
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 9 • Winter 2011/12 • Dec 13

Carsten Gutwenger: Object-oriented Programming 2

Access Control

 Recall our example for structure point:

 We ensured the validity of the data (x [0..1919] and y
[0..1079]) by using constructors, an assign member function
etc.

 However, we can still write code like this:

Code that depends on the validity of data might not work on
such points!

struct point {

 int x;

 int y;

};

point p;

p.x = -5;

Carsten Gutwenger: Object-oriented Programming 3

Access Specifications

 Access specifications describe the permitted access to a data
member or member function.

 private

– Access is only allowed from within a member function, not from
outside (e.g. the main program)

– Private members are only visible inside the structure

 public

– Access is allowed from everywhere

– Public members are also visible from outside the structure

Carsten Gutwenger: Object-oriented Programming 4

Example: Points with access control

 Now writing code like this

results in an error at compile time!

struct point {

private: // everything from here on is private

 int x;

 int y;

public: // everything from here on is public

 // add all the old stuff here...

};

point p;

p.x = -5;

Carsten Gutwenger: Object-oriented Programming 5

Getter Member Functions

 How can we access private data members?

 One solution: Provide a “getter” member function

struct point {

private:

 int x;

 int y;

public:

 int get_x() const {

 return x;

 }

 ...

};

 The get member function returns just a copy of x
 x cannot be changed

Carsten Gutwenger: Object-oriented Programming 6

The const modifier for member functions

 Member functions can be declared as const

 For constant instances (including const references) of this
structure, only such member functions may be called

 Declare all your getter member functions as const!

Carsten Gutwenger: Object-oriented Programming 7

Setter Member Functions

 Similarly, we can add “setter” member functions for
modifying private data members

struct point {

private:

 int x;

 int y;

public:

 void set_x(int new_x) {

 if(0 <= new_x && new_x < 1920)

 x = new_x;

 }

 ...

};

 Now we can modify x from outside the structure and still
ensure its validity

Carsten Gutwenger: Object-oriented Programming 8

Interfaces vs. Implementation

 private and public allow us to separate the interface of
our structures from the actual implementation
– interface: all publicly visible methods and data

– implementation: everything “under the hood” that makes the custom
type work. Should be kept private.

 Why should we hide the implementation?
– We can change it later without changing any other code

– Users of the data type (structure) do not need to worry about the
actual implementation

 Example: vectors
– We do not know about the internals of an std::vector and should

not really care

– Knowing its interface is enough for using vectors

Carsten Gutwenger: Object-oriented Programming 9

The Keyword class

 The keyword class is (almost) a synonym of struct

 We could also write:

 The only difference is the default visibility:
– for struct it is public

– for class it is private

class point {

 // ...

};

struct point {

 // ...

};

instead of

Carsten Gutwenger: Object-oriented Programming 10

Derived Classes

 Suppose we want to model employees of a company

 We could write a data structure as follows:

class Employee {

 string name;

 int salary;

 // further data

public:

 Employee();

 void print();

 int get_salary();

 // further methods

};

Carsten Gutwenger: Object-oriented Programming 11

Example “Employees” continued

 Suppose now our program should also handle managers

 Managers are also employees, but they also have
a) a group of employees they manage

b) a level of competence

Carsten Gutwenger: Object-oriented Programming 12

Modeling managers: first try

 We copy all the data members from Employee to Manager:

class Manager {

 string name;

 int salary;

 vector<Employee> group;

 int level;

 // further data members and methods

};

 Disadvantages:
– This doubles the code and we can introduce new errors

– Whenever we change the implementation of Employee, we also have
to change the implementation of Manager

Data members copied
from Employee

New data members

Carsten Gutwenger: Object-oriented Programming 13

Modeling managers: second try

 We use a data member of type Employee:

class Manager {

 Employee emp_data;

 vector<Employee> group;

 int level;

 // further data members and methods

};

 Discussion:
– This is better. But still we have to write some obscure code like this:

int Manager::get_salary() {

 return emp_data.get_salary();

}

Data member of type Employee

Carsten Gutwenger: Object-oriented Programming 14

Modeling managers using inheritance

 With the features we know so far we cannot express that a
manager is a special kind of employee

 We can achieve this using inheritance:

class Manager : public Employee

{

 vector<Employee> group;

 int level;

 // further data members and methods

};

Manager inherits all data
members and methods
from Employee

 This declaration expresses that a Manager is an Employee
with some additional data

Carsten Gutwenger: Object-oriented Programming 15

Inheritance

 Given a declaration like this

we say that
– Manager is derived from Employee

– Employee is a base class of Manager

 Manager is said to inherit from its base class:

class Manager : public Employee {

 // ...

};

Employee Employee

Manager Manager

Carsten Gutwenger: Object-oriented Programming 16

Why is inheritance useful?

 Given this declaration of class Manager

we can use a Manager wherever an Employee is expected
 Polymorphism

class Manager : public Employee {

 // ...

};

 Employee bill;

 Manager adam;

 Employee &emp_one = bill;

 Employee &emp_two = adam;

 emp_one.print();

 emp_two.print();

Carsten Gutwenger: Object-oriented Programming 17

Calling inherited methods

 Recall:

 What happens in this situation?

 adam is a Manager, hence also an Employee
 the print() method of Employee is invoked

 But how can we (also) print the additional data of adam?

class Employee {

 // ...

 void print();

 // ...

};

Manager adam;

adam.print();

Carsten Gutwenger: Object-oriented Programming 18

Calling inherited methods

 First solution: We could add a second method for printing:

and then print a manager like this:

class Manager : public Employee {

 // ...

 void print_manager_data();

adam.print();

adam.print_manager_data();

 Disadvantages:
– This is again error-prone. What if we forget that adam is a manager?

Carsten Gutwenger: Object-oriented Programming 19

Redefining Inherited Methods

 Second solution: We can redefine the print() method:

class Manager : public Employee {

 vector<Employee> group;

 int level;

public:

 void print();

};

void Manager::print()

{

 Employee::print();

 cout << "level = " << level << '\n';

 // further output ...

}

Redefine the print() method
of Employee

Implementation outside of the
class declaration

Call print()
method of the
base class

Carsten Gutwenger: Object-oriented Programming 20

Redefining Inherited Methods

 Given the following declarations:

 bill.print()

invokes the print() method of Employee

 adam.print()
invokes the redefined print() method of Manager
(whose implementation will then also invoke the print()
method of Employee)

Employee bill;

Manager adam;

Carsten Gutwenger: Object-oriented Programming 21

Derived Classes and Constructors

 Given that Employee has the following constructor:

 We define the constructor of Manager as follows:

 Order of construction:
1. the base class

2. the data members

3. the derived class itself (the code in the constructor)

 Objects are destroyed in the opposite order

Employee::Employee(string n, int s)

 : name(n), salary(s) { }

Manager::Manager(string n, int s, int l)

 : Employee(n,s), level(l) { }

Calls the constructor of Employee

Carsten Gutwenger: Object-oriented Programming 22

Class Hierarchies

 Classes can also inherit from several base classes
– We will not make use of this in this course!

Employee Employee

Manager Manager

Director Director

Secretary Secretary

Temporary Temporary

Consultant Consultant

TempSec TempSec

See example
hierarchy.cpp

Carsten Gutwenger: Object-oriented Programming 23

Preparations for next week

 Constructors, destructors, and assignment

 Pointers

 Virtual and purely virtual functions

