
Faculty of Computer Science
Algorithm Engineering (Ls11)
44221 Dortmund / Germany
http://ls11-www.cs.uni-dortmund.de/

2-InterConnected Facility Location:
Specifications, Complexity Results,

and Exact Solutions

Markus Chimani
Maria Kandyba
Maren Martens

Algorithm Engineering Report
TR09-1-008
Dec. 2009

ISSN 1864-4503

2-InterConnected Facility Location:
Specifications, Complexity Results, and Exact Solutions

Markus Chimani1, Maria Kandyba1?, and Maren Martens2??

1 Faculty of Computer Science, TU Dortmund, Otto-Hahn-Str. 14, 44227 Dortmund, Germany,
{markus.chimani,maria.kandyba}@tu-dortmund.de

2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, martens@zib.de

Technical Report: TR09-1-008
Chair XI Algorithm Engineering, TU Dortmund

December 2009

Abstract. Connected facility location problems combine cost-efficient facility place-
ment (including cheap client-to-facility-connection) with the requirement to connect the
facilities among each other. Such network design problems arise, e.g., in telecommuni-
cation applications where networks consist of a central core and local clients that have to
be connected to it. In practice, reliability of the core network is a central issue, and we
may hence require the core network to be (at least) 2-interconnected, i.e., there are two
disjoint paths within the core network between every pair of core nodes.
We establish the problem class of 2-interConnected Facility Location (2-iCFL), catego-
rize its central variants, and prove that they are hard to approximate. However, as our
computational results show, cut-based ILP formulations, also presented herein, allow us
to effectively solve such problems to optimality for hundreds of nodes. On the way, we
establish simple but exhaustive characterizations for problem instances admitting feasi-
ble solutions for 2-iCFL. These characterizations are constructive and can be used for
algorithmic feasibility checks, preprocessing steps, and heuristics.

1 Introduction

Combined facility location and connectivity problems have gained a lot of attention in the past
decade. In this paper, we consider problems where we have to open facilities (chosing from a
given set of locations) and connect every other location (a client) to one of them. Our moti-
vation for considering such problems stems from various projects with industrial cooperation
where the goal is the cost-efficient design of optical telecommunication networks. A typical
real-world network contains a highly secured core and clients that are directly connected to it.
For reliability, it is common to require that the core network is 2-connected whereas a client
? Supported by Deutsche Telekom Stiftung

?? Supported by the Federal Ministry of Education and Research (BMBF), Germany, as part of the project
“EUREKA 100GET Technologies”

2 Markus Chimani, Maria Kandyba, and Maren Martens

needs only a simple connection to some node in the core (a facility). Opening facilities and
establishing connections cause costs that we want to minimize. As this problem is of high rel-
evance for topology planning of modern glass fiber networks, it can also be found in theory
oriented books, such as [10] where various problems, which are important in the context of
communication network design, are introduced.

Problem Definition and Notation. Given an undirected connected graph G = (V,E), a set
P ⊆ V of possible facilities (usually |P | ≥ 3), nonnegative opening costs f : P → R+

0 and
nonnegative edge costs c : E → R+

0 . A 2-interconnected facility location problem (2-iCFL) is
to choose a subset F ⊆ P where we open facilities and to connect each node u /∈ F to some
node v ∈ F directly via an edge {u, v} ∈ E. Furthermore, we require a survivable connec-
tion between each pair of facilities: For each pair of nodes u, v ∈ F we require two disjoint
paths, only visiting facilities. In the resulting network N = (V,E′) with E′ ⊆ E being the
established connections, we minimize the objective function

∑
v∈F fv +

∑
e∈E′:|e∩F|=1 ce +

M ·
∑
e∈E′:|e∩F|=2 ce, where M ≥ 1 reflects possibly higher costs for core connections. We

call the network N [F] spanned purely by the facilities, the facility network of the solution. In
the following, we use n = |V | and m = |E| to denote the number of nodes and edges in G,
respectively. We use E(G′) and V (G′) to denote the edges and nodes in a subgraph G′ of G.
Furthermore, we write N(v) for the set of nodes being adjacent to v ∈ V in G. (To denote the
neighborhood of v in a graph other than G, we index N(v) with the respective graph.)

Depending on the exact definition of the disjointness of paths between facilities, we can
define the following problems: We are dealing with a 2-node-interconnected facility location
problem (2N-iCFL) if we require two node-disjoint paths between each pair of facilities, i.e.,
the facility network has to be 2-node-connected (and not consist of only a single edge). Re-
laxing the node-disjointness to edge-disjointness we obtain the 2-edge-interconnected facility
location problem (2E-iCFL). In the following, we write only 2-iCFL when our results hold for
both versions of connectivity.

In real-world applications of 2-iCFL the input may already contain a fixed facility node r.
We refer to such 2-iCFL problems as rooted 2-interconnected facility location (r-2-iCFL), and
can analogously distinguish between r-2N-iCFL and r-2E-iCFL. We say a problem is degree-
bounded if we allow only solutions where every node has degree at most ∆. This comes from
the practical background that, e.g., a router in a telecommunication network can only be at-
tached to some maximum number of other devices, due to its number of physical slots, plugs,
or sockets.

