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Abstract. There is a variety of algorithms for testing if a graph is planar and
for embedding a planar graph in the plane. However, many practical applications
demand additional restrictions on an admissible embedding. In particular, con-
straints on the permitted (clockwise) order of the edges around a vertex, like
so-called side constraints, abound. In this paper, we introduce a set of hierarchi-
cal embedding constraints that also comprises side constraints. We present linear
time algorithms for testing if a graph is ec-planar, i.e., admits a planar embedding
satisfying the given embedding constraints, as well as for computing such an em-
bedding. Moreover, we characterize the set of all possible ec-planar embeddings
using BC- and SPQR-trees.
We also consider the optimal edge insertion problem under the additional restric-
tions imposed by embedding constraints. The efficient algorithm [16] for solving
this problem in the unconstrained case has already proven to be a valuable tool for
crossing minimization; see [15]. We show that the optimal edge insertion problem
subject to embedding constraints can still be solved in linear time.

1 Introduction

In many application domains information visualization is based on graph representa-
tions. Examples include software engineering, data bases, business process modeling,
VLSI-design, and bioinformatics. The computation of concise graph layouts by automatic
layout systems facilitates the readability and immediate understanding of the displayed
information. These layout systems need to take into account application specific as well
as user-defined layout rules in addition to the aesthetic criteria they try to optimize. In
database diagrams, for example, links between attributes should enter the tables only
at the left or right side of the corresponding attributes, the placement of reactants in
chemical reactions or biological pathways should reflect their role within the displayed
reactions, and in UML class diagrams, generalization edges should leave a class object at
the top and enter a base class object at the bottom. Many of these layout rules impose
restrictions on the admissible embeddings for a drawing. Even more important is the
possibility to use drawing restrictions in order to express the user’s preferences and to
guide the layout phase. A general survey of constraints in graph drawing algorithms is
given in [21].

In this paper, we consider restrictions on the allowed order of incident edges around
a vertex, e.g., to specify groups of edges that have to appear consecutively around the
vertex or that have a fixed clockwise order in any admissible embedding. Such constraints
occur, e.g., in form of side constraints, where incident edges are assigned to the four sides
of a rectangular vertex, or port constraints where edges have prescribed attachment
points at a vertex. In particular, we introduce three types of constraints which may be
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arbitrarily nested: grouping, oriented (prescribed clockwise order), and mirror constraints
(prescribed reversible order). We call a planar embedding that fulfills the given set of
constraints an ec-planar embedding.

Even though constraint handling is an important issue because of its relevance in
practical applications, e.g., in interactive graph drawing (see, e.g., [2, 20, 6, 5]), there is
only few previous work concerning constraints on the admissible embeddings of a graph.
Di Battista et al. [8] consider embedding constraints that appear in database schemas,
where table attributes are arranged from top to bottom within a rectangular vertex
representing a table, and links that connect attributes may attach at the left or right hand
side of these attributes. The integer linear programming approach in [12] considers side
constraints in the shape computation phase of orthogonal graph drawing. Dornheim [11]
studies the problem of computing embeddings satisfying topological constraints that
consist of a cycle together with two sets of edges that have to be embedded inside or
outside the cycle, respectively. On the other hand, linear time algorithms for planarity
testing and embedding are long since known; see [17, 3, 7, 19, 4].

Our contribution is a linear time algorithm for testing if a graph with a set of embed-
ding constraints is ec-planar. The main challenge is to incorporate oriented constraints,
where a given clockwise order of (groups of) incident edges needs to be satisfied. Fur-
thermore, we characterize all possible ec-planar embeddings using BC- and SPQR-trees,
which also yields a linear time algorithm for computing an ec-planar embedding.

An important optimization goal for the computation of graph layouts is the mini-
mization of crossings. The problem of minimizing the number of crossings in a drawing
is NP-hard [13] and no practically efficient method exists so far. In practice, the problem
is attacked via the planarization approach which first deletes a number of edges until
the remaining graph is planar and then carefully reinserts them (iteratively) so that
the number of crossings is minimized, see for example [15]. The optimal edge insertion
problem asks for inserting an edge e = (v, w) into a planar graph so that all crossings
involve e and their number is minimized. Alternatively, the problem can be stated as
finding an embedding of a planar graph G where the given edge can be inserted with
the minimum number of crossings. Recently, the problem has been solved in linear time
using the SPQR-tree data structure [16]. The algorithm essentially computes a shortest
path Ψ between those nodes in the SPQR-tree T of G whose skeletons contain v and w,
respectively. The optimal insertion path is constructed by simply concatenating locally
optimal insertion paths of the tree nodes on Ψ .

However, if embedding constraints have to be observed, i.e., restrictions on the order
of the edges around the vertices of G are given, locally optimal solutions need not lead
to globally optimal solutions and the greedy approach cannot be applied anymore. The
best local solution now depends on the decisions for other parts of the edge insertion
path. Our contribution is a new linear time algorithm to solve the ec-constrained optimal
edge insertion problem: Given an ec-planar graph G with an additional edge e and set
of embedding constraints C for the graph G + e, our algorithm computes an ec-planar
embedding of G together with a crossing minimal edge insertion path for e that observes
C.

This paper is organized as follows. After recalling some known results on planar
embeddings in Sect. 2, Sect. 3 formally defines the embedding constraints considered
in this paper. The first part of the ec-planarity test consists of transforming the input
graph into an ec-expansion which is described in Sect. 4; the characterization of ec-planar
embeddings and the ec-planarity test itself is then presented in Sect. 5. Sect. 6 covers the
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linear time algorithm for solving the ec-constrained edge insertion problem. Finally, we
conclude the paper with remarks on open problems.

2 Preliminaries

For basic graph terminology, we refer the reader to [10]. A combinatorial embedding
of a planar graph G is defined as a clockwise ordering of the incident edges for each
vertex with respect to a crossing-free drawing of G in the plane. A planar embedding is
a combinatorial embedding together with a fixed external face.

