
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 2 • Winter 2011/12 • Oct 18

Carsten Gutwenger: Object-oriented Programming 2

Lessons learned last time…

 Create a project in Visual Studio with the Win32 Console
Application template.

 Don’t forget to check Empty Project.

 On the pool computers:
Create the project in the folder R:\Visual Studio…
rather than the share //retina…
(this avoids mind-boggling warnings when starting the
program).

 Add a source-code file with AddNew Item in the Source
Files’ context menu.

 Build the project with Build Solution.

 Run the program with Start without Debugging.

Carsten Gutwenger: Object-oriented Programming 3

A closer look at “Hello World”

#include <iostream>

int main()

{

 std::cout << "Hello World!" << std::endl;

 return 0;

}

Add functionality for input/output
 std::cout, std::endl

Main entry point of program

main-function
returns integer

Statements end with a semicolon

Carsten Gutwenger: Object-oriented Programming 4

What means std:: ?

 Consider:
std::cout << "Hello World!" << std::endl;

 std is a namespace (for the whole C++ standard library).

 Namespaces group objects (functions, classes etc.) for
avoiding name clashes.

 :: selects an object from the namespace.

 We can avoid the need to write std:: with the using
directive:

using namespace std;

cout << "Hello World!" << endl;

Carsten Gutwenger: Object-oriented Programming 5

“Hello World” with using directive

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello World!" << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 6

Using Variables

 We declare a variable x of type int. A variable stores a value
(of a particular type, here int).

 We assign the value 7 to x (“x gets the value 7”).

 We print the value of x, followed by the string " times 2
is ", followed by the value of the expression x*2.

#include <iostream>

using namespace std;

int main() {

 int x;

 x = 7;

 cout << x << " times 2 is " << x*2 << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 7

Variables

 Variables store values for later use.

 Each variable is identified by a variable name and has a type.

 A variable must be declared before it can be used. Such a
declaration has the following form:

 type can be any C++ type (e.g. int, bool, std::string).

 A variable name
– must start with a letter, followed by letters, digits, or underscores;

– C++ keywords (e.g. int, return) are not allowed;

– names are case-sensitive:
result, Result and RESULT are three different names!

 type name;

 Example:

 int x;

Carsten Gutwenger: Object-oriented Programming 8

Assignments

 For storing a value in a variable, you have to assign the value
to the variable:

From this point on, the variable will have the value 7.

 General form of an assignment:

 On the right hand side of the assignment can be a compound
expression, e.g.

The value of the expression is calculated and assigned to x.

 Caution:
 = is the assignment operator, never an equality test!

 variable = expression;

 x = (7 + 2) * 3;

 x = 7;

Carsten Gutwenger: Object-oriented Programming 9

Printing Data

 Printing text to the console window is done using the
std::cout object.

 Everything that shall be printed is send to std::cout using the
output operator << .
– Write text as string literal " times 2 is " .

– Variables and expressions are evaluated, and their value is printed.

 Example:

prints (if x has value 7):

std::cout << x << " times 2 is " << x * 2;

7 times 2 is 14

Carsten Gutwenger: Object-oriented Programming 10

Printing Data

 You can end a line with std::endl (“end of line”).
(We assume using namespace std; is used.)

 This can also be combined:

cout << "This is the first line." << endl;

cout << "And this the second one." << endl;

cout << "This is the first line." << endl

 << "And this the second one." << endl;

Carsten Gutwenger: Object-oriented Programming 11

Reading Data

 Reading data from the console is done using the
input object std::cin and the input operator >> .

Carsten Gutwenger: Object-oriented Programming 12

Reading Data

 We declare a variable x of type int.

 We print a message.

 We read a number from the console and store it in x.

 We print something useful.

#include <iostream>

using namespace std;

int main() {

 int x;

 cout << " Enter a number: ";

 cin >> x;

 cout << x << " squared is " << x*x << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 13

Operations on Integers

 ints can be read with std::cin and printed with
std::cout.

 Arithmetic operators:
– Addition: +

– Subtraction: -

– