.
Obviously, the resulting set of BC-trees is a forest.

Let G = (V,E) be a graph with h connected components Ci, i = 1, ..., h, and
let bc(Ci) be the corresponding BC-trees with a total number of p pendants and q
isolated nodes. By inserting edges between components i and i+1 for i = 1, ..., h−1,
G can be made connected with h − 1 edges. The edges are added between simple
vertices of the blocks corresponding to leaves or isolated nodes of each BC-tree.
Two edges ej and ej+1, connecting components Cj with Cj+1 and Cj+1 with Cj+2,
respectively, have an endpoint in common if and only if Cj+1 is an isolated node.

Therefore, the resulting BC-tree has p′ := p + 2q − 2(h − 1) pendants and the
degrees of all inner nodes are unchanged. We need to ensure that the lower bound
can still be achieved. After the connection, the resulting BC-tree has p′ pendants
and h = 1 and q = 0 holds. So far, we inserted exactly h−1 edges. Due to Theorem
3.6 (or 3.3), the complete biconnectivity augmentation then requires

= h− 1 + max{d− 1,

⌈
p′

2

⌉
}

= max{d+ h− 2, h− 1 +

⌈
p+ 2q − 2(h− 1)

2

⌉
}

= max{d+ h− 2,
⌈p

2

⌉
+ q}.

Hence, a disconnected graph can be made connected first without exceeding the
lower bound of biconnectivity augmentation.

Unfortunately, this procedure cannot be applied to input-graphs of the Planar
Augmentation Problem, if the approximation ratio shall be less than two. Figure
3.5 (a) illustrates a graph with two connected components, the above one with k
and the lower one with k + 1 pendants. The connection of the two wrong pendants

30

3.5. Connectivity

will lead to a solution with 2k edges (Figure 3.5 (b)), whereas the optimum is k+ 2
(Figure 3.5 (c)).

Because of the difficulty of making a planar and disconnected graph connected,
without restricting the possible solutions for planar augmentation, we will consider
all planar augmentation problems only for already connected graphs.

31

Chapter 4

Planar Augmentation with Fixed
Embedding

In this chapter we present and analyze a new algorithm for the Planar Augmentation
Problem with fixed embedding. First we describe the algorithm and its subprocedures
(Section 4.1). After this, we prove that our approach is optimal (Section 4.2) and
finally, we show that it has linear running time for all practical purposes and uses
linear space (Section 4.3).

4.1 The Algorithm

The main procedure is outlined in PlanarAugmentationFix and the whole algo-
rithm is split up into several smaller procedures named Update, HandlePendant,
HandleRootDeg2, FindMatching and HandlePseudoLabel.

One basic idea of PlanarAugmentationFix is to consider each face sep-
arately. Since the embedding is fixed there are no edges allowed between inner
vertices of different faces because that would destroy planarity. Therefore, each iter-
ation of the algorithm (lines 2–21) biconnects a subgraph induced by another face.
The induced subgraph of a face consists of the bounding vertices and edges of that
face. Such a subgraph can be computed in linear time by a simple graph traversal
that considers the boundary of the face in clockwise or counterclockwise direction.
If the boundary is a simple circle, i.e. no vertex occurs more than once, then the
induced subgraph is already biconnected. Figure 4.1 illustrates a planar graph with
a face-induced subgraph and the corresponding BC-tree.

The augmentation of a face and its induced subgraph, respectively, is straight-
forward. First of all, the corresponding BC-tree is generated where it is important
for later edge insertions that the BC-tree reflects the embedding of the graph. Then,
the labels are computed by calls of procedure HandlePendant (line 8).

In every step the largest label is used to compute two appropriate pendants by
calling procedure FindMatching. After every single augmentation, the BC-tree
and all affected labels have to be updated (line 16). We continue until none or only
one label is left. In the latter case all pendants of the remaining label need to be
connected among each other (line 19).

33

Chapter 4. Planar Augmentation with Fixed Embedding

(a) (b)

Figure 4.1: (a) A planar graph with a designated face f . The induced subgraph of
f is emphasized by thick vertices and edges. (b) The corresponding BC-tree bc(f).

Algorithm 3 PlanarAugmentationFix

Input: planar, connected graph G with fixed embedding Π(G)
Output: list of new edges E ′ such that G = (V,E ∪ E ′) is planar and biconnected

1: E ′ ← ∅
2: for all faces f ∈ Π(G) do
3: construct the BC-tree bc(f) induced by the face f , root it at

↪→ a b-node with degree ≥ 2
4: if (number of pendants = 2) then
5: create a label with the two pendants
6: else
7: for all pendants p of bc(f) do
8: HandlePendant(p)
9: end for

10: end if
11: while (number of Labels > 1) do
12: l1 ← label with maximum size
13: (p1, p2)← FindMatching(l1)
14: l2 ← label of p2

15: E ′ ← E ′ ∪ new edge between simple vertices of p1 and p2

16: Update()
17: end while
18: if (number of labels = 1) then
19: connect all p pendants of the remaining label with p− 1 new edges

↪→ and insert them into E ′; the edges are inserted between simple
↪→ vertices of neighbouring pendants regarding the embedding

20: end if
21: end for
22: return E ′

34

4.1. The Algorithm

(a) (b)

Figure 4.2: The two cases where a pseudo-label with parent b becomes a real b-label
after inserting edge e.

The correct computation of the labels is an essential invariant. To provide the
correct assignment of pendants to their labels and achieve the desired running time,
we require an auxiliary type of labels, the pseudo-labels. A pseudo-label is a potential
b-label. It consists of a b-node as parent and a set of c-labels with size one, whose
parents are connected directly to the b-node.

Pseudo-labels are utilized during the computation of labels in HandlePen-
dant. Further, they play an important role during the updates after each edge
insertion. This is because a b-node with degree four or five, respectively, that lies
on the insertion path can become a parent of a label. Moreover, a c-label with only
one pendant, whose parent is not on the insertion path, can be affected indirectly
and need to be merged with other labels into a b-label. We cannot inspect all labels
in each iteration because of the aspired linear running time. Therefore, we handle
those potential b-labels with pseudo-labels. Figure 4.2 illustrates the two cases when
pseudo-labels are transformed into real labels during an update. After inserting edge
e, the two c-labels with size one, whose parents c1 and c2, respectively, do not lie on
the insertion path, become obsolete and need to be merged into one b-label.

The procedure HandlePendant preserves the correct assignment of pendants
to their labels and pseudo-labels. To compute the corresponding label we traverse
the BC-tree from the pendant upwards until we reach a node with degree at least
three or the root with degree two. In the first case we check whether the current
node is a c- or a b-node and if it is the parent of a label or pseudo-label. Then
we either assign the pendant to this label or to a newly created one. In the second
case the root with degree two is simply skipped and the traversal continues on the
other side of the root. This procedure is outlined in HandleRootDeg2 where
the traversal works in the same way, only top-down instead of bottom-up. We also
stop at a node with degree at least three and distinguish between the cases of b- or
c-nodes.

It is very important that the root is not a stop point for the traversal in case it
has degree two. Otherwise, it may occur that the root breaks up two labels that
actually belong together and therefore the algorithm would insert more edges than

35

Chapter 4. Planar Augmentation with Fixed Embedding

Algorithm 4 HandlePendant

Input: pendant p of bc(f)

1: traverse in bc(f) from p to the root until the root or a
↪→ bc-node with degree ≥ 3 is found, let bcn be the current node

2: if (bcn is a c-node) then
3: add p to the label of bcn or

↪→ create a new label with parent bcn and pendant b
4: else
5: c∗ ← the last visited c-node
6: if (bcn is the root and has degree = 2) then
7: handleRootDeg2(p, c∗)
8: else
9: create a new label with parent c∗ and pendant p

10: if (bcn is a parent of a pseudo-label l′) then
11: add p to l′

12: HandlePseudoLabel(l′, p)
13: else
14: create a new pseudo-label with parent bcn and pendant p
15: end if
16: end if
17: end if

in the optimum solution.

Like mentioned above, the data structures need to be updated after each edge
insertion. The basic steps are implemented in procedure Update where we check
if the two involved labels have reached size one. In this case the remaining single
pendant may need to be reassigned to another label (lines 7 and 10). Furthermore,
we have to test the pseudo-labels whose parents are part of the insertion path,
because they might become obsolete or need to be transformed into real labels (line
13).

One of the main ideas of the algorithm for biconnecting a graph with a fixed
embedding is how edge-insertion works. Since the embedding is fixed the order of
the adjacent edges of a vertex cannot be modified. Unlike in the General or Planar
Augmentation Problem we cannot select two labels and connect two random pen-
dants. The new edge divides the face and might isolate some pendants of one label.
Therefore, each inserted edge has to satisfy the property, that all other pendants
lie on the same side of the newly inserted edge. Hence, the pendants need to be
neighbours in the BC-tree with regard to the embedding. When every edge satisfies
this property pendants are not isolated and planarity will be preserved.

In our algorithm we select the label with maximum size and pick the first pendant
in its list, see FindMatching. Then, we traverse the BC-tree in cyclic order to
the next pendant. If this pendant belongs to the same label, we correct the order in
the pendant-list of its label. Therefore, every path in the BC-tree between the same
two pendants is not traversed twice. The traversal continues with this pendant and

36

4.1. The Algorithm

stops when another label is found. Hence both returned pendants are neighbours
and belong to different labels.

Algorithm 5 FindMatching

Input: the label l
Output: the two pendants p1 and p2 for the new edge

1: p1 ← first pendant in the list of l
2: p2 ← nil
3: while (p2 = nil) do
4: traverse the BC-tree from p in cyclic order to the next pendant p′

5: if (p′ belongs to l) then
6: delete p′ in the list of l and reinsert p′ in front of p
7: p← p′

8: else
9: p2 ← p′

10: end if
11: end while
12: return (p1, p2)

Algorithm 6 Update

1: update bc(f) with new edge e
2: if (number of pendants = 2) then
3: delete all labels and create a new label with the two pendants
4: else
5: delete p1 and p2 from their labels and pseudo-labels
6: if (size(l1) = 1) then
7: HandlePendant(pendant of l1)
8: end if
9: if (size(l2) = 1) then

10: HandlePendant(pendant of l2)
11: end if
12: for all (pseudo-labels l′ with parent p′ on the insertion path) do
13: HandlePseudoLabel(l′, p′)
14: end for
15: end if

37

Chapter 4. Planar Augmentation with Fixed Embedding

Algorithm 7 HandleRootDeg2

Input: pendant p and the last c-node c∗ on the path to the root

1: bcn ← the c-node adjacent to the root with bcn 6= c∗

2: traverse bc(f) from bcn downwards, until a bc-node with
↪→ degree ≥ 3 is found, let bcn be the current node

3: if (bcn is a c-node) then
4: add p to the label of bcn or

↪→ create a new label with parent bcn and pendant b
5: else
6: c2 ← the last visited c-node
7: create a new label with parent c2 and pendant p
8: if (bcn is a parent of a pseudo-label l′) then
9: add p to l′

10: HandlePseudoLabel(l′, p)
11: else
12: create a new pseudo-label with parent bcn and pendant p
13: end if
14: end if

Algorithm 8 HandlePseudoLabel

Input: the pseudo-label l′ and its parent p∗

1: if (size(l′) = 1) and (deg(p∗) = 2) then
2: p← pendant of l′

3: delete the c-label of p
4: delete l′

5: handlePendant(p)
6: else
7: if (size(l′) = 2) and (deg(p∗) = 3) then
8: delete the c-labels of the pendants of l′

9: transform l′ into a label
10: end if
11: end if

38

4.2. Optimality

4.2 Optimality

In this section we prove that the previously described algorithm always biconnects
a planar graph with a given fixed embedding with the minimum number of edges.
To achieve this we take a closer look at the algorithm and point out some properties
of the algorithm and of BC-trees.

Like mentioned before, it is valid to consider each face separately. Therefore,
the optimality of the algorithm depends on the optimum augmentation of each
subgraph. Obviously, the lower bound of Theorem 3.3 is also a lower bound for
the augmentation of each face-induced subgraph. We will show that the algorithm
always achieves this lower bound, i.e. max{d− 1,

⌈
p
2

⌉
}, with d being the maximum

degree of a c-node and p the number of pendants in the related BC-tree bc(f).

First of all, we show that the newly inserted edges preserve planarity and that
the embedding has not changed. A new edge is inserted between two simple vertices
of two pendant-blocks. The pendants are neighbours in cyclic order in the BC-tree
which represents the embedding of the graph. So all other pendants lie on the
same side of this edge. Furthermore, the two newly connected vertices of the graph
belong to the same face. Therefore, the embedding is preserved and planarity is not
violated. Notice that this property also allows us to omit planarity tests for each
edge insertion.

To achieve a minimum number of edges and the lower bound of max{d−1,
⌈
p
2

⌉
},

we need to ensure that the leaf-connection condition (lcc) is always fulfilled, because
only then the number of pendants decreases by two in every iteration. Instead of
checking the lcc in every step explicitly the algorithm uses the mechanism of labels
and pseudo-labels. Initially, the labels are computed correctly by the procedure
HandlePendant. This is easy to see because the procedure just works like the
definition of labels intended. Also the root as a b-node is handled correctly and can
be a parent of a label, a pseudo-label, or will just be skipped during the traversal
when it has degree two. A BC-tree with the root being a pendant is invalid and can
be prevented easily.

During the algorithm labels change and are affected directly when a related
pendant is connected. Furthermore, labels are affected indirectly if their parent is a
part of the insertion path. Previously, we showed how the BC-tree is modified when
an edge is inserted, c.f. Observation 3.1. Labels that are directly involved in the new
edge, since one of their pendants is connected, are always considered by Update.
They are deleted correctly if they reach minimum size and the remaining pendant
gets a new label by HandlePendant. Consequently, all affected b- or c-labels with
parents on the insertion path are then updated correctly. Pseudo-Labels are checked
separately by HandlePseudoLabel and are transformed into labels, if necessary.
In this case, the obsolete c-labels that are connected directly to the parent are also
deleted. All other labels remain the same.

Now we can conclude that our algorithm terminates and that the resulting graph
is biconnected. Since we insert edges between pendants of different labels, the lcc is
always fulfilled and hence, the number of pendants decreases each time. After each
iteration the BC-tree and the labels are updated correctly. The loop terminates

39

Chapter 4. Planar Augmentation with Fixed Embedding

when there is at most one label left. In the case of one remaining label, its pendants
are connected and the BC-tree finally contains one b-node. Therefore, the resulting
graph is biconnected.

To prove optimality, we need to take a look at unbalanced BC-trees and their
massive c-nodes. In our algorithm we always pick the largest label and connect
one of its pendants with a matching pendant of another label. Since we want to
decrease the degree of the massive c-node, we need the insertion path to include this
c-node. Therefore, we first show that the massive c-node needs to be a parent of
a label. Second, we guarantee that the algorithm automatically selects the label of
the massive c-node because this label is always the maximum one. Both properties
are gathered in the following lemma.

Lemma 4.1. If a BC-tree is unbalanced, its massive c-node c∗ has to be the parent
of a label l0. Furthermore, l0 is the label with maximum size and no other label has
the same size.

Proof. Assume that the BC-tree contains p pendants. We prove both statements by
contradiction.

If c∗ is not the parent of a label, there cannot exist any c∗-chain and therefore, all
subtrees connected to c∗ would contain more than one pendant. From the definition
of a massive c-node, c∗ has degree d := deg(c∗) ≥

⌈
p
2

⌉
+ 2. Thus, there would be

altogether ≥ 2(
⌈
p
2

⌉
+ 2) pendants; however the BC-tree has only p. It follows that

c∗ has to be the parent of a label.
Now, let j be the number of pendants, or c∗-chains, respectively, of l0. Then,

there are d − j subtrees connected to c∗, whereas each one contains at least two
pendants. Assume there exists another c-node c2 which is the parent of another
label with at least the same size as l0. Obviously, c2 lies in one of the d− j subtrees
of c∗. Altogether the BC-tree would have

≥ j︸︷︷︸
c∗

+ j︸︷︷︸
c2

+ 2(d− j − 1)︸ ︷︷ ︸
subtrees of c∗

= 2d− 2

≥ 2(
⌈p

2

⌉
+ 2)− 2

≥ p+ 2

pendants. This is a contradiction and it follows that l0 is the unique maximum label.

We can also show in an analogue way that critical c-nodes—they have degree⌈
p
2

⌉
+ 1—are also always parents of labels. In general, the second statement from

above is not true for critical nodes. However, we can show again by contradiction
that no label is greater than the one of the critical node. We state this in the
following lemma and skip the proof because it is similar to the one above.

40

4.2. Optimality

Lemma 4.2. If a BC-tree contains a critical c-node, this c-node always has to be
the parent of a label. There is no other label with greater size.

After these two lemmas we can finally prove the optimality of our approach for
solving the Planar Augmentation Problem with fixed embedding.

Theorem 4.3. Algorithm PlanarAugmentationFix solves PAFix with the min-
imum number of edges.

Proof. As shown above, the algorithm always terminates, planarity is preserved, and
the embedding remains unchanged. To complete the proof we now show that each
face-induced subgraph is made biconnected by inserting the minimum number of
edges, namely max{d−1,

⌈
p
2

⌉
} (cf. Theorem 3.3), with d being the maximum degree

of a c-node and p the number of pendants in the BC-tree. To accomplish this, we
consider two cases separately, which are based on the existence of a massive c-node:

1. d ≥
⌈
p
2

⌉
+ 2

⇒ the BC-tree is unbalanced and has a massive c-node c∗.

2. d ≤
⌈
p
2

⌉
+ 1

⇒ the BC-tree is balanced.

Case 1 – unbalanced graph:

If the first case the algorithm must not exceed the lower bound of deg(c∗)− 1 new
edges to biconnect the graph. If c∗ is the massive c-node we have shown in Lemma
4.1 that c∗ has to be the parent of the maximum label, say l0. Therefore, the
algorithm automatically selects l0 to find an appropriate matching. The following
induction on deg(c∗) proves that the bound deg(c∗)− 1 is achieved:

• If deg(c∗) ∈ {1, 2, 3} there exists no valid unbalanced BC-tree:
The cases deg(c∗) ∈ {1, 2} are obvious. If deg(c∗) = 3, the number of pendants
needs to be at least 3. But then

⌈
p
2

⌉
+ 2 ≥ 4 > deg(c∗) would hold.

• The base case is deg(c∗) = 4:
Since deg(c∗) needs to be ≥

⌈
p
2

⌉
+ 2 it follows that p = 4. Hence, the BC-tree

consists of 1 label l0 with 4 pendants, and 3 = deg(c∗)− 1 edges are inserted
to biconnect the graph.

• Inductive hypothesis:
For all unbalanced BC-trees with a massive c-node c∗2 with deg(c∗2) < deg(c∗)
the algorithm biconnects the graph with deg(c∗2)− 1 edges.

41

Chapter 4. Planar Augmentation with Fixed Embedding

• Inductive step deg(c∗) ≥ 5:

Case 1: = 1 label ⇒ only c∗-chains

⇒ deg(c∗)− 1 edges are inserted

Case 2: > 1 label ⇒ a new edge between a pendant of l0

and another label is inserted

⇒ deg(c∗) decreases by 1

⇒ c∗ remains massive because⌈
p
2

⌉
decreases by 1, too

⇒ it follows by the induction hypothesis that

((deg(c∗)− 1)− 1) + 1

= deg(c∗)− 1 edges are inserted.

Case 2 – balanced graph:
In the second case the BC-tree is balanced and we have to show that we achieve the
lower bound of

⌈
p
2

⌉
. The proof is based on induction too, this time on the number

of pendants p:

• The base cases are p = 2 and p = 3:

– p = 2 : only 1 label ⇒ 1 =
⌈
p
2

⌉
edges are inserted

– p = 3 : either 1 or 3 labels. In both cases 2 =
⌈
p
2

⌉
edges are inserted

• Inductive hypothesis:
For all balanced BC-trees with p′ < p pendants the algorithm biconnects the

graph with
⌈
p′

2

⌉
edges.

• Inductive step p > 3:

⇒ As precondition we have a balanced BC-tree.

⇒ Since p > 3 holds, we can conclude that we have at least two labels.

⇒ The lcc is fulfilled for the new edge.

⇒ p decreases by 2.

⇒ If we can show that the BC-tree is still balanced after the edge-insertion
the induction hypothesis will ensure that

⌈
p−2

2

⌉
+ 1 =

⌈
p
2

⌉
edges are

inserted.

Therefore, we show by contradiction that no massive c-node arises during the
algorithm.

Assume that c∗ is the new massive c-node after the insertion of a new edge. Let
p and p′ denote the number of pendants before and after the insertion, respectively.
Therefore, p′ = p − 2 holds and from the definition of a massive c-node we have

degafter(c∗) ≥
⌈
p′

2

⌉
+ 2 =

⌈
p−2

2

⌉
+ 2. After Observation 3.1, the degree of a c-node

42

4.2. Optimality

Figure 4.3: Situation before inserting an edge with a critical c-node c∗, its label l0,
and the two involved labels l1 and l2.

lying on the insertion path between the two connected pendants is either reduced
by one or the c-node is contracted to a new b-node. Therefore, we can conclude
that c∗ is not in the insertion path, since otherwise degbefore(c∗) = degafter(c∗) + 1 ≥⌈
p′

2

⌉
+ 3 =

⌈
p
2

⌉
+ 2 and c∗ would already be a massive c-node.