Generally, since the edge costs are nonnegative, it suffices to search for solutions with the
following structural properties (depending on whether we consider node- or edge-connectivity,
respectively):
(S/1) All nodes v ∈ F belong to the same 2-node(/edge)-connected component N [F].
(S/2) N [F] is the only non-trivial 2-node(/edge)-connected component in N .
(S/3) All nodes v /∈ F have degree 1.

Related Results from the Literature. To the best of our knowledge, 2-iCFL has only been
considered in [10] where it is studied in the context of complete facility networks and for
M = 1. For this problem, an undirected ILP formulation is used to solve instances of up to 25
nodes with a fixed number of open facilities. Connected facility location (CFL), however, and
variants thereof have been widely studied. In contrast to the definition in this paper, for CFL it

2-InterConnected Facility Location 3

is usually sufficient that a Steiner tree connects the open facilities with each other; the network
spanned only by the open facilities needs not to be connected. Furthermore, general CFL allows
to connect clients to facilities via paths. In optical telecommunication applications, however,
it is common to ask for a network where open facilities are (2-)connected amongst themselves
and clients are directly connected to the core. Hence we consider the 2-iCFL problem, and do
not call it 2-connected facility location, as we would reserve that name for the case considering
Steiner nodes. We are not aware of any research specifically conducted on this latter problem
class. Note that the abbreviation should not be confused with k-CFL [3, 15], where it is used
as a CFL problem where at most k facilities are allowed to be opened.

Problems that implicitly require 2-connectivity amongst open facilities have, e.g., been
studied as Ring Star or tour-CFL problems; see, e.g., [3, 5, 6]. In both problem types, the open
facilities have to lie on a common cycle (aka. ring). The former problem, like ours, requires
that the clients are connected via a single edge to this ring; furthermore it contains a root node
that has to lie on the ring. In this context one could also call r-2-iCFL a Block Star problem,
for a block being a maximal 2-node-connected component. Note that in complete Euclidean
graphs, a minimal block will in fact always form a simple cycle [9].

Recently, Eisenbrand et al. [3] gave the currently best approximation algorithms for CFL,
k-CFL, and tour-CFL (amongst others), obtaining expected ratios of 4, 6.85, and 4.12, re-
spectively. See that paper for an overview on further related results. For an overview on the
Ring Star problem, as well as ILP formulations and polyhedral results see, e.g., [5, 6]. For ILP
approaches—and practical hybridizations with metaheuristics—in the context of CFL see, e.g.,
[8, 16]; efficient heuristics can, e.g., be found in [10]. As we will discuss when establishing our
ILP formulations, 2-iCFL is also closely related to the problem of finding optimal {0, 1, 2}-
survivable networks [2, 11, 14]. Recent approximation results for such problems can, e.g., be
found in [4, 7].

Contribution of this Paper. In this paper, we establish the problem class of 2-iCFL and cate-
gorize its central variants. While it is straight-forward that all such variants are NP-hard, we
show that even strong approximations are NP-hard (Section 2). For degree-bounded 2-iCFL,
already checking if an instance allows any feasible solution is NP-hard. On the other hand,
we show that feasibility of 2-iCFL variants without degree bounds can be tested in linear time
(Section 3). Our feasibility check also gives rise to preprocessing routines and heuristics. In
Section 4, we show how 2-iCFL can be solved to optimality using strong ILP formulations and
we conduct a set of experiments in Section 5. All our results can be generalized to the case
with two different cost functions for client to core connections and intercore connections.

2 Complexity

For the following results on the complexity of 2-iCFL, we restrict our considerations to the
case where M = 1. Note that this can be done without loss of generality.

Theorem 1. It is NP-hard to approximate 2-iCFL within a factor c log |V |, for some constant
c > 0. This is true even in complete graphs.

Proof. We use a reduction of MINIMUM DOMINATING SET. Recall that in MINIMUM DOM-
INATING SET we are given a graph H = (VH , EH) and we are looking for a subset D ⊆ VH

4 Markus Chimani, Maria Kandyba, and Maren Martens

1

2

4

3

1 2 3 4

1′ 2′ 3′ 4′

V

E

VH

VE

V ′H

Fig. 1. Reduction of MINIMUM DOMINATING SET to 2-iCFL with H on the left and G on the right. A
minimum dominating set and the corresponding open facilities are drawn gray.

of minimum cardinality such that for all u ∈ VH \D there is a v ∈ D for which (u, v) ∈ EH .
MINIMUM DOMINATING SET is known not to be approximable within c log |VH |, for some
c > 0, unless P=NP [12]. W.l.o.g., we consider only connected instances of MINIMUM DOM-
INATING SET where |EH | ≥ 2 and every dominating set has cardinality at least 2.

We consider a 2-iCFL instance on the graph G = (V,E) where V is the union of VH ,
a copy V ′H of VH , a node set VE containing a node ve for every edge e ∈ EH , and two
nodes V , E . For a node v ∈ VH , we denote its copy in V ′H as v′. We specify the set of edges
in G as E :=

⋃
v∈VH

{(v,V)} ∪
⋃
e=(v,w)∈EH

{(ve, E), (ve, v), (ve, w), (ve, v
′), (ve, w

′)} (cf.
Figure 1). All edge costs are set to 0. The set of potential facilities is P := V \ V ′H , where the
opening costs are 1 on potential facilities from VH , and 0 elsewhere.