A block is a maximal 2-connected subgraph. The relationship between blocks and cut
vertices is given by the block-cutvertex tree, or BC-tree for short. The block-vertex tree
B of a connected graph G represents the relation between the blocks and vertices of G.
It contains a B-node for each block of G and a V-node for each vertex of G; a V-node
v and a B-node B are connected by an edge iff v ∈ B. The representative of a vertex v

of G in block B is either v itself if v ∈ B, or the first vertex on the unique path from
B to v in B. If G is 2-connected, its SPQR-tree T represents the decomposition of G

into its 3-connected components comprising serial, parallel, and 3-connected structures;
see [22, 9] for a formal definition. The respective structure is given by a skeleton graph
associated with each tree node, which is either a cycle (S-node), a bundle of parallel
edges (P-node), or a 3-connected simple graph (R-node). We denote with skeleton(µ) the
skeleton graph associated with node µ. In addition, Q-nodes serve as representatives for
the edges of G. For each vertex v of G, the nodes in T whose skeletons contain v are
called the allocation nodes of v.

If G is 2-connected and planar, its SPQR-tree T represents all combinatorial embed-
dings of G. In particular, a combinatorial embedding of G uniquely defines a combina-
torial embedding of each skeleton in T , and fixing the combinatorial embedding of each
skeleton uniquely defines a combinatorial embedding of G.

3 Embedding constraints

Let G = (V,E) be a graph. An embedding constraint specifies the admissible clockwise
order of the edges incident to a vertex in a combinatorial embedding of G. In this paper,
we consider the case where a vertex has at most one embedding constraint and either all
or none of the edges incident to a vertex are subject to embedding constraints.

An embedding constraint at a vertex v ∈ V is a rooted, ordered tree Tv such that its
leaves are exactly the edges incident to v. The inner nodes of Tv, also called constraint-
nodes or c-nodes for short, are of three types: oc-nodes (oriented constraint-nodes), mc-
nodes (mirror constraint-nodes), and gc-nodes (grouping constraint-nodes). Since Tv is
an ordered tree, it imposes an order on its leaves and thus on the edges incident to v. We
consider this order as a cyclic order and represent all admissible cyclic, clockwise orders
of the edges incident to v by defining, how the order of the children of c-nodes in Tv can
be changed:

gc-node: The order of children may be arbitrarily permuted.

mc-node: The order of children may be reversed.

oc-node: The order of children is fixed.
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(a) Partitioning of edges.

gc

oc gc gc gc

mc mc

(b) Constraint tree.

Fig. 1: The hierarchical partitioning of edges imposed by an embedding constraint (a) and the
corresponding constraint tree (b).

Fig. 1 shows an example for an embedding constraint. A c-node with a single child is
obviously redundant, therefore we demand that each c-node has at least two children.
While gc- and mc-nodes alone resemble the concept of PQ-trees [3], the additional concept
of oc-nodes is necessary to model constraints that arise in many practical applications,
and that complicate planarity testing.

Let C be a set of embedding constraints at distinct vertices of G. A combinatorial
embedding Γ of G observes the embedding constraints in C, if for each embedding
constraint Tv ∈ C, the cyclic clockwise order of the edges around v in Γ is admissible
with respect to Tv. A planar embedding observing the embedding constraints in C is
an ec-planar embedding with respect to C, and (G,C) is ec-planar, if there exists an
ec-planar embedding of G with respect to C.

4 ec-Expansion

A basic building block of the ec-planarity test is a structural transformation applied to
a given graph G with embedding constraints C. For each embedding constraint Tv at
vertex v, this transformation expands v according to the structure of Tv. We call the
resulting graph the ec-expansion E(G,C) of G with respect to C. The details of this
transformation are given below.

4.1 Construction of the ec-Expansion

The ec-expansion E(G,C) of G with respect to C is constructed as follows. Let Tv ∈ C

be an embedding constraint and T ′

v the subgraph obtained from Tv by omitting its leaves.
Recall that the leaves of Tv are exactly the edges incident to v. We replace v in G by
the tree T ′

v and connect the edges incident with v with the parents of the corresponding
leaves. This transformation introduces a vertex in G for every c-node in Tv. Each vertex
u corresponding to an oc- or mc-node is further replaced by a wheel gadget which is
a wheel graph with 2d spokes, were e1, . . . , ed are the edges incident to u. Then, the
respective wheel gadget consists of a cycle x1, y1, . . . , xd, yd of length 2d and a vertex,
called hub, incident to every vertex on the cycle; see Fig. 2(a). The vertex u is replaced by
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(a) Wheel gadget. (b) Vertex expansion.

Fig. 2: Expansion gadgets: (a) a wheel gadget replacing a vertex with degree 4; (b) vertex
expansion according to the constraint tree in Fig. 1(b) (thick hollow vertex is the root).

this wheel gadget, such that ei is connected to xi for 1 ≤ i ≤ d. According to the type of
the expanded c-node, we distinguish between O-hubs (oc-nodes) and M-hubs (mc-nodes).
We refer to the edges introduced during the ec-expansion as expansion edges. Fig. 2(b)
shows the expansion of a vertex according to the constraint tree shown in Fig 1(b).

The purpose of the wheel gadgets is to model the fixed order of the children of the
corresponding c-node. Since a wheel gadget is a 3-connected graph, it admits only two
combinatorial embeddings that are mirror images of each other. The order in which non-
gadget edges are attached to the wheel cycle is either the order given by the corresponding
c-node, or the reverse order. Every face adjacent to the hub is a triangle. We call these
faces inner wheel gadget faces.

Lemma 1. Let G = (V,E) be a graph with embedding constraints C. Then, its ec-
expansion E(G,C) has size O(|V | + |E|) and can be constructed in time O(|V | + |E|).