Consequently, d := degbefore(c∗) = degafter(c∗) =
⌈
p′

2

⌉
+ 2 =

⌈
p
2

⌉
+ 1 holds and

therefore, c∗ has to be a critical c-node before edge-insertion. From Lemma 4.2 it
follows that c∗ is a parent of a label and that no other label is greater in size. Let
l0 denote this label with size(l0) =: j. Thus, there are d − j subtrees of c∗ where
each of them contains at least two pendants. There have to exist two other labels
l1 and l2 in the BC-tree because l0 is not involved in the new edge. One of these
labels also need to contain at least j pendants because this label was selected by
the algorithm; w.l.o.g. we assume that this is l1, see Figure 4.3. Both of the labels
l1 and l2 are part of the same subtree of c∗ because otherwise c∗ would be a part of
the insertion path.

We can now sum up the number of pendants in the BC-tree before edge-insertion:

≥ j︸︷︷︸
l0

+ j︸︷︷︸
l1

+ 2(d− j − 1)︸ ︷︷ ︸
subtrees of c∗

+ 1︸︷︷︸
l2

= 2d− 1

≥ 2(
⌈p

2

⌉
+ 1)− 1

≥ p+ 1

43

Chapter 4. Planar Augmentation with Fixed Embedding

(a) (b)

Figure 4.4: An example graph with two pendants and two embeddings. The fixed
embedding in (a) induces an augmentation with four edges, whereas the optimal
solution in (b) consists of one edge.

This is the desired contradiction. It follows that no c-node can become massive
and the BC-tree remains balanced. Therefore, the lower bound of

⌈
p
2

⌉
edges is

inserted in the second case.

Altogether, the algorithm always achieves the lower bound of max{d − 1,
⌈
p
2

⌉
}

for each face-induced subgraph and the theorem follows.

Although PAFix can be solved optimally, this does not result automatically in a
good approximation ratio for the general Planar Augmentation Problem. The wrong
fixed embedding possibly requires k times the cardinality of the augmentation for
the optimal embedded graph, for an arbitrary integer k > 0. Figure 4.4 illustrates
an example. The vertices are colored for a better overview. The augmentation
with the fixed embedding requires four edges, as shown in (a), whereas the optimal
solution contains only one edge, as shown in (b). This example can be expanded to
arbitrary k.

4.3 Running Time and Space

After proving that our approach biconnects a given graph with the minimum number
of edges we determine now the required space and the running time.

Theorem 4.4. Algorithm PlanarAugmentationFix requires O(|V |+|E|) space.

Proof. The algorithm considers each face of the graph separately. Therefore, the
current subgraph requires O(|V |+|E|) space. Furthermore, a BC-tree is also linearly
bounded in the size of the underlying graph. Since all other data structures like
label-lists depend on the BC-tree they are also linearly bounded.

44

4.3. Running Time and Space

For the proof of the running time, the Ackermann function Ak(j) and its inverse
is required (the definition is adopted from [8]):

Ak(j) :=

{
j + 1 if k = 0

A
(j+1)
k−1 (j) if k ≥ 1

The notation Aj denotes, that the function A is iteratively applied j times. The
inverse of the Ackermann function is defined as

α(n) := min{k : Ak(1) ≥ n}.

The function Ak is a very quickly growing function whereas α(n) grows very slowly:

α(n) =

0 for 0 ≤ n ≤ 2
1 for n = 3
2 for 4 ≤ n ≤ 7
3 for 8 ≤ n ≤ 2047
4 for 2048 ≤ n ≤ A4(1)

Since A4(1)� 1080, which is the estimated number of atoms in the universe, α(n) ≤
4 holds for all practical purposes. In literature, there are different definitions of the
Ackermann function and its inverse. However, all of them grow really quickly and
slowly, respectively.

Theorem 4.5. Algorithm PlanarAugmentationFix has running time O(|V |+
|E|+ α(|V |)|V |).

Proof. In the algorithm each face is considered separately and—even though vertices
and edges may belong to several faces—the sum over all induced subgraphs is linear
in the input size. Therefore, we need to show that the augmentation of one face
does not exceed the time bound, and hence we are able to apply the running time
to the whole algorithm.

BC-trees can be constructed in linear time of the size of the underlying graph [39].
An update after inserting a new edge in the graph and in the BC-tree, respectively,
takes amortized time O(α(|V |)). This can be achieved by using a union-find data
structure as described in [44]. Since after an edge-insertion the path between the
two newly adjacent pendants is part of a new cycle, and therefore it is contracted
to one b-node, all paths in the BC-tree involved in FindMatching and during
BC-tree-updates are traversed only a constant time.

We can apply the same argument to pendants and the procedure HandlePen-
dant. This function can be called multiple times for each pendant and it does not
seem that the total costs are linear. But we can improve this function by starting
the traversal at the parent of the associated label, if existent. Therefore, we do not
traverse an already visited path twice.

The last crucial part concerning the running time of the algorithm is the selection
of the largest label and the correct sorting in each iteration. We can solve this
problem by using buckets for sets of labels with the same size. Then, a decrease

45

Chapter 4. Planar Augmentation with Fixed Embedding

or increase in the size of a label can be managed in constant time. Since a newly
inserted edge affects only at most four labels we do not exceed the time limit.

All other minor operations also take constant time. The number of pendants
and labels is bounded by O(|V |) and so is the number of iterations of the main loop.

Altogether the running time is O(|Vi| + |Ei|) for each subgraph Gi = (Vi, Ei)
induced by face fi, except for the updates of the BC-tree. Since the maximal number
of inserted edges is O(|Vi|), these operations take in total time O(α(|Vi|)|Vi|).

46

Chapter 5

Planar Augmentation for Almost
Biconnected Graphs

This chapter focuses on the Planar Augmentation Problem for graphs with the
special property that all cutvertices belong to the same biconnected component.
The problem was defined in Section 3.1 and is shortened by PABic. Section 5.1 gives
an introduction to this problem by describing the differences to the general problem.
In Section 5.2, we determine the complexity of this problem and although the input
graphs have a quite simple biconnected structure, we show that this special case
is also NP-hard. As a consequence of the constructed polynomial-time reduction,
PABic is even NP-hard in case the SPQR-tree (without Q-nodes) has only height
one. Afterwards, we will discuss a new approximation algorithm for this special case
with approximation ratio 5

3
. We present the algorithm in Section 5.3, the analysis

of the approximation quality in Section 5.4, and finally, the running time in Section
5.5.

5.1 Introduction

Before focusing on PABic, we need to introduce another well-known combinatorial
optimization problem on graphs, the Maximum (Cardinality) Matching Problem. A
matching in a graph G = (V,E) is an edge set M ⊆ E such that each vertex has at
most one incident edge in the set. A maximum (cardinality) matching is a matching
with the maximum number of edges. By contrast, a maximal matching is maximal
with respect to the edge set, i.e., no more edges can be added to the set. Both prob-
lems can be solved in polynomial time; an algorithm for the maximum cardinality
matching with running time O(

√
|V ||E|) can be found in [36]. A maximal matching

can be computed in linear time by a greedy approach.
The Planar Augmentation Problem can be interpreted as a computation of a

matching between the pendants of different labels. In particular, this holds for the
PABic problem. A new edge between two pendants of different labels fulfills the
leaf-connection condition and therefore, the number of pendants decreases by two.
We call a pendant matched or cheap, respectively, if it is connected to a pendant of
another label in the solution. All other pendants, i.e., pendants being eliminated by

47

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

(a) (b) (c)

Figure 5.1: Three examples of BC-trees for which the two label definitions induce
different pendant sets. The b-node representing the biconnected core is always the
root b.

unprofitable edges, are expensive.
As mentioned in Section 3.1 and in [31], the Planar Augmentation Problem on

graphs with one triconnected component containing all cutvertices (PATric) can be
solved in polynomial time. We summarize the basic ideas, since they are used in
some parts of the new algorithm.

In case all cutvertices belong to one triconnected component, the embedding
of the graph can be fixed arbitrarily. S-skeletons have only one embedding. An
R-skeleton has exactly two embeddings which are mirror images of each other. A P-
skeleton has many possible embeddings, but since all cutvertices are part of one com-
ponent, the parents of the labels can only correspond to the poles of the P-skeleton.
Therefore, fixing an embedding does not make a difference for augmentation.

The algorithm for PATric generates an auxiliary graph H. Each pendant in the
BC-tree of the original graph gets one representing vertex in H. An edge is inserted
between two vertices of H, if and only if the corresponding pendants do not belong
to the same label and the two label-parents are adjacent to the same face. The
algorithm then computes a maximum cardinality matching M in H and embeds the
pendants according to M into the faces. The graph with this fixed embedding can
be augmented optimally with the algorithm presented in the previous chapter.

The fact, that the embedding of the triconnected component can be fixed without
restricting the set of optimum solutions makes this augmentation problem easy.

An instance of PABic also has a quite simple biconnected structure. Since all
cutvertices belong to one biconnected component, called the biconnected core of the
graph, the BC-tree contains the corresponding b-node and all other c-nodes are
adjacent to it. All other b-nodes are leaves and are directly attached to the c-nodes.

The computation of an optimal solution for PABic with a fixed embedding is
simpler than in the general case. This problem can be solved in linear time because
the updates of the BC-tree are not necessary. We only have to modify the original
definition of labels slightly.

Two pendants are siblings if they are adjacent to the same c-node and neither
of them is the b-node that represents the biconnected core. Obviously, the relation
“sibling” between the pendants is an equivalence relation.

Definition 5.1 (Label (for PABic)). Consider the BC-tree of an instance of PABic.
The labels are the equivalence classes with respect to the sibling relation together with

48

5.1. Introduction

the parent node.

Therefore, each c-node becomes the parent of a label and b-labels do not exist
anymore. From now on, we use this new definition of labels.

Figure 5.1 illustrates three examples for which the two definitions of labels induce
different pendant sets. Assume that the b-node representing the biconnected core is
always the root of the BC-tree. Obviously, in case the root has at least degree four
both label sets are always identical. If the root is a pendant, cf. Figure 5.1 (a), then
there exists at most one c-node. Thus, there is at most one label in both cases which
varies only in this pendant. If the root has degree two, the two definitions only differ
when the root splits up two labels, as seen in Figure (b). The same difference may
occur in case of degree three. Then, the b-node representing the biconnected core
might originally be a b-label, cf. Figure (c).

For the augmentation of an instance for PABic with a fixed embedding, a similar
approach to the original algorithm can be applied. By iterative selection of the
largest label and connection of its rightmost pendant with the leftmost pendant of
the right neighbouring label, the BC-tree can be augmented optimally. In case, there
is one label left, say l0, size(l0) edges are inserted—size(l0)− 1 edges to connect the
pendants of l0 and the last one for the connection of the biconnected core with the
remaining pendant. During the algorithm, the labels need not to be merged, only
the size has to be updated.

The proof of the optimality of this approach is based on the same ideas as the
proof of Lemma 4.3. In case of a massive c-node c∗, the related label is also the
maximum one and it is always utilized for the next edge. Similar arguments ensure,
that the number of added edges is deg(c∗)− 1. In the other case, i.e. the BC-tree is
balanced, the algorithm inserts an edge between two pendants that fulfill the leaf-
connection-condition. Hence, the BC-tree remains balanced and the lower bound of⌈
p
2

⌉
can be achieved.

Furthermore, the number of cheap and expensive pendants inside a fixed face
can be computed only on basis of the size of the largest label and the number of the
remaining pendants.

Let f be a face of an instance for PABic with fixed embedding and bc(f) the
corresponding BC-tree. Let l0 be the largest label with c being its parent c-node
and k the number of the remaining pendants. Further, let p denote the number
of pendants in bc(f), hence p = size(l0) + k. Let x be the integer such that x =
size(l0)− k.

The degree of c equals size(l0) + 1. Therefore,

deg(c) = size(l0) + 1 =
1

2
(size(l0) + k + x) + 1 =

1

2
p+

1

2
x+ 1.

• If x ≥ 4, deg(c) ≥ 1
2
p+ 2 + 1 ≥

⌈
p
2

⌉
+ 2⇒ c is massive.

• If x = 3, p is odd and deg(c) = 1
2
p+ 2.5 =

⌈
p
2

⌉
+ 2⇒ c is massive.

• If x = 2, p is even and hence, deg(c) = 1
2
p+ 2⇒ c is massive.

49

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

• If x = 1, c is not massive, but since l0 is the largest label, there cannot exist
another massive c-node. For a balanced BC-tree, the lower bound of required

edges is
⌈
p
2

⌉
. Here,

⌈
p
2

⌉
=
⌈

size(l0)+k
2

⌉
=
⌈

2k+1
2

⌉
= k + 1 = size(l0).

• If x ≤ 0, there is no massive c-node and hence, the number of required edges
is
⌈
p
2

⌉
.

For an unbalanced graph, the number of required edges depends on the degree
of the massive c-node. In case size(l0) > k, the parent of l0 is massive or its degree
equals

⌈
p
2

⌉
+ 1. Otherwise, if size(l0) ≤ k holds, the underlying BC-tree is balanced.

Observation 5.1. The number of required edges for augmenting a fixed face of an
instance of PABic depends on the size of the maximum label l0 and the number of
the remaining pendants k. In case size(l0) > k, size(l0) edges are required and
sufficient. Otherwise, if size(l0) ≤ k holds, an optimal augmentation consists of⌈

size(l0)+k
2

⌉
edges.

5.2 NP-Completeness

We already presented a proof for the NP-hardness of the Planar Augmentation
Problem in Section 3.3. Unfortunately, the constructed graph in the reduction is not
feasible for PABic since the cutvertices do not belong to one biconnected component.
Therefore, the complexity result cannot be adopted to this special case of PA by the
latter proof.

Hence, we construct a new polynomial-time reduction from another problem on
planar graphs, namely the Planar Vertex Cover Problem, to PABic.

For an undirected graph G = (V,E) a subset of vertices Vvc ⊆ V is called vertex
cover if every edge has at least one endpoint in Vvc. The notation may be somewhat
misleading, since not the vertices are being covered, but the edges are.

Definition 5.2 (Vertex Cover Problem). Let G = (V,E) be an undirected and
connected graph. The Vertex Cover Problem (VC) is the problem of deciding whether
G has a vertex cover with at most k vertices or not.

The Vertex Cover Problem is well-studied. In fact, it is one of the famous 21
problems mentioned in [33], for which Karp proved the NP-completeness. In [32],
Karakostas introduced an approximation algorithm with ratio 2 − Θ(1/

√
log |V |),

which is the best known approximation quality. Moreover, Dinur and Safra showed
that the optimization problem of VC cannot be approximated with a ratio less than
1.3606, unless NP = P ; see [10].

Since we want to prove the NP-completeness of PABic, which requires planar
graphs, the more interesting problem for us is the planar version of this problem.

Definition 5.3 (Planar Vertex Cover Problem). If the input graphs of the
Vertex Cover Problem are restricted to planar graphs then this problem is called
Planar Vertex Cover Problem and it is denoted by VC planar .

50

5.2. NP-Completeness

In [18], Garey and Johnson investigated restricted cases of some NP-complete
problems, among them VCplanar , to which they refer as Planar Node Cover. They
constructed a polynomial-time reduction from the general Vertex Cover Problem to
this special case by replacing crossings in the graph with planar subgraphs to show
the following theorem.

Theorem 5.2. The Planar Vertex Cover Problem is NP-complete.

Garey and Johnson actually proved that the restricted Vertex Cover Problem on
input graphs with maximum degree three is also NP-complete. This implies, that
the Planar Vertex Cover Problem with maximum degree six is NP-complete, since
the constructed graph in the reduction between the two problems does not contain
a vertex that exceeds this bound. However, for our purposes this further restriction
is not necessary.

Because of the NP-completeness of VC planar we are now able to determine the
complexity of PABic.

Theorem 5.3. The Planar Augmentation Problem with the restriction that all
cutvertices belong to the same biconnected component (PABic) is NP-hard.

Proof. To verify the theorem, we consider the decision problem of PABic and show
that it is NP-complete. The decision problem of PABic, denoted by PAdec

Bic, is to
decide whether at most k edges are sufficient to biconnect a given graph without
losing planarity.

Obviously, PAdec
Bic belongs to the complexity class NP . For a graph G = (V,E)

and a given set of edges E ′ it is easy to decide in polynomial time whether G′ =
(V,E ∪ E ′) is planar and biconnected, or not.

Assume G = (V,E) is the input graph for the Planar Vertex Cover Problem.
We construct an input graph G′ = (V ′, E ′) for PAdec

Bic with the property that G
has a vertex cover with size k if and only if G′ can be made biconnected with
7.5m|E| − |V |+ k edges, for an even integer m which will be specified later.

Each vertex v ∈ V is represented in G′ by a subgraph, a vertex gadget, which is
planar and has a triconnected structure. A vertex gadget has two relevant faces fv
and f ′v which are separated by one triconnected subgraph, the decision component.
Furthermore, the boundary is split up by deg(v) triconnected subgraphs, one for
each incident edge, the so-called edge connection components. The gadgets of two
adjacent vertices v, w are connected, inducing one relevant face fvw which is bordered
on two sides by the edge connection components. We refer to the face between two
connected gadgets as the edge component. Figure 5.2 illustrates the triconnected
structure for two vertex gadgets.

So far, the constructed graph is biconnected and planar. Therefore, the graph
G′ is expanded by some pendants. Let m be an even integer greater than 2|V |,
say m := 4|V |. Each edge component and edge connection component obtains one
label with exactly m pendants. Inside the faces of the vertex gadgets there are
6 deg(v)m − 2 pendants, depending on the degree of v. The decision component
is extended by two labels, one on each side, with sizes 2 deg(v)m and deg(v)m,
respectively. Furthermore, there are two labels in face f ′v, one with deg(v)m and the

51

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

Figure 5.2: The triconnected structure of the constructed graph with two vertex
gadgets for the adjacent vertices v and w and an edge e3 = (v, w). The three
incident vertices of edges e1, e2, and e4 are cut out. The shaded parts are tricon-
nected components. The dark one at the top of each vertex gadget is the decision
component, the lighter ones are the edge connection components.

other with deg(v)m− 2 pendants. Finally, a label, again with deg(v)m pendants, is
inserted into face fv. The exact positions are illustrated in Figure 5.3. There, both
vertex gadgets have the described labels and pendants attached, but the decision
and the edge connection components are orientated contrary.

The number of pendants of one vertex gadget corresponding to vertex v is
7 deg(v)m− 2, the number of added pendants for each edge is m. Hence, the total
number of pendants is

=
∑
v∈V

(7 deg(v)m− 2) +
∑
e∈E

m

= 7m
∑
v∈V

deg(v) +m|E| − 2|V |

= 14m|E|+m|E| − 2|V |
= 15m|E| − 2|V |.

Obviously, the pendants of the edge-labels can only be connected with pendants
from the labels of the edge connection components of incident vertices. Moreover,
the only possible matching partner for the pendants in face f ′v are those which are
attached to the decision component.

The most crucial parts of the graph are the decision components. If one is
orientated, such that the 2 deg(v)m pendants are embedded into face f ′v, for a vertex
v, then it will be equivalent of adding v to the vertex cover; compare the left vertex
gadget in Figure 5.3. In this case, the pendants of the edge connection components
can be embedded into the faces that represent the edges, because in fv exist two

52

5.2. NP-Completeness

Figure 5.3: The constructed graph expanded by the pendants. The decision compo-
nent and the edge connection components of the two vertices v and w are embedded
contrarily, that is v ∈ Vvc and w 6∈ Vvc.

labels with size deg(v)m which can be connected among each other. Notice that
this decision induces two expensive pendants in face f ′v.

The contrary embedding of one decision component reflects the decision v 6∈
Vvc; compare the right vertex gadget in Figure 5.3. Then, every edge connection
component has to be orientated such that the m pendants are embedded into face
fv, because otherwise there would exist m expensive pendants.

To verify the correctness of this reduction, we have to show that an instance
G = (V,E) with parameter k is a yes-instance for the Planar Vertex Cover Problem if
and only if G′ = (V ′, E ′) is a yes-instance for PAdec

Bic with parameter 7.5m|E|−|V |+k.

“⇒”: Let {G = (V,E), k} be a valid instance for VC planar and Vvc ⊆ V be a
vertex-cover of size k. We construct the graph G′ as described before and fix the
embedding such that 7.5m|E|− |V |+ k new edges will be sufficient to biconnect G′.
For every vertex v ∈ Vvc we orientate the decision component of the corresponding
vertex gadget such that the 2 deg(v)m pendants are embedded into face f ′v. The
pendants of each edge connection component of v are embedded into the faces that
represent the incident edges. For a vertex w 6∈ Vvc, the decision component is
orientated the other way round and the m-labels of all edge connection components
of w are inserted into fv.

Since Vvc is a vertex cover, every edge has an incident vertex in the set. After the
described embedding decisions, either two or three labels with size m are embedded
into each edge component. Therefore, the m pendants of each edge component can
be connected to at least one label of an edge connection component. Hence, all
contained pendants are cheap ones. A vertex gadget of a vertex v ∈ Vvc induces
exactly two expensive pendants in face f ′v and none in fv, whereas all pendants in a
vertex gadget of a vertex w 6∈ Vvc are cheap ones.

53

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

Altogether there are 2k expensive pendants, two for each v ∈ Vvc, what leads to
the desired number of

=
1

2
(15m|E| − 2|V | − 2k) + 2k

= 7.5m|E| − |V |+ k

added edges for augmentation.

“⇐”: Now, let G′ be the constructed and augmented graph and let G be the
underlying instance for the Planar Vertex Cover Problem. Assume that the aug-
mentation of G′ requires 7.5m|E| − |V |+ k edges.