We show that every feasible 2-iCFL solution on G can efficiently be transformed into a
dominating set for H and vice versa: Consider the set F of open facilities in any feasible
2-iCFL solution. Since N(V) = VH , either V ∈ F or VH ∩ F 6= ∅. Set D := VH ∩ F .
For any u ∈ VH \ D its copy u′ ∈ V ′H must be connected to some ve ∈ VE ∩ F with
(u′, ve) ∈ E. By the definition of feasible 2-iCFL solutions, there are at least two disjoint
paths within the graph induced by F that connect ve to any other open facility (in particular
to any in (VH ∪ {V}) ∩ F 6= ∅) and at most one such path may traverse E . Thus, ve must be
connected to some open v ∈ VH and therefore v ∈ D with (u, v) ∈ EH .

Now consider any dominating set D ⊆ VH in H . We set F := D ∪ {E ,V} ∪ {ve ∈
VE | N(ve) ∩D 6= ∅} and open all edges in E that connect two open facilities. Trivially, this
connects all nodes in VH and VE to some open facility, namely V or E respectively. For each
u′ ∈ V ′H , we show N(u′)∩F 6= ∅, what allows us to also connect u′ to F , thus constructing a
feasible 2-iCFL solution: If u′’s original u ∈ VH is in D, we opened some node ve ∈ VE with
ve ∈ N(u)∩N(u′). If, on the other hand, u /∈ D, there is some v ∈ D with (u, v) ∈ EH and so
we have v(u,v) ∈ F with v(u,v) ∈ N(u′). It remains to show that for any two nodes u, v ∈ F
there are two disjoint paths connecting them. By our assumption that H is connected and
|EH |, |D| ≥ 2, there are ū, v̄ ∈ D with ū 6= v̄ and |(N(ū)∪N(v̄))∩VE ∩F| ≥ 2. Therefore,
there exist two disjoint paths from V to E , or, in other words, a simple cycle containing V and
E . A simple case distinction gives the existence of similar cycles for the other open facilities.

2-InterConnected Facility Location 5

Since the opening costs for a facility are 1 iff the facility is in VH , the cost of the set
of open facilities is the same as the cardinality of the corresponding dominating set. Further-
more |V | = 2|VH | + |EH | + 2, and so a c log |V |-approximation for 2-iCFL would lead to
a c′ log |VH |-approximation for MINIMUM DOMINATING SET, for c, c′ > 0. This proves the
first part of the theorem. The results in this proof still hold when we make G a complete graph
by introducing all missing edges with (appropriately) high cost. A c log |V |-approximation to
the 2-iCFL problem would never use any of those heavy edges as it is always feasible to open
all possible facilities and use all 0 cost edges. ut

When we add a degree bound, 2-iCFL becomes much harder, also in complete graphs.

Theorem 2. For any constant degree bound ∆ ≥ 2, it is NP-hard to approximate degree-
bounded 2-iCFL within a factor cp(n), where c > 1 is a constant and p(n) is a polynomial in
n. This is already true in complete graphs.

Proof. Part A. In a first step we use a reduction of HAMILTONIAN CYCLE to prove the claim
only for ∆ = 2. Recall that in HAMILTONIAN CYCLE we are given an undirected graph
H = (VH , EH) and we have to decide whether H allows a cycle that visits every node exactly
once (w.l.o.g., |VH | ≥ 4.) We consider an instance of degree-bounded 2-iCFL in the complete
graph G = (V,E) with V := VH . We define K := (cp(n)− 1)n+ 2 and choose the edge costs
as ce = 1, for all e ∈ EH , and ce = K, for all e ∈ E \EH . All opening costs for facilities are
0. (The coding length of this instance of 2-iCFL is polynomial in the coding length of H .)

Further note that |V | ≥ 4 together with ∆ = 2 requires that every degree-bounded 2-iCFL
solution in G contains at least two facilities. (Otherwise the solution would have to be a star
with a central node of degree ≥ 3.) Closer examination yields that in fact every solution is a
hamiltonian cycle: The degree bound restricts the set of feasible solutions to unions of simple
cycles and paths. Since a solution has to be connected, we have exactly one simple path or cycle
visiting every node. The 2-connectivity among facilities requires a cycle so that indeed every
solution is a hamiltonian cycle. In particular, every degree-bounded 2-iCFL solution contains
exactly n edges.

We assume by contradiction that there is a cp(n)-approximation algorithm A for degree-
bounded 2-iCFL and argue that A would solve HAMILTONIAN CYCLE in polynomial time:
We show that a hamiltonian cycle exists in H iff A finds a solution for the instance of degree-
bounded 2-iCFL of cost at most ncp(n). First assume that we have a hamiltonian cycle C in H .
Note that C is a solution for degree-bounded 2-iCFL in G and so we have that the minimum
cost of a solution is n. Since A is a cp(n)-approximation algorithm, it finds a solution of cost
at most ncp(n).

For the backward implication, assume that A finds a solution for the instance of degree-
bounded 2-iCFL of cost at most ncp(n). By the discussion above, this solution has to form a
hamiltonian cycle. Moreover, this cycle may not use any edges of cost K as otherwise its total
cost would sum up to at least K + (n− 1) = ncp(n) + 1. Therefore, all edges have cost 1 and
the cycle only uses edges in EH .
Part B. It might look like it is essential for the proof of Theorem 2 to choose ∆ = 2. In the
following we prove that we can achieve the same result with any constant degree bound∆ ≥ 2;
cf. Figure 2.