Proof. Consider an embedding constraint Tv ∈ C. Since the leaves of Tv are in one-to-one
correspondence to the edges incident to v and each c-node has at least two children, the
size of Tv is linear in deg(v). We replace each oc- and mc-node µ by a wheel gadget
with 4 deg(µ) edges. Thus, the expansion of vertex v creates O(deg(v)) edges, and the
total number of additional edges in E(G,C) is bounded by

∑
v∈V O(deg(v)) = O(|E|).

Therefore, the size of the expansion graph is O(|V |+|E|), and the expansion can obviously
be computed in O(|E(G,C)|) = O(|V | + |E|) time. ut

4.2 ec-Expansion and ec-Planar Embeddings

In this section we discuss the relationship between planar embeddings of the ec-expansion
E(G,C) and ec-planar embeddings of (G,C). Though the ec-expansion serves as a tool
for modeling the embedding constraints in C, a planar embedding of E(G,C) needs to
fulfill certain conditions in order to induce an ec-planar embedding of G with respect to
C. We call a planar embedding Γ of E(G,C) ec-planar if

1. the external face of Γ does not contain a hub;
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2. every face incident to a hub is a triangle consisting solely of edges of the corresponding
wheel gadget; and

3. each O-hub h is oriented correctly, i.e., the cyclic, clockwise order of the edges around
h in Γ corresponds to the order specified by the corresponding oc-node.

Let Γ be an ec-planar embedding of E(G,C). Then, we obtain an ec-planar embedding
of (G,C) as follows. For each vertex v with corresponding embedding constraint in C,
there is a connected subgraph Gv in E(G,C) resulting from expanding v. Let Ḡv ⊂
E(G,C) be the rest of the graph, i.e., the graph induced by the vertices not contained
in Gv. The conditions above assure that the planar embedding Γv of Gv induced by Γ is
such that Ḡv lies in the external face of Γv. The edges that connect Gv to Ḡv correspond
to the edges incident to v in G. Their cyclic clockwise order around Gv is admissible with
respect to Tv, since the wheel gadgets fix the order of the edges specified by oc- and mc-
nodes, and O-hubs are oriented correctly. We shrink Gv to a single vertex by contracting
all edges in Gv while preserving the embedding, thus resulting in an admissible order of
the edges around v.

If we have an ec-planar embedding of (G,C), then the edges around each vertex v are
ordered such that the constraints in Tv are fulfilled. It is easy to see that we can replace
each such vertex v by the expansion graph corresponding to Tv in such a way that we
obtain an ec-planar embedding of E(G,C). Thus, we get the following result:

Lemma 2. Let G be a graph with embedding constraints C. Then, (G,C) is ec-planar
if and only if E(G,C) is ec-planar. Moreover, every ec-planar embedding of E(G,C)
induces an ec-planar embedding of (G,C).

5 ec-Planarity Testing

It is well-known that planarity testing can be reduced to 2-connected graphs, i.e., it is
sufficient to test the blocks of a graph independently. However, adding embedding con-
straints complicates this task. Let G be a graph with embedding constraints C. Consider
a cut vertex c in G that connects two blocks BC1 and BC2 via the edge sets s1 and s2,
respectively; see Fig. 3(a). If these edge sets are subject to embedding constraints that
force the edges in s1 and s2 to be intermixed as in Fig. 3(a), then the given graph is
not ec-planar even if its blocks are ec-planar. We solve this problem by first applying the
ec-expansion to the graph. This replaces the cut vertex c by a wheel gadget so that c

does not separate BC1 and BC2 anymore; see Fig. 3(b).
By Lemma 2, we know that it is sufficient to test the ec-expansion E(G,C) for ec-

planarity. In contrast to the graph G itself, the following lemma shows that we can test
the blocks of E(G,C) separately.

Lemma 3. E(G,C) is ec-planar iff every block of E(G,C) is ec-planar.

Proof. If E(G,C) is ec-planar, then there is an ec-planar embedding of E(G,C), and this
embedding implies an ec-planar embedding for each block of E(G,C).

Suppose now that each block of E(G,C) is ec-planar. Consider a wheel gadget G

in E(G,C). Since G is 3-connected, G is completely contained in a single block B of
E(G,C). For each edge (u, v) ∈ G , the pair {u, v} is not a separation pair in B by
construction, hence every inner wheel face of G is also a face in every planar embedding
of B. Moreover, the hub of G is not a cut vertex of E(G,C), since all its incident edges
are in B.
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BC1 BC2

Cut vertex

(a)

BC1 BC2

(b)

Fig. 3: A crossing is needed between edges of two 2-connected components due to embedding
constraints (a). The expansion using a wheel gadget merges the two components (b).

We construct an ec-planar embedding of E(G,C) as follows. We start with an ar-
bitrary block B of E(G,C). Let Π be an ec-planar embedding of B. In particular, the
external face of Π is not an inner wheel face of a wheel gadget. We add the remaining
blocks successively to Π. Let B′ be another block of E(G,C) that shares a vertex c with
B, and let Π ′ be an ec-embedding of B′. We pick faces f ∈ Π and f ′ ∈ Π ′ that are
adjacent to c and not inner wheel faces of a wheel gadget. This is possible, since the only
vertices adjacent solely to inner wheel faces are the O- and M-hubs. Then, we insert Π ′

with f ′ as external face into the face f of Π. This results in an ec-planar embedding
of B ∪ B′. We can add the remaining blocks (if any) in the same way, resulting in an
ec-planar embedding of E(G,C). ut

If we can characterize all ec-planar embeddings of the blocks of E(G,C), the construc-
tion in the proof of Lemma 3 also shows, how to enumerate all ec-planar embeddings of
E(G,C) by traversing its BC-tree. In the following, we devise such a characterization.
Let B be a block of E(G,C) and T its SPQR-tree.

Observation 1. Every wheel gadget G is completely contained within the skeleton of an
R-node. In particular, the hub of G occurs only in the skeleton of a single R-node.

Proof. G is 3-connected, and for each edge (u, v) ∈ G , the pair {u, v} is not a separation
pair in B by construction. Therefore, all edges of G occur in the same skeleton graph,
which must be the skeleton of an R-node µ. The hub h of G is only incident to edges of
G and no other edge of B, hence h occurs only in skeleton(µ). ut

If B is planar, then the skeleton of an R-node is a 3-connected planar graph, thus
having exactly two planar embeddings which are mirror images of each other. We call two
O-hubs contained in the same skeleton S conflicting if none of the two planar embeddings
of S orients both O-hubs correctly. The following theorem gives us an easy to check
condition for ec-planarity and characterizes all possible ec-planar embeddings:

Theorem 1. Let G be a graph with embedding constraints C. Let B be a block of E(G,C)
and T its SPQR-tree. Then, the following holds:

1. B is ec-planar iff B is planar and no skeleton of an R-node of T contains conflicting
O-hubs.

2. If B is ec-planar, then the embeddings of the skeletons of T induce an ec-planar
embedding of B iff each O-hub in the skeleton of an R-node is oriented correctly.
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1: function IsEcPlanar(Graph G, Constraints C) : bool

2: Construct ec-expansion E of (G,C).

3: if E is not planar then return false

4: for each block B of E do

5: Construct SPQR-tree T of B.
6: for each R-node µ ∈ T do

7: if skeleton(µ) contains two conflicting O-hubs then

8: return false

9: end if

10: end for

11: end for

12: return true

13: end function

Algorithm 1: Ec-planarity testing.

Proof. If B admits an ec-planar embedding, then this embedding induces embeddings
of the skeletons of T such that every O-hub in the skeleton of an R-node is oriented
correctly. In particular, no R-node skeleton contains conflicting O-hubs.

Suppose now that B is planar and no R-node skeleton contains conflicting O-hubs.
For each R-node skeleton containing at least one O-hub, we can chose planar embeddings
such that all O-hubs are oriented correctly within the skeletons. We have to show that
the embeddings of the skeletons induce an ec-planar embedding of B, even if we chose
arbitrary embeddings for the remaining skeletons. This holds, since every such embedding
Π has the property that each O-hub is oriented correctly because wheel gadgets are
completely contained within R-node skeletons by Observation 1, and inner wheel faces
are preserved. We can pick any face of Π as external face which is not an inner wheel
face (such a face always exists) and obtain an ec-planar embedding of B. ut

Function IsEcPlanar depicted in Algorithm 1 applies Theorem 1 and devises a
linear time ec-planarity test, which can easily be extended so that it computes an ec-
planar embedding as well.

Theorem 2. Let G = (V,E) be a graph with embedding constraints C. Then, algorithm
IsEcPlanar tests (G,C) for ec-planarity in time O(|V | + |E|). Moreover, if (G,C) is
ec-planar, an ec-planar embedding of (G,C) can also be computed in time O(|V | + |E|).

Proof. By Lemma 2 and 3, it is sufficient to test every block of E(G,C) for ec-planarity.
Hence, the correctness of Algorithm 1 follows from Theorem 1.

Constructing the ec-expansion (Lemma 1) and testing planarity [17] can be done in
linear time. For each block B of E(G,C), we construct its SPQR-tree, which requires
linear time in the size of B; see [14]. The check for conflicting O-hubs is easy to implement:
For each R-node skeleton S, we compute a planar embedding of S. If this embedding
contains both correctly as well as not correctly oriented O-hubs, then there is a conflict,
otherwise not. Since the total size of skeleton graphs is linear in the size of B and a
planar embedding can be found in linear time (see, e.g., [7]), we need linear running time
for each block. Hence, the total running time is linear in the size of E(G,C) which is
O(|V | + |E|) by Lemma 1.
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In order to find an ec-planar embedding of G, we just have to compute embeddings of
the skeleton graphs for each block as described in Theorem 1 and combine the embeddings
as described in the proof of Lemma 3. ut

6 ec-Edge Insertion

6.1 ec-Edge Insertion Paths and ec-Traversing Costs

We first generalize the terms insertion path and traversing costs introduced in [16].
Intuitively, the edges in an insertion path are the edges we need to cross when inserting
an edge (x, y) into an embedding. Let G + (x, y) be a graph with embedding constraints
C. An ec-edge insertion path for x, y in an ec-planar embedding Π of G is a sequence of
edges e1, . . . , ek of G satisfying the following conditions:

1. There is a face fx ∈ Π with x, e1 ∈ fx, a face fy ∈ Π with ek, y ∈ fy, and faces
fi ∈ Π with ei, ei+1 ∈ fi for 1 ≤ i < k.

2. The edge order around x and y is admissible with respect to C if (x, y) leaves x via
face fx and enters y via face fy.

Finding a shortest ec-insertion path in a fixed embedding Π is easy: We only need to
identify the set of faces Fx incident to x where the insertion path may start, and Fy

incident to y where it may end, and then find a shortest path in the dual graph of Π

connecting a face in Fx with a face in Fy.
We are interested in the shortest possible ec-insertion path among all ec-planar em-

beddings of G, which we also call an optimal ec-insertion path in G. In particular, we
need to identify the required ec-planar embedding of G. In order to represent all ec-planar
embeddings of G, we apply Lemma 2 and use its ec-expansion instead. More precisely, we
use the subgraph K = E(G+(x, y), C)\e, where e = (v, w) is the edge of E(G+(x, y), C)
connecting the expansion of x with the expansion of y. An ec-insertion path in an ec-
planar embedding of K is defined as before with the only difference that we replace the
second condition with

2′. e1, . . . , ek contains no expansion edge of K.

It is easy to see that we can also use this definition for a subgraph B of K and two
distinct vertices of B that are not hubs.

We adapt the notion of traversing costs defined in [16] to ec-planarity. Let e be
a skeleton edge, and let Π be an arbitrary ec-embedding of the graph expansion+(e)
(which is the expansion graph of e plus the edge e) with dual graph Π∗, in which all
edges corresponding to gadget edges have length ∞ and the other edges have length 1.
Let f1 and f2 be the two faces in Π separated by e. We denote with P (Π∗, e) the length
of the shortest path in Π∗ that connects f1 and f2 and does not use the dual edge of e.
Hence, we have P (Π, e) ∈ IN ∪ {∞}.

The following lemma follows analogously to the result shown in [16].

Lemma 4. Let µ be a node in T and let e be an edge in skeleton(µ). Then, the length
of the path P (Π∗, e) is independent of the ec-embedding Π of expansion+(e).

Proof. Let m be the number of edges in Ge := expansion+(e) and G′

e be the graph
obtained from Ge by replacing each gadget edge with m + 1 parallel edges. Then, each
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embedding Π of Ge corresponds to an embedding Π ′ of G′

e, and the length of the path
P (Π, e) is ∞ if and only if the corresponding path in Π ′ is longer than m. Applying
Lemma 1 in [16] and observing that the ec-embeddings of Ge are a non-empty subset of
the embeddings of Ge yields the lemma. ut

Thus, we define the ec-traversing costs c(e) of a skeleton edge e as the length of the path
P (Π∗, e) for an arbitrary ec-embedding Π of expansion+(e).

6.2 The Algorithm for 2-connected Graphs

The hard part is to find an ec-insertion path in a block B of K. Our task is to compute an
optimal ec-insertion path between two nodes v, w of B. The function OptimalEcBlock-

Inserter shown in Algorithm 2 and 3 solves this problem. It is called with a block B of
an ec-planar ec-expansion and two distinct vertices v and w of B. Since we assume that
B contains all gadget edges, we do not need to pass further constraint information for the
edge (v, w). In particular, using any insertion path in any ec-planar embedding of B that
connects v and w and does not cross a gadget edge yields an ec-embedded planarization
of B ∪ (v, w). Hence, we look for an ec-embedding of B that allows the insertion of the
edge (v, w) with the minimum number of crossings.

It starts by computing the SPQR-tree T of B and embeds the skeletons such that they
imply an ec-embedding of B, i.e, the R-node skeletons are embedded correctly. Then, the
shortest path Υ := µ1, . . . , µk between an allocation node of v and of w is identified. In
order to achieve a consistent orientation, we root T such that Υ is a descending path
in the tree, i.e., µi is the parent of µi−1 for i = 2, . . . , k. Note that the rooting of the
SPQR-tree implies a direction of the skeleton edges: the edges in a skeleton with reference
edge er = (s, t) are directed such that the skeleton is a planar st-graph; see, e.g., [9]. This
direction is necessary in order to identify the left and the right face of an edge.

The algorithm traverses the path Υ from µ1 to µk−1 and iteratively computes the
lengths of the shortest ec-insertion paths that start from v and leave the pertinent graph
Pi of µi to the left or to the right, respectively, where all ec-embeddings of Pi are consid-
ered. Here, left and right refer to the direction of the reference edge of µi. These lengths
are maintained in the variables λ` and λr. Finally, when node µk is considered, this
information is used to determine a shortest insertion path ending at w.

For each node µi, the following information is computed:

– φi
` (resp. φi

r) indicates if the shortest ec-insertion path leaving Pi to the left (right)
uses the shortest ec-insertion path that leaves Pi−1 to the left (in this case the value
is `) or to the right (the value is r).

– ∆i
` (resp. ∆i

r) is the subpath that is appended to the path leaving Pi−1 when leaving
Pi to the left (right).

These values are solely used for the purpose of creating the optimal ec-insertion path at
the end of the procedure. If s ∈ {`, r} denotes a side, we denote with s̄ the other side,
i.e., ¯̀= r and vice versa.

The body of the for-loop starts by expanding all edges of the skeleton Si of µi except
for edges representing v or w. The resulting graph is called Gi. If 1 < i < k, then Gi

will contain two virtual edges ev (representing v) and ew (representing w). Note that we
obtain Pi (plus reference edge) by replacing ev with Pi−1.

We distinguish according to the type of µi. If µi is a P-node, then the optimal ec-
insertion path leaving Pi−1 to the left (right) is also an optimal ec-insertion path leaving
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procedure OptimalEcBlockInserter(Block B of K, vertex v, vertex w)
Construct SPQR-tree T of B such that the embeddings of the skeletons imply a
feasible embedding of B.

Find the shortest path µ1, . . . , µk in T between an allocation node µ1 of v and µk

of w.
Root T such that µk becomes the parent of µk−1 (if k > 1).

λ` := λr := 0 . length of shortest insertion path leaving to the left/ right

for i = 1, . . . , k do

let Si = skeleton(µi)

let Gi be the graph obtained from Si by replacing each edge not representing
v or w with its expansion graph, and let Πi be the embedding of Gi induced
by the embeddings of the skeletons of T .

. φi
l/r indicates which insertion path of µi−1 is chosen when leaving left/right

. ∆i
l/r denotes the subpath within Si when leaving left/right

if µi is a P-node then

(φi
`,∆

i
`) := (`, ε); (φi

r,∆
i
r) := (r, ε) . no crossings required

else . S- or R-node
if i = 1 then

Lv := Rv := the set of adjacent faces of the copy of v in Si

else

let ev be the representative of v in Si

Lv := { the left face of ev}
Rv := { the right face of ev}

end if

if i = k then

Lw := Rw := the set of adjacent faces of the copy of w in Si

else

let ew be the representative of w in Si

Lw := { the left face of ew}
Rw := { the right face of ew}

end if

. Compute shortest ec-insertion paths (from l/r to l/r) within Gi.

