
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 3 • Winter 2011/12 • Oct 25

Carsten Gutwenger: Object-oriented Programming 2

Visual C++: Problems and Solutions

 New section on web page (scroll down)

 Some typical problems we experienced with VC++ and
solutions to fix them

 Will be extended if necessary

Carsten Gutwenger: Object-oriented Programming 3

Loops Continued

 do-while-loops: Similar as while-loops, but the condition is
evaluated after each iteration.

 The general form is:

 statement is executed before condition is evaluated.

 If condition evaluates to false, the loop is terminated.

 statement is executed at least once!

 do
 statement;
 while (condition);

Carsten Gutwenger: Object-oriented Programming 4

Example: Sum up numbers until 0 is entered

#include <iostream>

using namespace std;

int main() {

 int number, sum = 0;

 do {

 cin >> number;

 sum = sum + number;

 } while (number != 0);

 cout << "sum = " << sum << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 5

A typical pattern for while-loops

 We often use while-loops of the following form:

 There is a special syntax for writing such kinds of while-loops!

 int counter = 0;

 while (counter < n) {

 //

 // do something

 //

 counter = counter + 1;

 }

Initialization

Loop-condition

Iteration

Carsten Gutwenger: Object-oriented Programming 6

for-Loops

 The general form is:

 Semantics:

1.First init-statement is executed (only once!)

2.Then condition is evaluated: false  terminate loop

3.Then body-statement is executed.

4.Then iter-statement is executed.

5.Go to step 2.

 for (init-statement; condition; iter-statement)
 body-statement;

Carsten Gutwenger: Object-oriented Programming 7

Example: Print first n square numbers

 int n = 10; /* for example */

 for (int i = 1; i <= n; i = i + 1)

 cout << i * i << endl;

 int n = 10; /* for example */

 int i = 1;

 while (i <= n) {

 cout << i * i << endl;

 i = i + 1;

 }

This is equivalent to:

Carsten Gutwenger: Object-oriented Programming 8

Transforming for-loops into while-loops

for(init-stat; cond; iter-stat)

{

 body-statement-1;

 …

 body-statement-n;

}

{

 init-stat;

 while(cond)

 {

 body-statement-1;

 …

 body-statement-n;

 iter-stat;

 }

}

We will understand the block around the while-statement next
time when discussing scope and lifetime of variables!

Carsten Gutwenger: Object-oriented Programming 9

The break-Statement

 Used to terminate a loop at some place in the body of the loop.

 Syntax:

 Semantics: Terminates the nearest enclosing while-, do-while-,
or for-loop statement.

 Example:

 break;

 for (int i = 1; i <= 100; i = i + 1) {

 int x; cin >> x;

 if (x == 0)

 break;

 cout << 100 / x << endl;

 }

Carsten Gutwenger: Object-oriented Programming 10

The continue-Statement

 Used to terminate an iteration of a loop.

 Syntax:

 Semantics: Terminates the current iteration of the nearest
enclosing while-, do-while-, or for-loop statement.

 Example:

 continue;

 for (int i = 1; i <= 100; i = i + 1) {

 int x; cin >> x;

 if (x == 0)

 continue;

 cout << 100 / x << endl;

 }

Carsten Gutwenger: Object-oriented Programming 11

Strings

 Strings (texts) can be stored in variables of type std::string.

 std::string is part of the C++ standard library, not the C++
language itself.

 We have to include this additional functionality first:

 String literals have to be enclosed in quotation marks "…"

#include <string>

 std::string name;

 name = "Carsten";

Carsten Gutwenger: Object-oriented Programming 12

Using Strings

 We can use std::string almost like a built-in type:
– Initialization: std::string name = "Carsten"

– Comparing for equality with ==

– Assignment using =

– Concatenation using +

 Example:

 string name = "Gutwenger";

 string firstName = "Carsten";

 name = firstName + " " + name;

 cout << "The name is " << name << endl;

 if(name == "Carsten Gutwenger")

 cout << "That's me!" << endl;

Carsten Gutwenger: Object-oriented Programming 13

Warning

 Don’t compare string literals!

if ("abc" == "abc")

 cout << "Undefined if we get here!" << endl;

Carsten Gutwenger: Object-oriented Programming 14

Special Characters

 Within string literals, you can use the following special
characters:
– \n newline character

– \t tab stop character

– \" quotation mark

– \\ backslash character

 Example:

"This \"string\"\ngoes over two lines"

Carsten Gutwenger: Object-oriented Programming 15

Output formatting

 C++ supports various manipulators for nicely formatting
output.

 You need to include this special functionality:

 Manipulators are inserted into the output stream (with the
output operator <<) just as you print data.

 The following manipulators are useful for integers:
– setw(n): sets the number n of characters to be used as field width for

the next insert operation.

– left: output is left-aligned in the output field.

– right: output is right-aligned in the output field.

#include <iomanip>

Carsten Gutwenger: Object-oriented Programming 16

Example: Formatting Output

#include <iostream>

#include <iomanip>

using namespace std;

int main() {

 int a = 7, b = 12345;

 cout << left;

 cout << setw(10) << a << "***" << endl;

 cout << setw(10) << b << "***" << endl;

 cout << right;

 cout << setw(10) << a << "***" << endl;

 cout << setw(10) << b << "***" << endl;

 return 0;

}

7 ***

12345 ***

 7***

 12345***

Output:

10 characters

Carsten Gutwenger: Object-oriented Programming 17

The bool Data Type

 Variables of type bool store one of two possible values:
true and false

 Example:

 Operators for Boolean expressions:
– logical AND: &&

– logical OR: ||

– logical NOT: !

 Example:

bool found = true;

bool isGreater = (a > b); // a and b are variables

!found || (a > b && a < 2*b)

Carsten Gutwenger: Object-oriented Programming 18

Printing bool values

 By default, bool values are printed as 0 or 1 (corresponding to
false or true).

 You can change this behavior with manipulators!
– boolalpha: print false or true

– noboolalpha: print 0 or 1

 Example:

 bool b = true;

 cout << b << endl;

 cout << boolalpha << b << endl;

 cout << noboolalpha << b << endl;

Output:

1

true

1

Carsten Gutwenger: Object-oriented Programming 19

Preparations for next week

 Floating-point numbers (float, double)

 Increment and Decrement (e.g. ++, += operators)

 Scope and lifetime of variables

 C++-Vectors (std::vector)