By the construction of the graph, the pendants of each label, except for the
one attached to the decision component with 2 deg(v)m pendants, are either all
cheap or all expensive. Furthermore, there are only two possibilities for expensive
pendants. On the one hand, if the label with size 2 deg(v)m is embedded into
f ′v, for a vertex v, there do arise two expensive pendants. On the other hand, if
the decision component is embedded contrarily, all pendants in f ′v are cheap ones.
Then, there can be m expensive pendants among the 2 deg(v)m-label, in the case
one edge connection component is embedded with the m-label into the edge-face,
or the edge-pendants are expensive, if both incident edge connection components
are embedded with their labels into the corresponding fv-faces. In both cases the
number of expensive pendants is a multiple of m.

The total number of pendants is 15m|E| − 2|V | and the augmentation requires
7.5m|E| − |V |+ k edges. Let pc denote the number of cheap and px the number of
expensive pendants.

pc + px = 15m|E| − 2|V | and

0.5pc + px = 7.5m|E| − |V |+ k

⇒ 0.5pc = 7.5m|E| − |V | − k
pc = 15m|E| − 2|V | − 2k

It follows that there are exactly 2k expensive pendants. Since m = 4|V | > 2k,
all m-labels need to be cheap and all of the expensive pendants are part of the labels
with size 2 deg(v)m.

It follows, that there are k vertex components whose decision component is
embedded such that the label with 2 deg(v)m pendants lies inside the face f ′v.

Now, we construct a vertex cover Vvc with size k as follows. A vertex v ∈ V is
inserted into the set Vvc if the corresponding vertex gadget contains two expensive
pendants. Therefore, |Vvc| = k and since no edge-label is expensive, each edge has
an incident vertex in Vvc, and the set is a valid vertex cover.

To complete the proof, we need to verify that the size of the constructed graph
is a polynomial in the size of the input graph and that the computation can be
done in polynomial time. The total number of pendants is 15m|E| − 2|V |. With

54

5.3. The Approximation Algorithm

m = 4|V |, the number of pendants is bounded by O(|V ||E|). The number of all
other edges and vertices of the constructed graph G′ is linearly bounded in the size
of the input graph G. Altogether, G′ can be computed in time O(|V ||E|), it uses
space O(|V ||E|), and the theorem follows.

The previous reduction allows to restrict the Planar Augmentation Problem even
more without losing the NP-hardness. Consider the constructed graph G′ and
the SPQR-tree of the biconnected core. Each edge and decision component is a
triconnected graph and the skeleton of the remaining graph is also triconnected.
Therefore, the SPQR-tree of the biconnected core contains exclusively R-nodes.
Furthermore, after omitting the Q-nodes, the SPQR-tree has only height one.

Definition 5.4. PABic−2 is the restricted version of the Planar Augmentation Prob-
lem with the constraints that all cutvertices belong to one biconnected component and
the SPQR-tree of the biconnected core has height one (Q-nodes are omitted).

Corollary 5.4. PABic−2 is NP-hard, even if the SPQR-tree of the biconnected core
contains only R-nodes (and Q-nodes).

5.3 The Approximation Algorithm

The main advantage of PABic(−2) over the general Planar Augmentation Problem is
the central biconnected structure of the input graphs which allows the use of the
SPQR data structure. We introduced the SPQR-tree in Chapter 2.4 and we will
utilize this data structure to develop an approximation algorithm for PABic−2 with
ratio 5

3
. Like described in Section 2.4.3, the permutation of the parallel edges of a

P-skeleton and the orientation of the R-nodes have to be specified to obtain a desired
embedding. The general idea of the approach for PABic−2 is to build the SPQR-tree,
traverse it bottom-up, and make decisions for the embedding of each skeleton with
respect to the position and the size of the labels. Unlike the former approximation
algorithms, edges are inserted only at the end of the algorithm after the embedding
has been fixed. During the traversal, the major difficulty is the positioning of the
pendants and labels to each other. For a good approximation ratio, it is important
that the decisions do not affect too many pendants in a way that they cannot be
connected profitably anymore.

For the following approximation algorithm, we modify the general definition of
the SPQR-tree. First, the root of the SPQR-tree is changed from a Q-node to the
R-, S-, or P-node with the largest degree. Second, all Q-nodes are omitted, that is
they are merged with their parent nodes and therefore, each edge of a skeleton is
either a virtual edge or a real edge.

Since the SPQR-tree only represents the triconnected structure of the bicon-
nected core, the general skeleton graphs need to be expanded further. Consider a
skeleton graph Gµ corresponding to a node µ of the SPQR-tree T . There are two
types of pendants. First of all, there are pendants whose parents are vertices in the
current skeleton graph. We call these pendants R-, S -, and P-pendants, respectively,

55

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

(a) (b)

Figure 5.4: (a) A skeleton µ of an R-node with the reference edge e and a fixed
embedding of the pendants. (b) The skeleton of the parent of µ with the virtual
edge e and the corresponding dp-values.

depending on the current node type. The same notation is used for the correspond-
ing R-, S -, and P-labels. Second of all, there might be pendants which are embedded
into the external faces of expansion graphs of virtual edges.

Because of the optimality of the algorithm for fixed embedding it is possible
to compute the exact number of cheap and expensive pendants inside a face. The
information for external faces of skeleton graphs is incomplete, but the number of
pendants which can be matched already with pendants from other labels and the
number of pendants which require an additional pendant to become cheap can be
computed analogously. We refer to the first set of pendants as potential and to the
second set as demanding pendants and call the pair of demand and potential the
dp-value. These values are added to both sides of each virtual edge of a skeleton. In
case the edge is a real edge the dp-value is (0, 0).

Figure 5.4 illustrates an example of an R-skeleton with reference edge e and the
corresponding skeleton of the parent node. There are three demanding and zero
potential pendants in fl and two demanding and four potential pendants in face fr.

Furthermore, the virtual and the reference edges are considered to be directed.
The direction allows parent nodes to flip entire subgraphs by reversing the virtual
edges. Let ν be a child of µ in the SPQR-tree and fl and fr the external faces
of skeleton(ν) with directed reference edge eµ. Furthermore, let eν be the directed
virtual edge of ν in skeleton(µ). The right and the left face of eν correspond to the
right and left face of eµ. By flipping the direction of eν , the related skeleton and
hence, the expansion graph, is mirrored.

Furthermore, the dp-value provides all required information for the parent. For
example, the size of the largest label can be computed easily in case the demand is
greater than one. Consider a side of a virtual edge e with a dp-value of (ed, ep) and
ed ≥ 2. Since the potential is always a power of two, the largest label has 1

2
ep cheap

pendants. Therefore, the size of the largest label equals ed + 1
2
ep.

The algorithm is a greedy approach based on the traversal of the SPQR-tree and

56

5.3. The Approximation Algorithm

the separate consideration of each skeleton. The main procedure of the approxima-
tion algorithm for PABic−2 is outlined in algorithm PlanarAugmentationBic-2.
Procedure PA-Bic-2-Recursive manages the recursive calls such that a node is
considered not until all its children are processed. Furthermore, there are several
sub-procedures concerning the different types of SPQR-nodes: Handle-R-Node,
Handle-S-Node, and Handle-P-Node, respectively.

Algorithm 9 PlanarAugmentationBic-2

Input: valid graph G = (V,E) for PABic−2

Output: list of new edges E ′ such that G = (V,E ∪ E ′) is planar and biconnected

1: construct the BC-tree bc(G) and compute the labels
2: construct the SPQR-tree T of the biconnected core of G; root T at
↪→ the node with the maximum degree

3: µr ← root of T
4: PA-Bic-2-Recursive(µr)
5: fix the current embedding Π(G) of G
6: return PlanarAugmentationFix(G, Π(G))

In procedure PlanarAugmentationBic-2, the BC-tree is computed for ob-
taining the pendants and labels. Afterwards, the biconnected core of the graph is
decomposed into its triconnected components. The traversal based on the SPQR-
tree is a simple bottom-up approach with case differentiation between the types
of tree-nodes and calls of the corresponding procedures in PA-Bic-2-Recursive,
cf. lines 5–7. The actual augmentation takes place in the algorithm PlanarAug-
mentationFix which is called after the traversal and the fixing of the embedding,
see lines 5 and 6.

Algorithm 10 PA-Bic-2-Recursive

Input: Node µ of the SPQR-tree T
1: for all children ν of µ do
2: PA-Bic-2-Recursive(ν)
3: end for
4: switch(µ)
5: case R-node: Handle-R-Node(µ)
6: case S-node: Handle-S-Node(µ)
7: case P-node: Handle-P-Node(µ)
8: end switch

5.3.1 R-Node

The algorithm for R-nodes works in a greedy way and has two objectives. On the one
hand, we try to transform as many demanding pendants as possible into potential
pendants. On the other hand, we need to limit the number of negatively affected

57

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

Algorithm 11 Handle-R-Node

Input: R-Node µ of the SPQR-tree T
1: let Sµ = (Vµ, Eµ) be the skeleton-graph of µ with dp-values
↪→ for each edge and additional R-pendants

2: E ′µ ← {e ∈ Eµ| one dp-value of e is 6= (0, 0)} . set of free edges
3: sort E ′µ by dp-value in descending order
4: while (E ′µ 6= ∅) do
5: e← first edge ∈ E ′µ with maximum demand ed and potential ep
6: fx ← adjacent face of e with the maximum number of pendants
7: FixEmbedding()
8: update E ′µ
9: end while

10: match-R-Pendants()
11: if (µ is not the root of T) then
12: add dp-values to the virtual edge representing µ in parent(µ)
13: end if

pendants, i.e. pendants that are cheap in an optimum solution and expensive in the
algorithmic solution as consequence of the embedding decisions.

Like described in the previous section, there are two types of pendants, the R-
pendants and the demanding and potential pendants, respectively. The pendants of
an R-label can be embedded separately into any adjacent face of the parent vertex.
By contrast, demanding and potential pendants can only be embedded into the
two adjacent faces of the edge. Furthermore, potential pendants can already be
connected profitably whereas demanding pendants still require a matching partner.

The algorithm proceeds as follows. In every iteration, the edge with the largest
demand is selected (line 5). Then, both adjacent faces are considered and the
maximum number of pendants that can be embedded into each face is computed. For
this computation, the demanding pendants are prioritized, i.e., potential pendants
do not count unless both demanding values of an edge are equal. We define that
a dp-value (d1, p1) is greater than a dp-value (d2, p2) iff d1 > d2 or, if d1 ≥ d2 and
p1 > p2. Furthermore, adjacent R-pendants are added to the face until they would
become expensive.

The number of added pendants for each R-label can be decided on the basis of
a comparison of the label-size and the number of pendants inside the face. Let ri
be the size of the i-th adjacent label, let R denote the number of R-pendants, and
let k be the number of the remaining pendants, i.e., the sum of the demanding and
potential pendants. Furthermore, assume that the labels are sorted in descending
order such that r1 is the size of the largest R-label. For each label with size rj and
j > 1, all pendants are added to the face. For the largest label, the number of added
pendants is r1, if R − r1 + k > r1 and R + k is even. In case R − r1 + k > r1 and
R + k is odd, then r1 − 1 pendants are added. If R − r1 + k ≤ r1 then R − r1 + k
pendants of the largest label are embedded into that face. Therefore, all added R-
pendants would become cheap and there would be at most one adjacent label with
free pendants after the embedding decisions.