. Note: p`r = p`` and prr = pr` if i ∈ {1, k}.
p`r := ShortestEcInsPath(Πi, Lv, Lw)
p`` := ShortestEcInsPath(Πi, Lv, Rw)
prr := ShortestEcInsPath(Πi, Rv, Lw)
pr` := ShortestEcInsPath(Πi, Rv, Rw) . continued on next page. . .

Algorithm 2: Computation of an optimal ec-insertion path (2-connected case).
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. Collect possible solutions.
Λ` := { (λ` + |p``|, `, p``), (λr + |pr`|, r, pr`) }
Λr := { (λ` + |p`r|, `, p`r), (λr + |prr|, r, prr) }

if µi is an R-node that can be mirrored then

Λ` := Λ` ∪ { (λ` + |prr|, `, p
∗

rr), (λr + |p`r|, r, p
∗

`r) }
Λr := Λr ∪ { (λ` + |pr`|, `, p

∗

r`), (λr + |p``|, r, p
∗

``) }
end if

. Pick best solution.
(λ`, φ

i
`,∆

i
`) := min1,3 Λ`

(λr, φ
i
r,∆

i
r) := min1,3 Λr

end if

end for

. Build final ec-insertion path. Note: λ` = λr always holds here!
sk := ` . Start with empty path.
for i := k downto 1 do . Collect path backward.

pi := ∆i
si

; si−1 := φi
si

end for

return p1 + · · · + pk

end procedure

Algorithm 3: Procedure OptimalEcBlockInserter (part 2).

Pi to the left (right); we just need to permute the parallel edges in Si such that ev is
the leftmost (rightmost) edge. Otherwise, we have four possibilities for extending an ec-
insertion path leaving Pi. Such a path may start in a face left or right of ev, and may
end in a face left or right of ew. In addition, we have to consider two special cases: if
i = 1 then Gi contains v and the ec-insertion path may start in any face adjacent to v;
if i = k then Gi contains w and the ec-insertion path may end in any face adjacent to
w. We compute the (at most) four possible shortest ec-insertion paths using the function
ShortestEcInsPath(Π,Fs, Ft). Here Π is an ec-embedding of an ec-expansion, Fs are
the faces where the insertion path may start, and Ft are the faces where it may end. The
ec-insertion path is found using BFS in the dual graph of Π, where edges corresponding
to gadget edges are removed (which means that it is forbidden to cross their primal
counterparts). We call these shortest ec-insertion paths p``, p`r, pr`, prr, where p`` stands
for the path starting in a face in Lv and ending in a face in Rw etc. We have two choices for
a shortest ec-insertion path leaving Pi to the left if we consider only the given embedding
of the skeleton of µi:

– We leave Pi−1 to the left (or start at v if i = 1) and end in a face in Rw (e.g., we
enter ew from right). This path has length λ` + |p``|.

– We leave Pi−1 to the right (or start at v if i = 1) and end in a face in Rw (e.g., we
enter ew from left). This path has length λr + |pr`|.

For the shortest ec-insertion path leaving Pi to the right, we have two similar cases.
Further choices are possible if µi is an R-node that can be mirrored. We could mirror the
embedding of Si, expand the skeleton edges as before such that we obtain an embedding
Π̃i, and compute the four paths in Π̃i again. Notice that Π̃i is not simply the mirror
image of Πi. However, this is not necessary. We observe that, e.g., the path p̃`` is obtained



Planarity Testing and Optimal Edge Insertion with Embedding Constraints 13

Fig. 4: Proof of Lemma 5; k = 1 and µ1 is a P-node (left), and µi is a P-node (right).

from prr by reversing the subsequences of edges that have been created by expanding a
common skeleton edge of Si. We call this path p∗rr. A similar argumentation holds for
p̃`r, p̃r`, p̃rr. It follows that we have at most four possible choices for leaving Pi to the
left and to the right, respectively. Among all possible choices, we pick the shortest one.

After processing all nodes µi, it is easy to reconstruct the best ec-insertion path from
v to w using φi

`/r and ∆i
`/r. Notice that λ` = λr holds at the end, since Lk

w = Rk
w.

6.3 Correctness and Optimality

Lemma 5. There exists an ec-embedding Π of B such that p1+· · ·+pk is an ec-insertion
path for v and w in B with respect to Π.

Proof. Consider the path Υ = µ1, . . . , µk computed by the algorithm. By construction
of Υ , the skeleton of µ1 contains v, the skeleton of µk contains w, and, for each j =
2, . . . , k − 1, the skeleton of µj contains neither v nor w. Moreover, Υ does not contain a
Q-node.

First, we prove the lemma for the case where Υ consists of a single node µ1. In this
case, the skeleton of µ1 contains both v and w. We distinguish two cases according to
the type of µ1:

1. µ1 is a P-node. Let Π be an arbitrary ec-embedding of B. Since v and w share a
common face in Π, the empty path returned by the algorithm is an ec-insertion path
for v and w in B with respect to Π; see Fig. 4 (left).

2. µ1 is an S- or an R-node. In this case the graph G1 constructed by the algorithm
is the original block B, since all skeleton edges are expanded. Moreover, Π1 is an
ec-embedding of B, and p`r = p`` and prr = pr` are ec-insertion paths in B with
respect to Π1. We do not need to consider the case where the embedding of the
skeleton can be mirrored, since this will not yield a shorter path. Hence, p1 is either
p`r or prr and thus an ec-insertion path in B with respect to Π1.