Let v1, . . . , vh be the nodes in VH . Then we create (∆−2)h new nodes denoted by vij , for
1 ≤ i ≤ h and 1 ≤ j ≤ (∆−2), and let V be the union of VH and the new nodes. We consider

6 Markus Chimani, Maria Kandyba, and Maren Martens

∆− 2

H

Fig. 2. Reduction of HAMILTONIAN CYCLE to degree-bounded 2-iCFL. We omit {vi, vkj}, for i 6= k,
and {vij , vkl} for clearity.

a complete graph on V with the following cost function: ce = 1, for all e ∈ EH ; c{vi,vij} = 0,
for all 1 ≤ i ≤ h and 1 ≤ j ≤ (∆− 2); and cost K for all other edges.

The set of possible facilities in this new instance of degree-bounded 2-iCFL is VH . Again
we have all opening costs being 0. The degree bound is ∆. It turns out that every solution of
cost at most K +n− 2 = ncp(n) is in fact a hamiltonian cycle in H plus arcs {vi, vij}. This is
because in such a solution we have to choose every node vi as a facility and connect all nodes
vij to it. (Otherwise we would have connection costs of at least K for the nodes vij plus at
least cost n − 1 to get a connected graph among the nodes in VH .) But then we have only a
degree of 2 left for every node in VH to 2-connect it to the other facilities. Therefore, we are
back to the situation in Part A. ut

If, in the preceding proof, we leave out every edge of cost K, it follows that there is a feasible
solution to 2-iCFL iff H contains a Hamiltonian cycle, and hence:

Corollary 1. It is NP-hard to decide whether an instance of degree-bounded 2-iCFL admits a
feasible solution.

3 Feasibility Check, Preprocessing, and Heuristic

In contrast to the degree-bounded case, we can test feasibility of input instances without degree
bound in linear time. Furthermore, the testing algorithm can be used as a preprocessing routine
to fix and delete edges and fix nodes as clients or facilities. Finally, the algorithm can also be
used as a heuristic to obtain upper bounds for the problem.

3.1 Checking Feasibility for 2N-iCFL

Algorithm 1 shows how to decide if an input instance allows a feasible solution.
Let H be the subgraph of G induced by the potential facilities P . The 2-interconnected

facility network in a solution, if any exists, has to be a subgraph of H . Therefore, H has to

2-InterConnected Facility Location 7

be connected, otherwise we could not find a 2-interconnected facility network within it and
attach all other nodes as clients to it. We compute the BC-tree B of H , i.e., B has a block node
for each maximal 2-node-connected component (block) in H . Whenever some blocks share a
vertex, there exists a cut node in B which is adjacent to the corresponding block nodes. We
observe that a 2-node-interconnected facility network can only reside within a single block,
say B∗, of B. If B∗ consists of only one single edge, we obtain the trivial subcase that exactly
one of its nodes becomes a facility and all other nodes have to be connected to it as clients.
Assume |E(B∗)| > 1 in the following. Any node not in this block has to become a client
node and needs to get attached to some facility within B∗. Hence the cut nodes of B∗ have to
become facilities and all nodes in P not within B∗ will be attached to their nearest cut node
in B∗. Clearly, we can only find a feasible solution if every other block shares a cut node with
B∗. This induces that B∗ is the only block node which may have a degree greater than 1.
Furthermore, we require that any node not in B∗—i.e., also considering the nodes V \ P—is
directly incident to some node in B∗.

Unless B contains exactly two block nodes, the choice for B∗ is simply any block node
with degree at least 2; in case of a feasible instance this will be unique. If B has exactly two
blocks, one can distinguish simple subcases. However, for brevity it shall be enough to state
that we can simply test feasibility for both possible choices of B∗ without sacrificing our
runtime guarantee.

If the above requirements hold, we can select all nodes inB∗ as facilities F . Then,G[F] =
B∗ is a feasible 2-interconnected facility network. As we know for every other node that it
is incident to some node in F , we can choose any of the corresponding edges and obtain a
feasible 2N-iCFL solution.

Theorem 3. We can check whether a given instance allows a feasible solution for 2N-iCFL in
linear time.

Proof. As described above, Algorithm 1 returns false iff no feasible solution exists. It remains
to prove the linear runtime. Observe that testing connectivity and 2-node-connectivity can be
done in linear time using augmented DFS traversals. Computing a BC-tree, and checking if
there is at most one tree node with degree larger than 1, is linear as well. If the maximum
degree is 1, there are exactly two blocks in H , and the subsequent code is (independently) run
twice. The for-each loop is executed a linear number of times and hence it remains to check the
neighborhood of a node in constant time. In the beginning of the algorithm, we can count for
each node how many of its neighbors belong to P . Whenever a node of P is fixed as a client,
we reduce this count by one for all its neighbors. The check within the loop then requires only
constant time by inspecting v’s counter. Since this counting scheme touches each edge at most
four times (one increase and one decrease per each adjacent node), realizing the scheme takes
only linear time, and we obtain the theorem. ut

3.2 Checking Feasibility for 2E-iCFL

Reusing the ideas from checking feasibility for 2N-iCFL, we obtain a similar algorithm for
2E-iCFL. The central difference between the two problem variants is that 2E-iCFL allows the
2-edge-interconnected facility network to span over multiple connected blocks (maximal 2-
node-connected components); clearly, two blocks are connected if they share a common cut