58

5.3. The Approximation Algorithm

Figure 5.5: A skeleton of an R-node with corresponding dp-values, five R-pendants,
and current edge e with demand 5. Since the number of demanding pendants in face
fx is 5 and in f2 only 2, the edge is orientated such that the 5 demanding pendants
are embedded into fx. Notice that the R-label with size two is not added entirely
to the face because otherwise, the total number of pendants would be odd.

After considering both adjacent faces the embedding is fixed by the procedure
FixEmbedding which is not outlined. This procedure simply orientates e such
that the demand ed lies inside of face fx which is the face with the prioritized set of
pendants. Furthermore, all bordering edges of that face are fixed and deleted from
the set of free edges E ′µ. Already fixed edges are naturally excepted. The involved
R-labels are also being updated.

Figure 5.5 illustrates a typical situation concerning the current edge e with five
demanding pendants and zero potential ones.

Algorithm 12 Match-R-Pendants

1: P ← set of free R-pendants in skeleton(µ)
2: generate a new graph H = (VH , EH) with |P | vertices, one for each
↪→ pendant, add edges between pendants that are adjacent to the same
↪→ face and do not belong to the same label

3: compute a maximum cardinality matching M in H
4: fix the embedding of the pendants according to M
5: if (µ is not the root of T) then
6: if possible, embed free R-pendants into fl or fr (but no R-pendants

↪→ with parents corresponding to one of the poles of skeleton(µ))
7: else
8: embed free R-pendants arbitrarily
9: end if

After fixing the orientation of all edges and embedding the R-pendants, there
might be remaining R-pendants. In particular, this is important for R-nodes that
are leaves in the SPQR tree. Free R-pendants are processed like in the algorithm
for PATric by utilizing a maximum matching among the pendants of different labels

59

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

for the embedding. The procedure is outlined in algorithm Match-R-Pendants.
In case there are still remaining R-pendants, they are embedded into the external
faces fl or fr of µ, if possible. Since pole-pendants can be embedded arbitrarily in
the parent node, they are excluded from this operation.

5.3.2 S-Node

Algorithm 13 Handle-S-Node

Input: S-Node µ of the SPQR-tree T
1: let Sµ = (Vµ, Eµ) be the skeleton-graph of µ with the two faces fl and fr,
↪→ dp-values for each edge, and additional S-Pendants

2: for all edges e ∈ Eµ do
3: let (ed, ep), (e

′
d, e
′
p) be the dp-values of e with (ed, ep) ≥ (e′d, e

′
p)

4: fix the embedding of e such that ed lies in fl
5: end for
6: embed S-pendants into the faces until they would remain demanding, start
↪→ with fl.

7: if (µ is not the root of T) then
8: add dp-values to the virtual edge representing µ in parent(µ)
9: else

10: embed free R-pendants arbitrarily
11: end if

The algorithm for orientating the edges in an S-skeleton and embedding the
S-pendants is quite simple. Each edge is embedded such that the largest demand
lies inside face fl, cf. lines 2–4. The S-pendants are also fixed unless they would
become expensive, compare line 6. All remaining S-pendants are unfixed and can
be embedded in the parent node. Therefore, Handle-S-Node proceeds similar to
Handle-R-Node.

Finally, the dp-values for the corresponding virtual edge in parent(µ) are com-
puted. In case there exist free S-pendants, they count as demand on both sides.
Furthermore, when the virtual edge is merged with another edge during Handle-P-
Node, or an adjacent face is fixed in Handle-R-Node and there are still remaining
S-pendants, they are embedded on the other side of the edge and the corresponding
dp-value needs to be updated.

5.3.3 P-Node

The basic idea for P-skeletons is to consider the edges in decreasing order with
respect to the dp-value. Therefore, the algorithm selects the two edges with the
largest demanding values. Both edges are merged, that is they are fixed to be
consecutive in the order of the edges of the P-skeleton. Furthermore, as many
P-pendants as possible are added to that face. This procedure is outlined in P-
Node-Merge.

60

5.4. Approximation Ratio

Algorithm 14 Handle-P-Node

Input: P-Node µ of the SPQR-tree T
1: let Sµ = (Vµ, Eµ) be the skeleton-graph of µ with dp-values
↪→ for each edge and additional P-pendants

2: E ′µ ← Eµ
3: while (|E ′µ| 6= 1) do
4: e, e′ ← the two edges in E ′µ with the largest and second largest

↪→ dp-values (ed, ep) and (e′d, e
′
p)

5: P-Node-Merge()
6: end while
7: if (µ is not the root of T) then
8: add dp-values to the virtual edge representing µ in parent(µ)
9: end if

Algorithm 15 P-Node-Merge

1: e∗ ← merge e and e′ such that ed and e′d are embedded into the new face
2: add free P-pendants to the new face until they would become expensive
3: if possible, embed remaining S-pendants into the external faces of the
↪→ new component

4: compute new dp-values for both sides of e∗

5: E ′µ ← {E ′µ\{e, e′}} ∪ {e∗}

5.4 Approximation Ratio

Theorem 5.5. Algorithm PlanarAugmentationBic-2 solves PABic−2 with at
most 5

3
times the number of edges of an optimum solution.

Proof. Let G = (V,E) be an instance for PABic−2, bc(G) the corresponding BC-tree,
and P the set of pendants in bc(G). Let T be the SPQR-tree of the biconnected
core of G. Furthermore, let S denote the solution computed by the algorithm and
Sopt an optimum one.

The proof is based on an induction over the ordered sequence of embedding
decisions of the algorithm.

Analogously to the algorithm, the analysis considers a current subset of pen-
dants which are already embedded. During the algorithm there are complete and
incomplete faces. A complete face lies either inside an R-skeleton and has already
been fixed, or is a face that results from a merge step of P-Node-Merge, or is a
fixed face of the skeleton that corresponds to the root node. The contained pendants
can be classified, depending on whether they are cheap or expensive. In general,
pendants that are embedded into incomplete faces cannot be classified entirely until
the embedding is fixed.

The value of an augmentation is its number of added edges. Since every pendant
is either connected by an profitable or an unprofitable edge, the evaluation can be
changed to a simple accounting method. Each pendant becomes a cost unit and is
charged with costs 1

2
or 1, depending on whether it is cheap or expansive. Thus, the

61

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

costs of an added edge are partitioned among the incident pendants, and the sum
of all pendants equals the number of required edges for augmentation.

Let c be the cost-vector of the constructed and c∗ the one of the optimum solution.
Furthermore, let costs(P) and costs∗(P), respectively, denote the sum of the cost-
vector of the corresponding solution. If a pendant p is expensive in S and cheap in
Sopt then we call p a bad pendant.

Each embedding decision causes some pendants to become cheap and some pen-
dants are affected negatively, since they cannot be connected profitably anymore.
Since the algorithm works on the triconnected structure of the graph, an upper
bound of affected pendants can be estimated easily. Although the embedding deci-
sions are the reason for the occurrence of bad pendants, we say that the pendants of
the current face are responsible for the affected pendants since this number is always
an upper bound. Therefore, each pendant is virtually charged with the number of
bad pendants it causes.

The overall idea is to consider each decision, estimate an upper bound of nega-
tively affected pendants, and show that the number of bad pendants can be compen-
sated by the number of cheap ones. We will prove that x cheap pendants in S cause
at most 2x bad pendants. All other pendants P ′ ⊆ P are expensive in Sopt and hence,
the costs of the constructed solution cannot be worse than the costs of the optimum
solution for this set. Thus, the costs of S are at most 1

2
x+ 2x+ costs∗(P ′) = 2.5x+

costs∗(P ′) and the one of Sopt are at least 1
2
x + x + costs∗(P ′) = 1.5x + costs∗(P ′).

Therefore the ratio is at most

2.5x+ costs∗(P ′)

1.5x+ costs∗(P ′)
= 1 +

x

1.5x+ costs∗(P ′)
≤ 1 +

2

3
=

5

3
.

The induction is based on the sequence of embedding decisions and the induction
hypothesis is a set of statements:

• Potential pendants are already being considered.

• Demanding pendants have not caused any bad pendants.

• Bad pendants in the current face caused by previous decisions are already
considered and can be compensated.

Base case:
The base case occurs in a node µ of the SPQR-tree with the property, that all
label-parents in pertinent(µ) also belong to skeleton(µ). Then, all dp-values are
zero and the algorithms for R-, S-, and P-nodes only have to deal with R-, S-, and
P-skeletons, respectively.

Since the embedding decisions only concern the current skeleton graph, two
pendants that belong to G − pertinent(µ) and which could have been connected
previously can also be connected afterwards.

µ is an R-Node:
In the base case, the algorithm for R-nodes proceeds like the algorithm for PATric by
computing a maximum matching M between the R-pendants of different labels and

62

5.4. Approximation Ratio

embedding the pendants according to this matching. In case the current R-node is
also the root of T , the augmentation based on the maximum matching equals an
optimum one.

Therefore, assume that the current node is a leaf in the SPQR-tree. Then,
unmatched pendants—but not free pole-pendants—are embedded into the external
faces. Each matched pendant becomes either cheap, or it becomes potential if
it lies in the external face of µ. By setting the property of being potential for
some pendants they become virtually connected by profitable edges. Although the
external face is unfinished, it is valid to assume that the potential pendants do not
lose this property. An augmentation of a face can always be modified such that the
solution is still optimal and all expensive pendants were demanding.

Consider two matched pendants which are embedded into an external face of µ.
Afterwards, both pendants become potential. Assume that the computed matching
is not optimal with respect to the augmentation of the entire graph and that one
of the pendants would better be embedded inside the R-skeleton. Therefore, this
pendant causes one other pendant to become bad. In the following embedding
decisions, this potential pendant cannot be held responsible for another bad pendant.
This has two reasons. First, potential pendants are less valuable than demanding
pendants. Therefore, in each embedding decision, the side of an edge with the
maximum number of demanding pendants is prioritized and embedded first. Second,
each pendant can only be connected to one other pendant. Therefore, if one potential
pendant already causes one bad pendant, i.e., it would be better connected to it,
this pendant cannot be charged with another bad pendant in the future.

This observation is essential for the proof and it does not only hold for the base
case in the R-node. It is also a valid observation in the inductive step.

In case the potential pendants do not cause bad pendants inside the current
skeleton, this can still occur in the parent skeleton. But the same arguments like
before will ensure that each potential pendant is responsible for at most one other
bad pendant.

Altogether, a matching with size |M | induces 2|M | cheap pendants and at most
2|M | negatively affected pendants.