Assume now that k > 1. For i = 1, . . . , k, we denote with Hi the pertinent graph of
µi, with ri the reference edge of µi in Hi, and, for 1 < i, with ei the edge in skeleton(µi)
whose pertinent node is µi−1. Recall that si ∈ {`, r} is the side of Hi where the computed
insertion path shall leave. We show by induction over i that, for 1 ≤ i < k, there is an
embedding Γi of Hi such that p1 + · · · + pi is an ec-insertion path leaving Hi at side
si. The embeddings Γ1, . . . , Γk−1 are iteratively constructed during the proof. For our
convenience, we denote with Γ−

i the embedding of Hi − ri induced by Γi.

i = 1. Consider the different types for node µ1:
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Fig. 5: Proof of Lemma 5; µi is an S-node, Lv = Rw = {f1}, Rv = Lw = {f2}.

1. µ1 is a P-node. This case does not apply, since µ2 is not an allocation node of
v.

2. µ1 is an S- or an R-node. In this case, G1 = H1, and p1 is a path leaving
either Π1 or the mirror image of Π1 to side s1. Hence, we set Γ1 to Π1 or its
mirror image, respectively.

1 < i < k. We distinguish again between the types of µi.
1. µi is a P-node. In this case, pi = ε, i.e., no further edges need to be crossed.

The embedding Γi is obtained as follows. If si = `, we permute the edges in
skeleton(µi) such that ei is to the right of ri; otherwise, we permute the edges
such that ei is to the left of ri. Then, we replace ei by Γ−

i−1
, and the remaining

edges e 6= ri in skeleton(µi) by an arbitrary embedding of expansion(e); see Fig. 4
(right).

2. µi is an S- or an R-node. In this case, pi is either psi−1si
or ps̄i−1s̄i

; the latter
case corresponds to mirroring the embedding of skeleton(µi) before.
We first restrict us to the case in which pi is set to psi−1si

, i.e., an ec-insertion
path in the embedding Πi that starts in a face at side si−1 of ei and ends in a
face at side s̄i of edge ri. We obtain Γi by replacing ei by Γ−

i in Πi; see Fig. 5.
Since the ec-insertion path p1 + · · ·+pi−1 leaves Γ−

i to the side si−1, p1 + · · ·+pi

is an ec-insertion path leaving Γi to the side si.
Finally, assume that pi = ps̄i−1s̄i

. Let Π̃i be the embedding that we obtain by
first mirroring the embedding of skeleton(µi) and then expanding and embedding
each skeleton edge not representing v or w as before. We observe that pi is an
ec-insertion path in Π̃i that starts in a face at side si−1 of ei and ends in a face at
side s̄i of edge ri; see Fig. 6. With the same argumentation as above, we obtain
Γi by replacing ei with Γ−

i−1
in Π̃i.

To conclude the proof, we consider the node µk. We know that µk is either an S- or
an R-node, and we may assume that pk = psi−1si

, since p`r = p`` and prr = pr` holds for
i = k. Hence, pk is an ec-insertion path in Πk that starts in a face at side si−1 of ei and
ends in a face adjacent to the copy of w in Gk. We obtain Π by replacing ek with Γ−

k−1

in Πk, and thus p1 + · · · + pk is an ec-insertion path for v and w in Π. ut

Lemma 6. Let Π ′ be an arbitrary ec-embedding of B and let p′ be a shortest ec-insertion
path for v and w in B with respect to Π ′. Then |p′| ≥ |p1 + · · · + pk|.

Proof. Let Gi, Si, and si be as defined in OptimalEcBlockInserter, and let λi
` and

λi
r be the value of λ` and λr, respectively, after the i-th iteration of the for-loop. For
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Fig. 6: Proof of Lemma 5; µi is an R-node, Rv = {f1}, Lw = {f2}.

i = 1, . . . , k, we denote with Hi the pertinent graph of µi. Observe, that Π ′ induces
embeddings of Gi and Si. Accordingly, we denote the induced embedding of Gi with Π ′

i,
and of Si with Σ′

i.
Since p′ is a shortest ec-insertion path, it does not visit a face twice. Therefore, we

can subdivide p′ into p′ = p′1 + · · ·+ p′k such that p′i contains exactly the edges of p′ that
are in Gi, for 1 ≤ i ≤ k. This follows from the fact that Hi shares only two vertices with
the rest of the graph and p′ does not visit a face twice. For 1 ≤ i < k, we denote with
s′i ∈ {`, r} the side at which the ec-insertion path p′1 + · · · + p′i leaves Hi in Π ′.

We show by induction over i that λi
s′

i

≤ |p′1 + · · · + p′i|.

i = 1. If k = 1, then G1 = B and the proposition follows immediately, so assume k > 1. If
µ1 is not an R-node, then λs′

1
= 0 and the proposition follows immediately. Otherwise,

the algorithm also computes the shortest ec-insertion path leaving at side s′1 in Σ′

1,
where the costs of the edges are their traversing costs. Since the traversing costs are
independent of the embedding by Lemma 4, we get λ1

s′

1

≤ |p′1|.

1 < i < k. Assume now that λ
j
s′

j

≤ |p′1 + · · ·+p′j | for 1 ≤ j < i. We distinguish two cases:

1. µi is a P-node. In this case, we have s′i−1 = s′i, since pi + · · · + pk does not
contain an edge of Hi−1. This yields

λi
s′

i
= λi−1

s′

i−1

≤ |p′1 + · · · + p′i−1| ≤ |p′1 + · · · + p′i|.

2. µi is an S- or an R-node. Observe that p′i is an ec-insertion path in Π ′

i starting
in the face at side s′i of the edge representing v and ending in a face at side s̄′i+1 of
the edge representing w if i < k, or a face adjacent to w otherwise. This implies
an ec-insertion path in Σ′

i, where the costs of a skeleton edge are its traversing
costs. On the other hand, the algorithm computes a shortest ec-insertion path in
Σ′

i, since the traversing costs of a skeleton edge are independent of the embedding
by Lemma 4. Thus, we get λs′

i
− λs′

i−1

≤ |p′i|, and hence

λs′

i
≤ λs′

i−1

+ |pi| ≤ |p′1 + · · · + p′i|.