8 Markus Chimani, Maria Kandyba, and Maren Martens

Algorithm 1 Checking feasibility of 2N-iCFL input instances.
Require: Input instance G = (V,E) for 2N-iCFL with potential facilities P ⊆ V
Ensure: Returns true if the instance allows a feasible solution, false otherwise. In the first case, Fc and

Ff give the nodes that are required to be clients and facilities, respectively.
1: Fc = V \ P , Ff = ∅, H = G[P] . initialization
2: if H is not connected then return false
3: Compute the BC-tree B of H .
4: if more than one block node of B has degree > 1 then return false
5: if B contains exactly two blocks then
6: Run Lines 10–19 of this code independently twice for both possible choices of B∗.
7: if any of the runs returns true then
8: Set Ff and Fc to the respective sets computed in that run. return true
9: else return false

10: Let B∗ be a block with highest degree in B. Let C be the cut nodes in B∗.
11: if |E(B∗)| = 1 then
12: if ∃v ∈ V (B∗) with N(v) = V \ {v} then
13: Ff := {v}, Fc := V \ {v}. return true . |P | ≥ 3 induces that v is unique
14: else return false
15: Ff := C . fix the cut nodes as facilities
16: Fc := Fc ∪ (P \ V (B∗)) . fix the nodes in other blocks as clients
17: for each v ∈ Fc do
18: if N(v) \ Fc = ∅ then return false
19: return true . there exists a feasible solution for the input instance

vertex. Therefore we cannot concentrate on a single block B∗ in H = G[P], but rather have to
consider a collection of blocks.

We say a block in B is trivial if it contains only a single edge. We can observe that a feasible
2-edge-interconnected facility network may span over multiple non-trivial blocks, but it cannot
contain a trivial block: the removal of this edge would disconnect the network. We call a set
of non-trivial blocks a block cluster, if the union of these blocks forms a connected graph. A
maximal block cluster (MBC) is a block cluster to which we cannot add any non-trivial block
without losing this connectivity. We observe that all MBCs in a graph are pairwise disjoint. If
there is no non-trivial block, we define an arbitrary node of highest degree to form a unique
MBC.

In order for an input instance to allow a feasible solution, H has to contain exactly one
unique MBC: If there are more than one, they are pairwise seperated by at least one trivial
block, i.e., an edge. The final facility network can only reside in one of the MBCs, say B◦, but
then there is no edge to directly connect a node of some other MBC (as a client) to any node in
B◦. Overall, we can reuse Algorithm 1 to check feasibility of 2E-iCFL instances by replacing
B∗ by B◦ and substituting Lines 4–14 by

1: if there are multiple MBCs then return false
2: Let B◦ be the unique MBC in B. Let C be the nodes of B◦ adjacent to H \B◦.

Since identifying MBCs in B requires only linear time, we obtain:

2-InterConnected Facility Location 9

Theorem 4. We can check whether a given instance allows a feasible solution for 2E-iCFL in
linear time.

3.3 Preprocessing and Heuristic

Assume in the following that we have a unique non-trivial B∗ or B◦, respectively. The other-
wise arising special cases can be handled analogously to below.

Preprocessing. Based on the feasibility test, we can fix or remove certain substructures in our
graph to obtain a smaller problem instance that remains to be solved. The feasibility testing
algorithms already give sets Ff and Fc containing nodes that are required to become facilities
or clients, respectively. In Line 18 of Algorithm 1, a check is performed on the size of W :=
N(v) \ Fc, for each v ∈ Fc. In a more in-depth implementation, we can check if W contains
only a single element w. If so, we can add w to Ff (if it is not already in that set), and fix the
edge (v, w) to be chosen in the solution. Furthermore, if there exists a w ∈ (W ∩ Ff) with
c(v, w) = min{c(v, w′) | w′ ∈ W}, we can also fix to choose the edge (v, w) without losing
optimality. Finally, we can remove all clients with a fixed incident edge (we already know how
to attach them to the final solution), and all edges between two clients (they will never be used).

Greedy Heuristic. Although the testing algorithms give a feasible solution as a witness, this
solution will in general be far from optimal. Let F ′ and N ′ be the facilities and the facility
network obtained after the testing procedure. We attach each client to a facility neighbor with
smallest edge cost. We can now incrementally try to improve this solution via steps of two
types, in decreasing order of their cost improvement (if positive): (a) remove an edge e from
N ′; (b) change a node v of F ′ into a client. After each step, we test whether the resulting net-
work is still feasible; if not, we undo the step and continue with the next one. One could further
extend this algorithm by simultaneously transforming two adjacent facilities into clients.

4 Exact Algorithms

We can formulate the variants of 2-iCFL as integer linear programs using directed cuts. The
core of the formulation is similar to the currently strongest ones known for {0, 1, 2}-survivable
network design [2]. Consequently, our directed cut formulations can be shown to be stronger
than undirected cut formulations, and are equally strong as, but practically preferable over,
formulations based on multi-commodity flow. Proofs are similar to those in [2].

Orientations. We start with considering r-2-iCFL problems, and recall the structural properties
S/1–S/3 in Section 1. Based on the orientation properties of 2-node/edge-connected graphs [2,
13], we can recognize feasible networks (including an optimal one) as follows.

