
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 9 • Winter 2011/12 • Dec 13

Carsten Gutwenger: Object-oriented Programming 2

Access Control

 Recall our example for structure point:

 We ensured the validity of the data (x  [0..1919] and y 
[0..1079]) by using constructors, an assign member function
etc.

 However, we can still write code like this:

Code that depends on the validity of data might not work on
such points!

struct point {

 int x;

 int y;

};

point p;

p.x = -5;

Carsten Gutwenger: Object-oriented Programming 3

Access Specifications

 Access specifications describe the permitted access to a data
member or member function.

 private

– Access is only allowed from within a member function, not from
outside (e.g. the main program)

– Private members are only visible inside the structure

 public

– Access is allowed from everywhere

– Public members are also visible from outside the structure

Carsten Gutwenger: Object-oriented Programming 4

Example: Points with access control

 Now writing code like this

results in an error at compile time!

struct point {

private: // everything from here on is private

 int x;

 int y;

public: // everything from here on is public

 // add all the old stuff here...

};

point p;

p.x = -5;

Carsten Gutwenger: Object-oriented Programming 5

Getter Member Functions

 How can we access private data members?

 One solution: Provide a “getter” member function

struct point {

private:

 int x;

 int y;

public:

 int get_x() const {

 return x;

 }

 ...

};

 The get member function returns just a copy of x
 x cannot be changed

Carsten Gutwenger: Object-oriented Programming 6

The const modifier for member functions

 Member functions can be declared as const

 For constant instances (including const references) of this
structure, only such member functions may be called

 Declare all your getter member functions as const!

Carsten Gutwenger: Object-oriented Programming 7

Setter Member Functions

 Similarly, we can add “setter” member functions for
modifying private data members

struct point {

private:

 int x;

 int y;

public:

 void set_x(int new_x) {

 if(0 <= new_x && new_x < 1920)

 x = new_x;

 }

 ...

};

 Now we can modify x from outside the structure and still
ensure its validity

Carsten Gutwenger: Object-oriented Programming 8

Interfaces vs. Implementation

 private and public allow us to separate the interface of
our structures from the actual implementation
– interface: all publicly visible methods and data

– implementation: everything “under the hood” that makes the custom
type work. Should be kept private.

 Why should we hide the implementation?
– We can change it later without changing any other code

– Users of the data type (structure) do not need to worry about the
actual implementation

 Example: vectors
– We do not know about the internals of an std::vector and should

not really care

– Knowing its interface is enough for using vectors

Carsten Gutwenger: Object-oriented Programming 9

The Keyword class

 The keyword class is (almost) a synonym of struct

 We could also write:

 The only difference is the default visibility:
– for struct it is public

– for class it is private

class point {

 // ...

};

struct point {

 // ...

};

instead of

Carsten Gutwenger: Object-oriented Programming 10

Derived Classes

 Suppose we want to model employees of a company

 We could write a data structure as follows:

class Employee {

 string name;

 int salary;

 // further data

public:

 Employee();

 void print();

 int get_salary();

 // further methods

};

Carsten Gutwenger: Object-oriented Programming 11

Example “Employees” continued

 Suppose now our program should also handle managers

 Managers are also employees, but they also have
a) a group of employees they manage

b) a level of competence

Carsten Gutwenger: Object-oriented Programming 12

Modeling managers: first try

 We copy all the data members from Employee to Manager:

class Manager {

 string name;

 int salary;

 vector<Employee> group;

 int level;

 // further data members and methods

};

 Disadvantages:
– This doubles the code and we can introduce new errors

– Whenever we change the implementation of Employee, we also have
to change the implementation of Manager

Data members copied
from Employee

New data members

Carsten Gutwenger: Object-oriented Programming 13

Modeling managers: second try

 We use a data member of type Employee:

class Manager {

 Employee emp_data;

 vector<Employee> group;

 int level;

 // further data members and methods

};

 Discussion:
– This is better. But still we have to write some obscure code like this:

int Manager::get_salary() {

 return emp_data.get_salary();

}

Data member of type Employee

Carsten Gutwenger: Object-oriented Programming 14

Modeling managers using inheritance

 With the features we know so far we cannot express that a
manager is a special kind of employee

 We can achieve this using inheritance:

class Manager : public Employee

{

 vector<Employee> group;

 int level;

 // further data members and methods

};

Manager inherits all data
members and methods
from Employee

 This declaration expresses that a Manager is an Employee
with some additional data

Carsten Gutwenger: Object-oriented Programming 15

Inheritance

 Given a declaration like this

we say that
– Manager is derived from Employee

– Employee is a base class of Manager

 Manager is said to inherit from its base class:

class Manager : public Employee {

 // ...

};

Employee Employee

Manager Manager

Carsten Gutwenger: Object-oriented Programming 16

Why is inheritance useful?

 Given this declaration of class Manager

we can use a Manager wherever an Employee is expected
 Polymorphism

class Manager : public Employee {

 // ...

};

 Employee bill;

 Manager adam;

 Employee &emp_one = bill;

 Employee &emp_two = adam;

 emp_one.print();

 emp_two.print();

Carsten Gutwenger: Object-oriented Programming 17

Calling inherited methods

 Recall:

 What happens in this situation?

 adam is a Manager, hence also an Employee
 the print() method of Employee is invoked

 But how can we (also) print the additional data of adam?

class Employee {

 // ...

 void print();

 // ...

};

Manager adam;

adam.print();

Carsten Gutwenger: Object-oriented Programming 18

Calling inherited methods

 First solution: We could add a second method for printing:

and then print a manager like this:

class Manager : public Employee {

 // ...

 void print_manager_data();

adam.print();

adam.print_manager_data();

 Disadvantages:
– This is again error-prone. What if we forget that adam is a manager?

Carsten Gutwenger: Object-oriented Programming 19

Redefining Inherited Methods

 Second solution: We can redefine the print() method:

class Manager : public Employee {

 vector<Employee> group;

 int level;

public:

 void print();

};

void Manager::print()

{

 Employee::print();

 cout << "level = " << level << '\n';

 // further output ...

}

Redefine the print() method
of Employee

Implementation outside of the
class declaration

Call print()
method of the
base class

Carsten Gutwenger: Object-oriented Programming 20

Redefining Inherited Methods

 Given the following declarations:

 bill.print()

invokes the print() method of Employee

 adam.print()
invokes the redefined print() method of Manager
(whose implementation will then also invoke the print()
method of Employee)

Employee bill;

Manager adam;

Carsten Gutwenger: Object-oriented Programming 21

Derived Classes and Constructors

 Given that Employee has the following constructor:

 We define the constructor of Manager as follows:

 Order of construction:
1. the base class

2. the data members

3. the derived class itself (the code in the constructor)

 Objects are destroyed in the opposite order

Employee::Employee(string n, int s)

 : name(n), salary(s) { }

Manager::Manager(string n, int s, int l)

 : Employee(n,s), level(l) { }

Calls the constructor of Employee

Carsten Gutwenger: Object-oriented Programming 22

Class Hierarchies

 Classes can also inherit from several base classes
– We will not make use of this in this course!

Employee Employee

Manager Manager

Director Director

Secretary Secretary

Temporary Temporary

Consultant Consultant

TempSec TempSec

See example
hierarchy.cpp

Carsten Gutwenger: Object-oriented Programming 23

Preparations for next week

 Constructors, destructors, and assignment

 Pointers

 Virtual and purely virtual functions