Finally, we get |p1 + · · · + pk| = λi
s′

i

≤ |p′| and the lemma holds. ut

Theorem 3. Let B = (V,E) be a block of K and let v and w be two distinct vertices of
B. Then, Function OptimalEcBlockInserter computes an optimal ec-insertion path
for v and w in B in time O(|E|).
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procedure OptimalEcInserter(ec-expansion G, vertex v, vertex w)
Compute the block-vertex tree B of G

Find the path v,B1, c1, . . . , Bk−1, ck−1, Bk, w from v to w in B.

for i := 1, . . . , k do

let xi and yi be the representatives of v and w in Bi

pi := OptimalEcBlockInserter(Bi, xi, yi)
end for

return p1 + · · · + pk

end procedure

Algorithm 4: Computation of an optimal ec-insertion path.

Proof. The correctness and optimality of the algorithm follows from Lemma 5 and
Lemma 6. Constructing the SPQR-tree and embedding the skeleton graphs takes time
O(|E|); see [14, 18, 7]. Let Gi = (Vi, Ei) be the graph considered in each iteration of
the for-loop. Then, each iteration takes time O(|Ei|), since ShortestEcInsPath takes
only time linear in the size of Gi by applying BFS. Moreover, the set Ei consists of some
edges E′

i of G plus at most two virtual edges (the representatives of v and w). Thus,
|E1| + · · · + |Ek| = O(|E|), and hence we get a total running time of O(|E|). ut

6.4 Generalization to Connected Graphs

The edge insertion algorithm can easily be generalized to connected graphs by using the
same technique as in [16] for the unconstrained case; see Alg. 4. For each block Bi on
the path from v to w in the block-vertex tree B of G, we compute the optimal ec-edge
insertion path pi between the representatives of v and w with a corresponding ec-planar
embedding Πi. Then, we concatenate these ec-edge insertion paths building the optimal
ec-edge insertion path for v and w.

The correctness proof in [16] uses induction over the number of blocks on the path
from v to w in B. We briefly recall this proof. Let B1, . . . , Bk be the blocks on this path
and let Hi be the union of the blocks B1 to Bi. Let Πi be an embedding of Bi such that
pi is an optimal edge insertion path for the representatives xi and yi in Bi with respect
to Πi. Let Ψi denote the concatenation p1 + · · · + pi.

An embedding Γi for Hi with an optimal edge insertion path Ψi can be iteratively
constructed by combining the embedding Γi−1 for Hi−1 and the embedding Πi for block
Bi. Both yi−1 and xi denote the same vertex in G and there exist optimal edge insertion
paths Ψi−1 for v1 and yi−1 and pi for xi and yi. Therefore there is a face f ∈ Γi−1 that
contains yi−1 and either v1 if Ψi−1 is empty or the last edge in Ψi−1. Similarly, there is
a face f ′ ∈ Πi that contains xi and either yi if pi is empty or the first edge in pi. We
can directly concatenate the two paths if both faces coincide. This can be achieved by
choosing f as the external face of Γi−1 and placing this embedding of Hi−1 into face f ′

of Πi. Then Ψi is an optimal ec-insertion path for v1 and yi in Hi with respect to Γi.

We need to show that—under the presence of embedding constraints—ec-planarity is
preserved, i.e., Γk is still an ec-planar embedding. The only critical aspect in each step
is the selection of f as the external face; but this does not change the clockwise order of
the edges around the vertices of G. Furthermore, we ensure in the computation of the
ec-edge insertion paths pi that we do not cross any expansion edges. Hence, we know
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that the paths Ψi−1 and pi do not start or end in a face containing a hub. Therefore, the
ec-planarity conditions are still fulfilled and Γk is ec-planar.

It is obvious that p1 + · · ·+pk is an ec-edge insertion path for v and w with respect to
an embedding Π that results from inserting the remaining blocks not contained in Hk (as
shown in the proof of Lemma 3) into Γk. The length of the computed ec-edge insertion
path is obviously minimal, since a shorter path would imply that there exists a shorter
path within a block. The block-vertex tree of a graph can be constructed in linear time
and the running time of OptimalEcBlockInserter(Bi, xi, yi) is linear in the size of
the block Bi (Theorem 3), thus yielding linear running time for OptimalEcInserter.

Together with Lemma 1, we obtain the following result:

Theorem 4. Let G = (V,E) be a graph with embedding constraints C and e = (v, w) ∈ E

such that G−e is ec-planar. Then, we can compute an optimal ec-edge insertion path for
v, w in G − e in O(|V | + |E|) time.

7 Conclusion and Future Work

We introduced a flexible concept of embedding constraints which allows to model a wide
range of constraints on the order of edges incident to a vertex. We presented a linear
time algorithm for testing ec-planarity, as well as a characterization of all possible ec-
embeddings. The latter is in particular important for developing algorithms that optimize
over the set of all ec-planar embeddings. We showed that optimal edge insertion can still
be performed in linear time when embedding constraints have to be respected. In order
to devise practically successful graph drawing algorithms, the following problems should
be considered:

– Incorporate the concept of embedding constraints into the planarization approach [1,
15] so that also non-ec-planar graphs can be handled. In particular, algorithms for
finding ec-planar subgraphs are required. Notice that this problem can, e.g., be solved
in quadratic time using successive ec-planarity testing.

– Solve the so-called orientation problem for orthogonal graph drawing, e.g., allow to
fix some edges to attach only at the top side of a rectangular vertex.

– In some applications, only a subset of the edges is subject to embedding constraints
at a vertex v, i.e., some edges can attach at arbitrary positions. Hence, we wish to
extend the concept of embedding constraints for so-called free edges that are not
contained in the tree Tv.
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