Lemma 1. A network N with facilities F is r-2E-iCFL feasible if there exists an orientation
N̂ of N with the following properties:
(P1) Each node v /∈ F has in-degree 1 and out-degree 0.
(P2) For each node v ∈ F \ {r}, N̂ contains directed paths (r → v) and (v → r).

Lemma 2. A network N with facilities F is r-2N-iCFL feasible if there exists an orientation
N̂ of N that satisfies property (P1) from above and:

10 Markus Chimani, Maria Kandyba, and Maren Martens

(P3) For each node v ∈ F \ {r}, N̂ contains directed paths (r → v) and (v → r) that are
internally node-disjoint.

(P4) The in-degree of r is 1.

Formulation for r-2-iCFL. Instead of G = (V,E) we will consider its bidirected counterpart
G′ = (V,A) which contains the two arcs (v, u) and (u, v) for each edge {v, u} ∈ E. As
discussed in Section 3.3, we can assume that {v, u} ∩P 6= ∅ for all edges {v, u} ∈ E. We use
binary indicator variables xa for each a ∈ X = A∩(P×P), za for each a ∈ Z = A∩(P×V),
and yv for each v ∈ P . We set xa = 1 if a is in the solution’s core network, z(v,u) = 1 if the
client u is attached to the facility v, and yv = 1 if v is chosen as a facility.

Let S ⊂ V , then δ+(S) := {(s, t) ∈ A | s ∈ S, t ∈ V \ S} and δ−(S) := {(s, t) ∈
A | s ∈ V \ S, t ∈ S} denote the arcs leaving and entering S, respectively. We may use one
or more nodes as a subscript to denote that any arcs incident to any of these nodes shall be
ignored. Furthermore, we use the shorthand x(B) :=

∑
e∈B xe (where xe exists) for B ⊆ A.

We can then write the following ILP for r-2N-iCFL. Every node is either attached to a
facility via a z variable, or belongs to the core network; used arcs emanate only from facilities
((3) and (2)). If a node is a facility, there exists a path (uniquely oriented via x variables) from it
to the root r and vice versa; these two paths are internally node-disjoint and all orientations are
unique ((4), (5), (6), and (7)). Constraint (8) guarantees a single block containing all facilities.
By omitting the latter two constraints (7) and (8) we obtain the formulation for r-2E-iCFL.
Due to the cost function in (1) we may skip the constraints (a) xvw ≤ yw, for (v, w) ∈ X , (b)∑
v∈P :(v,u)∈Z zvu ≤ 1− yu, for u ∈ P , and (c) zvu + zuv ≤ 1, for (u, v), (v, u) ∈ Z .

min
∑
i∈P

fiyi +
∑
e∈Z

ceze +M ·
∑
e∈X

cexe (1)

z(δ−({v})) + x(δ−({v})) ≥ 1 ∀v ∈ V (2)
xvw ≤ yv, zvu ≤ yv ∀(v, w) ∈ X , (v, u) ∈ Z (3)

xvw + xwv ≤ 1 ∀(v, w), (w, v) ∈ X (4)

x(δ−(S)) ≥ yv ∀S ⊆ V \ {r},∀v ∈ S ∩ P (5)

x(δ+(S)) ≥ yv ∀S ⊆ V \ {r},∀v ∈ S ∩ P (6)

x(δ+w (S1)) + x(δ−w (S2)) ≥ yv
∀w ∈ V \ {r},∀S1, S2 ⊆ V \ {r, w},
∀v ∈ S1 ∩ S2 ∩ P

(7)

x(δ−({r})) = 1 (8)
xe, zf , yu ∈ {0, 1} ∀e ∈ X , f ∈ Z, u ∈ P (9)

Formulation for 2-iCFL. Having a formulation for the rooted case, we can extend the formu-
lation for the unrooted problem family. We extend G via an artificial root node r ∈ P and
introduce zero-cost edges between r and all nodes in P \ {r} together with their x-variables,
but without z’s. We then restrict the solution space via (10) to networks where r has not only
a single in-going edge, but also a unique out-going one. Finally, it remains to guarantee 2-
connectivity even after the removal of r. To guarantee feasible 2E-iCFL solutions, it suffices

2-InterConnected Facility Location 11

to require (11); for 2N-iCFL we instead require (12):

x(δ+({r})) = 1 (10)

x(δ+r (S)) ≥ yu + yv − 1
∀u ∈ P \ {r}, S ⊆ V \ {r, u},
∀v ∈ S ∩ P (11)

x(δ+w,r(S1)) + x(δ−w,r(S2)) ≥ yu + yv − 1
∀w ∈ V \ {r},∀u ∈ P \ {r, w},
∀S1, S2 ⊆ V \ {r, w, u},
∀v ∈ S1 ∩ S2 ∩ P

(12)

Formulation for degree-bounded problems. The maximum degree restriction ∆ can be added
to either of the above formulations straight-forwardly by requiring that, for each node v, the
sum over all x and z variables corresponding to arcs incident to v is at most ∆.∑

i:{v,i}∈E

xvi + xiv ≤ ∆ ∀v ∈ P. (13)

Formulations for other cost functions. Using a more general cost function for the core network
can be simply accomplished by modifying (1). In the special case M = 1, our formulation can
be simplified by unifying the x and z variables, such that xe (e ∈ A) simply indicates if e is
included in the solution network. We can remove (2), and rewrite (5) as x(δ−(S)) ≥ 1 for all
S ⊆ V \ {r}.

