
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 5 • Winter 2011/12 • Nov 15

Carsten Gutwenger: Object-oriented Programming 2

File I/O

 C++ provides support for reading from and writing to files

 Reading: input file streams
– similar as reading from the console

– cin is an input stream

 Writing: output file streams
– similar as writing to the console

– cout is an output stream

Carsten Gutwenger: Object-oriented Programming 3

Example: Read integers from a file
#include <fstream>

#include <iostream>

using namespace std;

int main()

{

 ifstream is("input.txt");

 if(!is)

 cout << "Could not open file!" << endl;

 else {

 int x;

 while(is >> x)

 cout << x << "\n";

 is.close();

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 4

Example: Step-by-Step

 Includes functionality for working with file streams

 Create a file input stream variable is

 Try to open the file input.txt

 Check if file could be opened
– an input stream can automatically be converted to a bool

 If not, print an error message

#include <fstream>

 ifstream is("input.txt");

 if(!is)

 cout << "Could not open file!" << endl;

Carsten Gutwenger: Object-oriented Programming 5

Example: Step-by-Step

 Read integers as long as possible

 the value of is >> x is false if no integer could be read

 Finally, close the file
– You cannot read from the file anymore once it is closed!

– Files get automatically closed when the scope of the corresponding
stream variable ends

 while(is >> x)

 cout << x << "\n";

 is.close();

Carsten Gutwenger: Object-oriented Programming 6

Example: Writing to a file
#include <fstream>

#include <iostream>

using namespace std;

int main()

{

 ifstream is("input.txt");

 if(!is) cout << "Could not open file!" << endl;

 else {

 ofstream os("output.txt");

 if(!os) cout << "Could not open output file!" << endl;

 else {

 int x, i = 1;

 while(is >> x)

 os << "line " << i++ << ": " << x << "\n";

 }

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 7

Example: Step-by-Step

 Create a file output stream variable os

 Try to open the file output.txt and check for errors

 Write the integers read from input file to the output file
– We also count the line numbers and print them in front of the integers

 ofstream os("output.txt");

 if(!os) cout << "Could not open output file!" << endl;

 int x, i = 1;

 while(is >> x)

 os << "line " << i++ << ": " << x << "\n";

Carsten Gutwenger: Object-oriented Programming 8

Characters

 The data type char represents a single character

 Character literals have to be enclosed by single quotation
marks: 'c'

 A limited form of arithmetic is available for char
– e.g. '7' – '0' == 7 holds

 You can also think of an std::string as a vector of chars

 The usual stream I/O is supported, e.g.

 Caution: By default, cin skips whitespace characters!

 char x;

 cin >> x;

Carsten Gutwenger: Object-oriented Programming 9

Reading Lines and Single Characters

 So far we have problems when we want to read a whole line
into a string or a single character into a char

 The following methods help us (let is be an input stream):
– is.get(c) reads a single character into a char c

– std::getline(is,str) reads a whole line (including any
whitespace) into an std::string str

 Example:

 ifstream is("input.txt");

 char c; string str;

 getline(is,str); cout << str << endl; // print first line

 while(is.get(c)) // read remaining characters one by one

 cout << c << endl;

Carsten Gutwenger: Object-oriented Programming 10

Maps

 A map (also dictionary or association) stores pairs of keys and
values

 Using std:map requires #include <map>

 The following example declares a map of (string,int) pairs:

– the keys are of type std::string

– the values are of type int

 Keys are always unique within a map

 std::map<std::string,int> wordcounts;

Carsten Gutwenger: Object-oriented Programming 11

Accessing Values Through Keys

 The map allows us to access the values through the keys:

– wordcounts["hi"] gives access to the value stored for key "hi"

– We can use it like any other int variable (increase it in this case)

 If we access a yet unknown key, a new (key,value)-pair is
added, where the value is a default value (e.g. 0 for number
types). This can be a problem.