µ is an S-Node:
The algorithm for S-nodes also computes a maximum matching on the pendants of
the different labels by embedding pendants into the external face fl until they would
remain demanding. In case µ is also the root, the computed maximum matching
induces an optimum solution. Otherwise, the remaining S-pendants are not fixed and
can be reused in ancestor nodes. The arguments concerning the potential pendants
are similar to the arguments for the R-node. Furthermore, the potential pendants
cannot be separated anymore, i.e. they can only be embedded into one adjacent face
of the parent skeleton. Therefore, the number of affected pendants is at most the
number of new potential pendants.

µ is a P-Node:
In case of a P-skeleton, the algorithm fixes the permutation of the edges. Here, no
child contains any pendants and therefore, the permutation is irrelevant. P-pendants

63

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

Figure 5.6: Sketch of the embedding situation concerning the virtual edge e with
pendant set Ed ∪Ep. The grey-colored vertices are demanding vertices whereas the
white ones are potential. Face fx contains k and face f2 k

′ pendants.

are matched during the first merge step and remaining pendants are unfixed. There-
fore, the same arguments like before hold and the number of affected pendants equals
at most the number of matched pendants.

If the current P-node is the root, the computed embedding depends on the
maximum matching and is therefore optimal.

Inductive step:
Since the SPQR-tree has only height one, the inductive step deals with a skeleton
that corresponds to the root of the tree. We can assume that the statements hold for
the first i decisions, with i ≥ 2. Again, let µ be the current node of the SPQR-tree.

Case 1: µ is an R-Node:
Let e be the current virtual edge with maximum demand ed and potential ep, and
let Ed and Ep denote the corresponding pendant sets. In case the demand is zero all
pendants embedded into the current face are potential pendants or R-pendants. The
potential pendants can already be connected profitably and they are already con-
sidered. The R-pendants are embedded unless they would become expensive. This
approach induces a maximal matching on the R-pendants and the same arguments
like in the base case can be applied.

Now, assume that ed > 0. Let K = Kp ∪Kd be the set of possible pendants in
fx and f2 the opposite face of e containing the set K ′ with k′ pendants. Kp denotes
the set of potential and Kd the one of demanding pendants. We will refer to the
i-th virtual edge in cyclic order bordering fx as ei and the opposite face of ei as fei

.
Most of the used identifiers are illustrated in Figure 5.6.

The embedding decisions made by Handle-R-Node are not critical with respect
to the embedding of the whole graph. Two pendants that belong to non-adjacent
expansion graphs of the current face and that can be connected before each decision

64

5.4. Approximation Ratio

are not affected. Since the number of demanding pendants in the adjacent faces of
the current edge is known, it is possible to estimate an upper bound for the number
of affected pendants.

First of all, we will compute an upper bound of negatively affected pendants in
other faces caused by the bounding pendants of fx. Consider edge ei and its pendant
set Ki = Kip ∪Kid in fx with potential pendants Kip and demanding pendants Kid .

Let the opposite face of ei be fei
and K̂i = K̂ip ∪ K̂id the opposite pendant set

attached to ei. The cardinality of each set is denoted by a small character with the
corresponding index, e.g., k̂id = |K̂id |.

Since the edge ei is embedded such that the maximum demand lies inside fx,
kid ≥ k̂id holds. Obviously, it is not possible to embed the sets Ki and K̂i into one
face at the same time. Moreover, one pendant can only be connected to one other.
Hence, there are at most kid affected pendants located at expansion graphs adjacent
to fei

, for all i.
In case edge ei has already been fixed by a previous decision, the current em-

bedding has no effect on that face. The same argument holds for the opposite face
of e.

However, in the unfixed case, face f2 contains at most k′ ≤ k demanding pen-
dants, excluding the pendants attached to e whose number is at most ed. Like
before, both sides of e are always separated. The same arguments like before ensure
that at most min{kd, ed} pendants are affected in expansion graphs adjacent to f2.

Moreover, potential pendants are already being considered. Therefore, there are
at most kd + min{kd, ed} new bad pendants located in other faces caused by the
current decision.

Second of all, we will consider the current face fx and the number of contained
bad pendants. Since ed is the maximum demand, kid ≤ ed holds for every i. The
face can be augmented optimally such that all expensive pendants belong to the set
Ed. In case kp + kd > ed there are exactly ((kd + ed) mod 2) expansive pendants1.
Therefore, this case induces at most one bad pendant in fx caused by the current
decision.

Otherwise, if kp + kd ≤ ed holds, the number of expensive pendants equals
ed−(kp+kd). Although the current face contains the maximum number of demanding
pendants, k might not be the maximal possible number of pendants in fx. Consider
an edge ei with the described pendant sets Ki and K̂i. It is possible that ki is small
and k̂i > ki. The same argument holds for face f2. It is possible that the number of
pendants in f2 is larger than in fx. But since these pendants can only be potential,
they have already been considered. Therefore, all expensive pendants among the
set Ed are also expensive in Sopt or they are affected by previous decisions. Hence,
in case kp + kd ≤ ed, there are no new bad pendants.

Altogether, there are

kd +

kp + kd if kp + kd < ed

ed if kp + kd = ed
ed − ((kd + ed) mod 2) if kp + kd > ed

1mod denotes the modulo-operation, that is a mod b denotes the remainder after the division
of a by b

65

Chapter 5. Planar Augmentation for Almost Biconnected Graphs

new cheap pendants and at most

kd +

kd if kp + kd < ed
kd if kp + kd = ed

ed + ((kd + ed) mod 2) if kp + kd > ed

affected pendants.
In case kp + kd is less than or equal to ed the ratio of cheap and bad pendants

is at most 1. The third case, i.e., kp + kd > ed, leads to the worst-case ratio of the
algorithm:

kd + ed − ((kd + ed) mod 2)

kd + ed + ((kd + ed) mod 2)
≤ kd + ed − 1

kd + ed + 1

Since ed ≥ 1 and therefore, kd ≥ 2 holds, the worst-case occurs if ed = 1 and kd = 2.
Then, the number of bad pendants is two times the number of cheap pendants,
namely four versus two.

Case 2: µ is an S-Node:
The algorithm for S-nodes simply orientates all edges such that the maximum de-
mand is embedded into face fl. Moreover, S-pendants are additionally fixed in both
faces until they would remain demanding. Finally remaining S-pendants are em-
bedded arbitrarily because they cannot be connected profitably anyway. Therefore,
the algorithm works exactly like the one for the R-node and the analysis is similar.

Case 3: µ is an P-Node:
Handle-P-Node always selects the two edges with the largest dp-values (ed, ep) and
(e′d, e

′
p) and merges both edges into a new component. The two edges are orientated

such that the largest demands are embedded into the inner face. Like in the two
previous cases, the P-pendants are added to this face until they would become
expensive. Then, the new component is considered as a virtual edge. Therefore,
all other edges of µ can still be merged arbitrarily and the new edge can also be
selected for following merge operations.

Since all other demanding values are at most e′d the same arguments hold like
for the R-node case.

The previous analysis of the approximation ratio is tight. Figure 5.7 illustrates a
worst-case graph with six pendants where the algorithm computes an augmentation
containing five edges. By contrast, three edges are already sufficient.

The corresponding SPQR-tree consists of four R-nodes, three of them, which
are also the leaves, contain one pendant each, and the root contains the remaining
three pendants. For each leaf, the algorithm embeds the single pendant into the
adjacent external face of the skeleton and the corresponding virtual edge obtains
one demanding pendant on one side. In the root skeleton one of these virtual edges
is selected as edge with the maximum demand. Since the number of pendants in the
inner face is three, each virtual edge is orientated such that the demanding pendant
is inserted into this face. Therefore, only two pendants can be connected profitably,

66

5.5. Running Time

Figure 5.7: A worst-case example for PABic−2 with dashed edges representing the
computed augmentation.

whereas four are expansive. By orientating all three virtual edges contrarily, the
graph can be augmented with three edges.

5.5 Running Time

Theorem 5.6. Algorithm PlanarAugmentationBic-2 runs in time O(|V |2.5).

Proof. The SPQR-tree and the BC-tree can be constructed in linear time. Further-
more, each skeleton of the SPQR-tree is expanded by the related pendants. Since
the height of the tree at most one, each pendant is represented by at most two
instances.

The procedures Handle-P-Node and Handle-S-Node do not have any ex-
pensive operations that could exceed linear running time. Each sorting can be
handled by a bucket sort routine in linear time. The computation of the dp-value
can also be done in linear time in the number of adjacent labels.

In the R-skeleton, R-pendants are embedded by computing a maximum match-
ing. The running time of a matching algorithm is O(

√
nm), if n is the number of

vertices and m the number of edges in the underlying graph. Here, the graph is the
auxiliary graph H = (VH , EH). The vertices of H represent the R-pendants and the
edges are inserted between pendants of different labels. Therefore, the cardinality
of EH can be Ω(|VH |2), leading to a running time of O(|VH |2.5) for Match-R-
Pendants.

The final augmentation takes time O(|V |+|E|) and hence, the total running time
is dominated by the computation of the matching and is bounded by O(|V |2.5).

67

Chapter 6

Summary and Outlook

In this thesis we have dealt with the Planar Augmentation Problem and with several
special cases of this problem. In Chapter 3, we considered known approximation
algorithms for the general case, among them the approach of Kant and Bodlaender
with ratio two [31] and the one of Fialko and Mutzel with ratio 5

3
[12]. We con-

structed a counter-example for the latter algorithm showing that its approximation
ratio is only two. Before, Fialko and Mutzel already detected problems in an ap-
proach of Kant and Bodlaender that should have ratio 3

2
and actually achieves only

ratio two. The problem of the previous approaches is the unpredictability of the
effect of one added edge on the whole embedding of the graph. As shown by the
worst-case example in Section 3.4, it is possible that one edge affects the embedding
such that all other pendants cannot be connected profitably anymore because of
planarity.

In case the instances are restricted to planar graphs with the constraint that all
cutvertices belong to one triconnected component (PATric), the problem becomes
efficiently solvable, cf. Section 5.1 or [31]. Since the general problem is NP-hard
and PATric is easily solvable, we investigated the Planar Augmentation Problem on
graphs with one biconnected component containing all cutvertices (PABic). Sur-
prisingly, this special case is already NP-hard. In Chapter 5, we presented a new
polynomial-time reduction from the Planar Vertex Cover Problem to PABic. As con-
sequence, the problem remains NP-hard even for the case, where the SPQR-tree
(without Q-nodes) of the biconnected core has height one (PABic−2).

Since the core of the input graph is biconnected, this restricted problem allows
the direct use of the SPQR-tree. The advantages of this approach are due to the
properties of the skeleton graphs, i.e.,the effects of one added edge—or in this case
of one embedding decision—on the whole graph are bounded. Hence, we success-
fully developed an approximation algorithm with ratio 5

3
. The running time of this

algorithm is O(|V |2.5).

Before, in Chapter 4, we considered another special case. By fixing the embed-
ding of a planar graph (PAFix), its optimal augmentation becomes efficiently com-
putable. We presented a new algorithm with running time O(|V |+ |E|+α(|V |)|V |).
Thus, the running time is linearly bounded for all practical purposes. The approach
relies on the idea of adding edges that fulfill the leaf-connection condition by utilizing

69

Chapter 6. Summary and Outlook

b- and c-labels introduced by Fialko and Mutzel in [12].

Through this thesis, we got a better insight into the complexity of the Planar
Augmentation Problem and the complications concerning the development of new
approximation algorithms. There are some open questions and unsolved problems,
but also potential approaches for future work, e.g.:

• As described in Section 3.5, a disconnected graph cannot be connected easily
without potentially destroying the optimum solution for the whole augmen-
tation. This is an open problem which seems to be as complex as the main
problem.

• The approximation algorithm for PABic−2 can possibly be improved to a 3
2
-

approximation, since this is the ratio which is provided by the maximal match-
ing on the pendants. Maybe there exists a completely different approach that
leads to a better approximation ratio.

• Furthermore, the approximation of PABic is now an open problem. Perhaps,
the described algorithm can be be expanded to arbitrary heights of the related
SPQR-tree without increasing the approximation ratio.

• The main objective remains the development of a new approximation algo-
rithm for the general Planar Augmentation Problem with a ratio less than two.
At first view, this seems to be feasible since the first approximation algorithm
of Kant and Bodlaender with ratio two ignores profitable edges completely.

The related question is whether the Planar Augmentation Problem is approx-
imable with a ratio less than two, or not.

70

List of Figures

1.1 An excerpt of London’s subway map. 2

1.2 (a) An example for the layout computed by a straight-line algorithm
and (b) the same graph layouted by the mixed-model algorithm. . . . 3

2.1 Four different drawings of the same planar graph. 7

2.2 (a) A connected graph, (b) its blocks B1, B2, B3, B4, and (c) the cor-
responding BC-tree rooted at the b-node B1; the cutvertices are 2,3,
and 7. 9

2.3 (a) Biconnected graph, (b) the split components with respect to split
pair {0, 7}, and (c) split pair {1, 6}. 10

2.4 Pertinent graphs on the left and the related skeletons of (a) S-, (b)
P-, and (c) R-nodes on the right with reference edge e. 11

2.5 (a) Biconnected graph, (b) the skeleton µ of an R-node in the SPQR-
tree with virtual edges e1, e2, and e3, and (c) the graph expansion+(e1). 12

2.6 (a) Biconnected graph and (b) the related SPQR-tree rooted at the
R-node. The Q-nodes are omitted for simplicity. 13

3.1 (a) Connected graph and its blocks, (b) the same graph with the
updated biconnected components after adding edge (6, 10), (c) the
BC-tree of the original graph with the corresponding edge, and (d)
the resulting BC-tree. 21

3.2 The constructed graph for the polynomial-time reduction from 3-
Partition to PAdec. 24

3.3 (a) BC-tree with dashed edges representing the solution of PA 2-
Approximation and (b) the optimum solution. 26

3.4 (a) A worst-case instance for the approximation algorithms with k in-
serted edges after the first iteration and (b) the optimal augmentation
solution. 29

3.5 (a) Graph with two connected components and 2k + 1 pendants, (b)
the situation after connecting the second connected component to the
single pendant, and (c) the optimal connection. 30

4.1 (a) A planar graph with a designated face f . The induced subgraph
of f is emphasized by thick vertices and edges. (b) The corresponding
BC-tree bc(f). 34

71

LIST OF FIGURES

4.2 The two cases where a pseudo-label with parent b becomes a real
b-label after inserting edge e. 35

4.3 Situation before inserting an edge with a critical c-node c∗, its label
l0, and the two involved labels l1 and l2. 43

4.4 An example graph with two pendants and two embeddings. The fixed
embedding in (a) induces an augmentation with four edges, whereas
the optimal solution in (b) consists of one edge. 44

5.1 Three examples of BC-trees for which the two label definitions induce
different pendant sets. The b-node representing the biconnected core
is always the root b. 48

5.2 The triconnected structure of the constructed graph with two vertex
gadgets for the adjacent vertices v and w and an edge e3 = (v, w).
The three incident vertices of edges e1, e2, and e4 are cut out. The
shaded parts are triconnected components. The dark one at the top
of each vertex gadget is the decision component, the lighter ones are
the edge connection components. 52

5.3 The constructed graph expanded by the pendants. The decision com-
ponent and the edge connection components of the two vertices v and
w are embedded contrarily, that is v ∈ Vvc and w 6∈ Vvc. 53

5.4 (a) A skeleton µ of an R-node with the reference edge e and a fixed
embedding of the pendants. (b) The skeleton of the parent of µ with
the virtual edge e and the corresponding dp-values. 56

5.5 A skeleton of an R-node with corresponding dp-values, five R-pen-
dants, and current edge e with demand 5. Since the number of de-
manding pendants in face fx is 5 and in f2 only 2, the edge is ori-
entated such that the 5 demanding pendants are embedded into fx.
Notice that the R-label with size two is not added entirely to the face
because otherwise, the total number of pendants would be odd. . . . 59

5.6 Sketch of the embedding situation concerning the virtual edge e with
pendant set Ed∪Ep. The grey-colored vertices are demanding vertices
whereas the white ones are potential. Face fx contains k and face f2

k′ pendants. 64
5.7 A worst-case example for PABic−2 with dashed edges representing the

computed augmentation. 67

72

List of Algorithms

1 PA 2-Approximation . 25
2 PA Approximation . 28
3 PlanarAugmentationFix . 34
4 HandlePendant . 36
5 FindMatching . 37
6 Update . 37
7 HandleRootDeg2 . 38
8 HandlePseudoLabel . 38
9 PlanarAugmentationBic-2 . 57
10 PA-Bic-2-Recursive . 57
11 Handle-R-Node . 58
12 Match-R-Pendants . 59
13 Handle-S-Node . 60
14 Handle-P-Node . 61
15 P-Node-Merge . 61

73

Bibliography

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing –
Algorithms for the visualization of graphs. Prentice Hall, 1999.

[2] G. Di Battista and R. Tamassia. Incremental planarity testing. In 30th Annual
Symposium on Foundations of Computer Science, pages 436–441. IEEE, 1989.

[3] G. Di Battista and R. Tamassia. On-line maintenance of triconnected compo-
nents with SPQR-trees. Algorithmica, 15(4):302–318, 1996.

[4] D. Bienstock and C. L. Monma. On the complexity of covering vertices by faces
in a planar graph. SIAM Journal on Computing, 17(1):53–76, 1988.

[5] J. M. Boyer and W. J. Myrvold. On the cutting edge: simplified O(n) planarity
by edge addition. Journal of Graph Algorithms and Applications, 8(2):241–273,
2004.

[6] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple
Kuratowski subdivisions. In Lecture Notes in Computer Science, volume 4875,
pages 159–170. Springer Verlag, 2007.

[7] S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71:
Proceedings of the third annual ACM Symposium on Theory Of Computing,
pages 151–158. ACM, 1971.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT Press, Second edition, 2001.

[9] R. Diestel. Graph Theory. Springer-Verlag, Third edition, 2005.

[10] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162:439–485, 2005.

[11] K. Eswaran and R. Tarjan. Augmentation problems. SIAM Journal on Com-
puting, 5(4):653–665, 1976.

[12] S. Fialko and P. Mutzel. A new approximation algorithm for the planar aug-
mentation problem. In SODA ’98: Proceedings of the ninth annual ACM-SIAM
symposium on discrete algorithms, pages 260–269. Society for Industrial and
Applied Mathematics, 1998.

75

BIBLIOGRAPHY

[13] A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
Journal on Discretete Mathematics, 5(1):25–53, 1992.

[14] H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990.

[15] G. Frederickson and J. Jájá. Approximation algorithms for several graph aug-
mentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[17] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983.

[18] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

[19] D. Gusfield. Optimal mixed graph augmentation. SIAM Journal on Computing,
16(4):599–612, 1987.

[20] C. Gutwenger and P. Mutzel. Grid embedding of biconnected planar graphs. Ex-
tended Abstract, Max-Planck-Institut für Informatik, Saarbrücken, Germany,
1997.

[21] C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular
resolution. In Graph Drawing, volume 1547 of Lecture Notes in Computer
Science, pages 167–182. Springer-Verlag, 1998.

[22] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees.
In Graph Drawing, volume 1984 of Lecture Notes in Computer Science, pages
77–90. Springer-Verlag, 2000.

[23] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar
graph. Algorithmica, 41(4):289–308, 2005.

[24] J. Hopcroft and R. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, 1973.

[25] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM,
21(4):549–568, 1974.

[26] T.-S. Hsu. On four-connecting a triconnected graph. Journal of Algorithms,
35(2):202–234, 2000.

[27] T.-S. Hsu and V. Ramachandran. On finding a smallest augmentation to bi-
connect a graph. SIAM Journal on Computing, 22(5):889–912, 1993.

[28] B. Jackson and T. Jordán. Independence free graphs and vertex connectivity
augmentation. Journal of Combinatorial Theory Series B, 94(1):31–77, 2005.

76

BIBLIOGRAPHY

[29] M. Jünger and P. Mutzel. Graph Drawing Software. Springer-Verlag, 2004.

[30] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996.

[31] G. Kant and H. L. Bodlaender. Planar graph augmentation problems (extended
abstract). In Algorithms and Data Structures, 2nd Workshop WADS ’91, vol-
ume 519 of Lecture Notes in Computer Science, pages 286–298. Springer-Verlag,
1991.

[32] G. Karakostas. A better approximation ratio for the vertex cover problem. In
ICALP, volume 3580 of Lecture Notes in Computer Science, pages 1043–1050.
Springer-Verlag, 2005.

[33] R. M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

[34] M. Kaufmann and D. Wagner. Drawing Graphs: Methods and Models. Springer-
Verlag, 2001.

[35] K. Kuratowski. Sur le problème des corbes gauches en topologie. In Fundamenta
Mathematicæ, pages 271–283, 1930.

[36] S. Micali and V. V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum

matching in general graphs. In 21st Annual Symposium on Foundations of
Computer Science, pages 17–27. IEEE, 1980.

[37] A. Rosenthal and A. Goldner. Smallest augmentations to biconnect a graph.
SIAM Journal on Computing, 6(1):55–66, 1977.

[38] D. Soroker. Fast parallel strong orientation of mixed graphs and related aug-
mentation problems. Journal of Algorithms, 9(2):205–288, 1988.

[39] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[40] W. T. Tutte. Connectivity in graphs, volume 15 of Mathematical Expositions.
University of Toronto Press, 1966.

[41] T. Watanabe and A. Nakamura. A smallest augmentation to 3-connect a graph.
Discrete Applied Mathematics, 28(2):183–186, 1990.

[42] I. Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer-Verlag, 2005.

[43] R. Weiskircher. New applications of SPQR-trees in graph drawing. PhD thesis,
Universität des Saarlandes, 2002.

[44] J. Westbrook and R. Tarjan. Maintaining bridge-connected and biconnected
components on-line. Algorithmica, 7(5&6):433–464, 1992.

77