Theorem 5. The above formulations for all problem variants of 2-iCFL (i.e., any combina-
tion of edge- vs. node-connectivity; rooted vs. unrooted; degree-bounded vs. unrestricted) give
optimal solutions for the respective problems, if any exist.

Note that the above formulations, although requiring an exponential number of constraints,
can be solved straight-forwardly using Branch-and-Cut techniques: Since all the constraints in
question are of the well-known cut type, the separation problem can be solved in polynomial
time via max flow (see, e.g., [2]).

5 Experiments

As a proof-of-concept, we implemented a Branch-and-Cut algorithm using the above formu-
lations for r-2-iCFL. The main aim of this study is to evaluate the general practicability of the
approach and to estimate the dependance of the ILP’s solvability on various instance prop-
erties. We used Cplex 9 as a Branch-and-Bound framework and implemented the necessary
separation routines in C++ facilitating the efficient max-flow code of [1]. Our code does not
use any heuristics for upper bounds, in order to test pure ILP performance. The experiments
were conducted on an Intel Xeon 2.33Ghz CPU with 2GB of RAM per process and we set a
time limit of 1 hour per problem instance.

Test instances. We tested our exact algorithms on a generated test suit, mimicking real-world
data. Using such instances allows us to observe the algorithm’s dependency on different input
parameters. In the following, n, λ, %, and δ will be these parameters: We distribute n points

12 Markus Chimani, Maria Kandyba, and Maren Martens

Table 1. Overview on the experimental results for M = 1: For each parameter setting we give the
number of solved instances (out of 5) in bold, and the average running time (in seconds) over these
solved instances. The letters E and N denote whether we consider r-2E-iCFL or r-2N-iCFL, respectively.

% = 10% % = 25% % = 50%
n λ δ = 30% δ = 70% δ = 100% δ = 30% δ = 70% δ = 100% δ = 30% δ = 70% δ = 100%

50

0.0 E 5 0.0 5 0.0 5 0.0 5 0.1 5 0.3 5 0.2 5 4.9 5 2.6 5 2.2
0.0 N 5 0.0 5 0.0 5 0.0 5 0.1 5 0.3 5 0.2 5 5.6 5 2.3 5 2.6
0.1 E 5 0.0 5 0.0 5 0.1 5 0.1 5 0.2 5 0.3 5 2.0 5 4.1 5 3.2
0.1 N 5 0.0 5 0.0 5 0.1 5 0.1 5 0.3 5 0.3 5 1.6 5 4.0 5 3.1
0.3 E 5 0.0 5 0.0 5 0.1 5 0.1 5 0.3 5 0.3 5 3.1 5 5.6 5 11.3
0.3 N 5 0.0 5 0.0 5 0.1 5 0.1 5 0.4 5 0.4 5 3.8 5 5.9 5 9.9

100

0.0 E 5 0.3 5 0.6 5 1.2 5 6.1 5 6.2 5 7.1 4 526.1 5 611.9 5 123.3
0.0 N 5 0.3 5 0.6 5 0.9 5 9.1 5 5.3 5 6.0 4 362.3 5 346.6 5 119.6
0.1 E 5 0.3 5 0.8 5 1.1 5 4.6 5 13.9 5 5.7 3 841.1 4 411.2 5 327.1
0.1 N 5 0.5 5 0.8 5 1.1 5 6.0 5 11.3 5 5.2 3 766.1 4 508.2 5 313.2
0.3 E 5 0.3 5 1.2 5 1.7 5 4.0 5 25.8 5 28.9 2 1274.1 2 1733.8 3 1663.4
0.3 N 5 0.4 5 1.2 5 1.8 5 7.0 5 23.4 5 25.4 2 866.2 2 1535.6 3 1194.6

200

0.0 E 5 11.8 5 35.3 5 52.1 4 693.2 4 712.8 5 845.5 0 — 0 — 0 —
0.0 N 5 9.0 5 33.3 5 56.3 4 674.5 4 676.5 5 792.6 0 — 0 — 0 —
0.1 E 5 11.5 5 41.7 5 52.9 3 2767.4 4 1813.8 5 490.5 0 — 0 — 0 —
0.1 N 5 13.6 5 52.6 5 52.9 2 2116.7 3 1512.0 5 456.5 0 — 0 — 0 —
0.3 E 5 12.2 5 42.7 5 88.3 0 — 3 1593.7 0 — 0 — 0 — 0 —
0.3 N 5 15.6 5 67.5 5 101.9 1 3574.5 3 2109.6 0 — 0 — 0 — 0 —