 ++wordcounts["hi"];

Carsten Gutwenger: Object-oriented Programming 12

Map Iterators

 Map iterators allow us to iterate over all elements in a map

 This works in the same way as for vectors:
 begin(), end(), ++ and * operators

 A map iterator it points to an std::pair, which has two
components: first and second

– key: (*it).first or it->first

– value: (*it).second or it->second

Carsten Gutwenger: Object-oriented Programming 13

Example: Histogram (compare Ex. 3.3)
#include <iostream>

#include <map>

using namespace std;

int main()

{

 map<int,int> count;

 while(true) {

 int x; cin >> x;

 if(x <= 0) break;

 ++count[x];

 }

 map<int,int>::iterator it;

 for(it = count.begin(); it != count.end(); ++it)

 cout << it->first << "\t" << it->second << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 14

Finding in Maps

 We can use m.find(key) to check whether a given key
exists in a map m:

– If the key is in the map, find returns an iterator pointing to the
corresponding (key,value)-pair

– Otherwise, find returns the end() iterator of the map

 Generally, accessing elements in a map (using the []-operator
or the find method) is very fast (much faster than iterating
over all elements!)

Carsten Gutwenger: Object-oriented Programming 15

Type Definitions

 The names of data types we use in our programs can become
quite long, e.g. std::vector<string>::iterator

 C++ allows us to give types new names, e.g.

 The general form of a type definition is:

 Type definitions follow the same scope rules as variables

 Choose good names for data types to make your program
easy to read and understand!

typedef std::vector<string>::iterator str_iterator;

typedef data-type new-name;

Carsten Gutwenger: Object-oriented Programming 16

Constants

 Variables that shall never be changed can be declared as
constants:

 Constants
– must be initialized when they are declared

– cannot be changed later:

 You can declare constants of any type

 Prefer constants over literals
– this makes your program more readable and easier to modify

 const int months_in_year = 12;

months_in_year = 20; // error

 // cannot assign to a constant!

Carsten Gutwenger: Object-oriented Programming 17

Types of Integers

 C++ provides different flavors of integers
– They can be signed or unsigned

– They can have different sizes, thus allowing a smaller or larger range of
numbers that can be represented

 Signed or unsigned:
– a signed int can store positive and negative values

(this is the default for int, so we can omit the signed keyword)

– an unsigned int can only store non-negative values

 Different sizes:
– an int is usually 4 bytes wide

– a short int uses less space, usually 2 bytes

– a long int or a long long int can represent even more values

– But: the actual size may vary from system to system!

Carsten Gutwenger: Object-oriented Programming 18

Types of Integers

 short, long, signed, and unsigned are called qualifiers

 They can be combined, e.g.

 Integers are signed by default

 Integer representation:
– signed integers use one bit for the sign

– a 2 bytes wide signed integer thus supports the following range of
values: -32,768 (= -215) to 32,767 (=215-1)
(these are 216 distinct values, including the 0)

– on the other hand, a 2 bytes wide unsigned integer:
0 to 65,535 (=216-1)

 unsigned short int a;

 signed long int b;

Carsten Gutwenger: Object-oriented Programming 19

Ranges of Values in Visual C++

Type Name Bytes Other Names Min. Value Max. Value

short 2 short int, signed short int –32,768 32,767

unsigned short 2 unsigned short int 0 65,535

int 4 signed –2,147,483,648 2,147,483,647

unsigned int 4 unsigned 0 4,294,967,295

long 4 long int, signed long int –2,147,483,648 2,147,483,647

unsigned long 4 unsigned long int 0 4,294,967,295

long long 8 –9,223,372,036,
854,775,808

9,223,372,036,
854,775,807

unsigned long long 8 0 18,446,744,073,
709,551,615

Carsten Gutwenger: Object-oriented Programming 20

The sizeof Operator

 The sizeof operator returns the size of a data type

 The following programs prints the various sizes:

#include <iostream>

using namespace std;

int main()

{

 cout << "short int: " << sizeof(short int) << "\n";

 cout << "int: " << sizeof(int) << "\n";

 cout << "long int: " << sizeof(long int) << "\n";

 cout << "long long int: " << sizeof(long long int) << "\n";

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 21

Preparations for next week

 Functions

 References

 The conditional operator (? :)

 Switch-Statements (switch… case…)

