
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 4 • Winter 2011/12 • Nov 8

Carsten Gutwenger: Object-oriented Programming 2

How to receive news about the lecture

 I’m posting news (like changes to the web page)
in my stream

 To get these news:
– (You must have a Google+ profile)

– First, add me to one of your circles
(there’s a link to my profile on the OOP web page)

– Then, I need to add you to a special circle of mine

– When I get notified and recognize you as one of my students, I will add
you automatically to this circle
(I will not get notified when you add me to the “just follow” circle)

– Send me an email (with a link to your profile) if I didn’t add you yet

Carsten Gutwenger: Object-oriented Programming 3

Floating Point Numbers

 There are two data-types for floating point numbers:
– float (single precision, 32-bit)

– double (double precision, 64-bit)

 Support the usual arithmetic operators (+, -, *, /)

 Floating point literals are written using a decimal point
(float is marked by an f or F at the end):
– 3.14, 1.0, 25., 3e-10 (type double)

– 3.14f, 1.0f, 25.f, 3e-10f (type float)

 Scientific notation (with exponent e or E):

– 3e-10, 5.67e5 (type double)

– 3e-10f, 5.67e5f (type float)

– Example: 5.67e5 ≙ 5.67 105

 Caution: The literal 1 is of type int!

Carsten Gutwenger: Object-oriented Programming 4

Printing and reading floating point numbers

 Similar as integers:
– Use cout and the output operator << for printing.

– Use cin in the input operator >> for reading.

 Special manipulators
– fixed: prints floating point numbers always in fixed-point notation

– scientific: prints floating point numbers always in scientific notation

– switch back to default behavior:
resetiosflags(ios_base::fixed) or
resetiosflags(ios_base::scientific)

 Precisions of output: setprecision(n)

– default: n specifies maximum number of meaningful digits to display
(before and after decimal point)

– fixed or scientific: display exactly n digits after decimal point (adds trailing
zeros if necessary)

Carsten Gutwenger: Object-oriented Programming 5

Example: Printing floating point numbers

double a = 3.1415926534;

double b = 2011.;

double c = 1.0e-10;

cout << right << setprecision(5);

cout << setw(11) << "default:";

cout << setw(15) << a <<

 setw(15) << b <<

 setw(15) << c << endl;

 default: 3.1416 2011 1e-010

 fixed: 3.14159 2011.00000 0.00000

scientific: 3.14159e+000 2.01100e+003 1.00000e-010

cout << setw(11) << "fixed:";

cout << fixed <<

 setw(15) << a <<

 setw(15) << b <<

 setw(15) << c << endl;

cout << setw(11) << "scientific:";

cout << scientific <<

 setw(15) << a <<

 setw(15) << b <<

 setw(15) << c << endl;

Output:

Carsten Gutwenger: Object-oriented Programming 6

Increment and Decrement

 Let a and b be two int variables.
The following statements are equivalent:

and

 These are the pre-increment and pre-decrement operators

 ++a;

 --b;

 a = a+1;

 b = b-1;

Carsten Gutwenger: Object-oriented Programming 7

Pre- vs. Post-

 Why pre- ?

 There are also post-increment and -decrement operators:

 What is the difference?

 These statements also return a value:
– pre: returns the value after incrementing/decrementing

– post: returns the old value before incrementing/decrementing

 a++;

 b--;

Carsten Gutwenger: Object-oriented Programming 8

Example: Pre vs. Post

Output:

pre: 6 8 | 6 8

post: 5 9 | 6 8

 int a = 5, b = 9;

 cout << "pre: ";

 cout << ++a << " " << --b << " | ";

 cout << a << " " << b << endl;

 a = 5; b = 9;

 cout << "post: ";

 cout << a++ << " " << b-- << " | ";

 cout << a << " " << b << endl;

 Prefer pre-variants (might be slightly faster)

 Use post-variants only if required

Carsten Gutwenger: Object-oriented Programming 9

Compound Assignment Operators

 We often apply an operator to a variable and then reassign
the value to this variable

 In this case we can use compound assignment operators:

where op { +, -, *, /, % }

 Examples:

 variable op= expression;

a += 2;

b *= 10;

c /= 3 - b;

a = a + 2;

b = b * 10;

c = c / (3 - b);

Carsten Gutwenger: Object-oriented Programming 10

Vectors

 Often we need a large supply of variables of the same type

 Suppose we have to read 4 integers and then print their sum:

 This quickly becomes cumbersome: imagine dozens of
variables …

 And we need to know the number of variables when we write
the program!

 The solution: Use a vector (std::vector), which groups a
number of variables of the same type together

 int a, b, c, d;

 cin >> a >> b >> c >> d;

 cout << a + b + c + d << endl;

Carsten Gutwenger: Object-oriented Programming 11

std::vector

 The data type std::vector is a container

 It holds a number of variables of the same type

 These variables are stored sequentially

Carsten Gutwenger: Object-oriented Programming 12

Example: Working with vectors
int main()

{

 int n; cout << "n = "; cin >> n;

 vector<int> v;

 for(int i = 0; i < n; ++i) {

 int x; cin >> x;

 v.push_back(x);

 }

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 v.at(i) *= 2;

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 cout << v[i] << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 13

Example: Step-by-Step

 We add a new element with value x at the end of the vector

 Vectors can grow automatically (no elements are overwritten)

 vector<int> v;

 v.push_back(x);

 We create a variable v of type vector<int>

 Initially v is empty

 Vectors are typed: all elements are of the same type (int in
our example)

Carsten Gutwenger: Object-oriented Programming 14

Example: Step-by-Step

 vector<int>::size_type

is a special type for indices of vectors

 v.size()

gives the current size of the vector (i.e. number of elements)

 v.at(i)
gives us access to the element stored in the vector at position i

 We can use v.at(i) like any variable (assign value, use in
expressions,…)

 Valid positions are indices between 0 and v.size()-1; any
other position results in a runtime error

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 v.at(i) *= 2;

Carsten Gutwenger: Object-oriented Programming 15

Example: Step-by-Step

 We can also access an element with the array-operator: v[i]

 Similar as v.at(i), but does not check if we access a legal
position

 Warning: Trying to access illegal positions in a vector is a very
common cause of errors!