400

0.0 E 5 817.9 3 2380.5 5 2503.5 0 — 0 — 0 — 0 — 0 — 0 —
0.0 N 3 936.9 4 2331.3 5 1894.0 0 — 0 — 0 — 0 — 0 — 0 —
0.1 E 5 584.5 4 1780.8 1 2779.2 0 — 0 — 0 — 0 — 0 — 0 —
0.1 N 5 644.4 4 2029.7 2 2995.8 0 — 0 — 0 — 0 — 0 — 0 —
0.3 E 5 660.4 3 2667.4 1 1648.6 0 — 0 — 0 — 0 — 0 — 0 —
0.3 N 4 879.1 1 2714.6 1 2294.1 0 — 0 — 0 — 0 — 0 — 0 —

uniformly at random on a 1000×1000 grid (taking the first chosen node as the root), and com-
pute the Euclidean distances d{u,v} for each pair of nodes {u, v}. Based thereon, we generate
(random) edge costs via a Gauss distribution, using d{u,v} as the mean and λ · d{u,v} as the
variance. Clearly, λ = 0 gives Euclidean instances. Using a uniform distribution, we select
%% of the nodes into the set P of potential facilities with uniformly distributed costs from
the interval [250, 750]3. Overall, we generate δ% of all possible edges. To guarantee feasible
instances, we thereby start with a random cycle through the nodes P ; for every node V \ P
we introduce an edge connecting it to some (randomly chosen) node in P . The remaining
edges are generated randomly over all remaining node pairs. We report on the instances gen-
erated over all possible combinations of the following parameters: n ∈ {50, 100, 200, 400},
λ ∈ {0, 0.1, 0.3}, % ∈ {10%, 25%, 50%}, δ = {30%, 70%, 100%}. For each combination we
generated 5 instances and considered M ∈ {1, 10, 20}.

Evaluation. Due to space restrictions, we only give a brief overview, outlining the applicability
of the exact approach from a user’s perspective. We postpone more in-depth technical-oriented
evaluations (LP gaps, number of branching nodes, etc.) to an extended version of this paper.
Table 1 shows the central findings for M = 1, giving the number of solved instances and
average computation time. Although the ILP formulation for M = 1 looks simpler than for
general M , we obtain virtually the same running times for M = 10, 20. This seems to be

3 This interval constitutes the sweetspot with respect to the expected edge lengths to avoid degenerate
cases where either all or only a single potential facility would be opened.

2-InterConnected Facility Location 13

due to the fact that higher core costs result in smaller and therefore more simply computable
facility networks.

The table shows that small graph sizes and few routers are easily solvable; the regions
shaded in gray show where the algorithmic behaviour starts to degrade with respect to these
two parameters. Surprisingly, while on first sight we may think that the number of graph ver-
tices is a central parameter, we can actually observe that the size of P is much more important:
the shaded cells all correspond to instances with 40–50 potential routers. It is potentially for-
tunate that in most practical settings, this parameter seems to be rather small. Also somewhat
surprisingly, the graph’s density does not play such a crucial role. While 2E-iCFL and 2N-iCFL
are computationally comparable, the Gauss variance is of moderate importance: Generally, Eu-
clidean instances are the simplest.

Conclusions. Our experiments show that even though the problem’s complexity may seem
daunting at first sight, the exact approaches are promising and can be used for some real-world
problems with not too many potential routers, even in their current simple form, i.e., without
requiring strong primal heuristics or algorithmic tricks.

References

1. B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the maximum flow
problem. Algorithmica, 19:390–410, 1997.

2. M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Orientation-based models for {0,1,2}-survivable
network design: Theory and practice. Mathematical Programming B, 2009. Accepted. Preliminary
versions appeared as two successive parts at ESA’07 and COCOA’08.

3. F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Approximating connected facility location
problems via random facility sampling and core detouring. In Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1174–1183, 2008.

4. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combi-
natorica, 21(1):39–60, 2001.

5. S. Kedad-Sidhoum and V. H. Nguyen. An exact algorithm for solving the ring star problem.
http://www.optimization-online.org/DB HTML/2008/03/1942.html, March 2008.

6. M. Labbe, G. Laporte, I. Rodriguez Martin, and J. J. Salazar Gonzalez. The ring star problem:
Polyhedral analysis and exact algorithm. Networks, 43(3):177–189, 2004.

7. L.C. Lau and M. Singh. Additive approximation for bounded degree survivable network design. In
Proceedings of the 40th ACM Symposium on Theory of Computing, pages 759–768, 2008.

8. I. Ljubić. A hybrid VNS for connected facility location. In Hybrid Metaheuristics, Volume 4771 of
Springer Lecture Notes in Computer Science, pages 157–169, 2007.

9. C. L. Monma, B. S. Munson, and W. R. Pulleyblank. Minimum-weight two-connected spanning
networks. Mathematical Programming, 46(2):153–171, 1990.

10. M. Pioro and D. Medhi. Routing, Flow, and Capacity Design in Communication and Computer
Networks. Morgan Kaufmann Publishers, 2004.

11. S. Raghavan. Formulations and Algorithms for the Network Design Problems with Connectivity
Requirements. PhD thesis, MIT, Cambridge, MA, 1995.

12. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and sub-constant error-
probability pcp characterization of np. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 475–484, 1997.

13. H.E. Robbins. A theorem on graphs with an application to a problem of traffic control. American
Mathematical Monthly, 46:281–283, 1939.

14 Markus Chimani, Maria Kandyba, and Maren Martens

14. M. Stoer. Design of Survivable Networks. Springer, 1992. Volume 1531 of LNM.
15. C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location problems. Algo-

rithmica, 40(4):245–269, 2004.
16. A. Tomazic and I. Ljubić. A GRASP algorithm for connected facility location. In Proceedings of

the 2008 Int’l Symposium on Applications and the Internet, pages 257–260, 2008.