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 cout << v[i] << endl;

Carsten Gutwenger: Object-oriented Programming 16

Example: Fibonacci numbers with vectors
int main()

{

 cout << "n = ";

 vector<int>::size_type n; cin >> n;

 if(n >= 2) {

 vector<int> fib(n+1);

 fib.at(0) = 0;

 fib.at(1) = 1;

 for(vector<int>::size_type i = 2; i <= n; ++i)

 fib.at(i) = fib.at(i-1) + fib.at(i-2);

 for(vector<int>::size_type i = 0; i <= n; ++i)

 cout << "F_" << i << " = " << fib.at(i) << endl;

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 17

Containers and Iterators

 The standard C++ library contains
– different container classes (e.g. std::vector and std::list),

each with its own advantages and disadvantages

– algorithms working on containers, e.g. sorting and searching

 Link between containers and algorithms: iterators
– an iterator points to an element in a container

– allow us to iterate over the elements in the container

– every container class has its own iterator type

 Important operations on iterators
– ++it advance iterator to the next element

– *it obtain the element to which iterator it points

– comparison of iterators with == and !=

Carsten Gutwenger: Object-oriented Programming 18

Example: Sorting a vector

#include <iostream>

#include <iomanip>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

 vector<int> v(25);

 for(int i = 0; i < 25; ++i)

 v[i] = rand() % 1000;

 sort(v.begin(), v.end());

 for(vector<int>::iterator it = v.begin(); it != v.end(); ++it)

 cout << setw(3) << *it << endl;

 return 0;

}

Returns a random number

Carsten Gutwenger: Object-oriented Programming 19

Example: Step-by-Step

 Gives us access to (all) the algorithms in the C++ standard library

 See: http://www.cplusplus.com/reference/algorithm/

 Sorts the range between v.begin() and v.end() in
ascending order

 begin() returns an iterator pointing to the first element

 end() returns an iterator pointing to one-past-the-last element

#include <algorithm>

 sort(v.begin(), v.end());

http://www.cplusplus.com/reference/algorithm/
http://www.cplusplus.com/reference/algorithm/

Carsten Gutwenger: Object-oriented Programming 20

Example: Step-by-Step

 vector<int>::iterator
is the type of an iterator for vectors

 it = v.begin()

We start with the first element

 it != v.end()
We continue until we have visited all elements

 ++it advances the iterator by one (goes to the next element)

 *it returns the value (int) of the element to which it
points

 for(vector<int>::iterator it = v.begin(); it != v.end(); ++it)

 cout << setw(3) << *it << endl;

Carsten Gutwenger: Object-oriented Programming 21

Scope and Lifetime of Variables

 Recall:
– After if, while, for, only one statement is executed conditionally.

– If we want to execute more statements conditionally, we need to form
a compound statement using { and }.

– Everything between a { and a matching } is called a block.

 The scope of a variable is the block in which it is declared.

 A variable exists (in particular memory is allocated for the
variable) only in its scope.

Carsten Gutwenger: Object-oriented Programming 22

Example for blocks and scope

 This code is wrong!

 When we want to output a, the variable does not exist
anymore!

int main()

{

 {

 int a = 1;

 }

 std::cout << a;

 return 0;

}

Scope of variable a

Carsten Gutwenger: Object-oriented Programming 23

Nested Scope and Hidden Variables

 When we declare a variable inside a block using the same
name as a variable declared outside this block, the new
variable hides the old one.

int main()

{

 int a = 40;

 {

 int a = 10;

 cout << a << endl;

 }

 cout << a << endl;

 return 0;

}

10

40
Output:

Carsten Gutwenger: Object-oriented Programming 24

Nested Scope and Hidden Variables

int main()

{

 int a = 40;

 {

 int a = 10;

 cout << a << endl;

 }

 cout << a << endl;

 return 0;

}

 variable a is defined in the
scope of the main()-function

 variable a is defined in a
local scope

 variable a hides variable a

 variable a still exists and has
a value

Carsten Gutwenger: Object-oriented Programming 25

Scope and for-loops

 Recall the translation of for-loops to while-loops.

 Every for-loop statement implicitly creates a block around it

 Therefore, any variable declared in a for-statement cannot be
used outside the loop!

 for(int i = 0; i < 10; ++i)

 cout << i << endl;

 cout << 2*i << endl;

Error: variable i is not declared!

Carsten Gutwenger: Object-oriented Programming 26

Example with vectors

 Why doesn’t the compiler complain about multiple definitions
of variable i here?

 for(int i = 0; i < n; ++i) {

 int x; cin >> x;

 v.push_back(x);

 }

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 v.at(i) *= 2;

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 cout << v[i] << endl;

Carsten Gutwenger: Object-oriented Programming 27

Preparations for next week

 File I/O and characters

 Maps (data type std::map)

 Type definitions (typedef)

 Constants

 Types of integers and the sizeof operator

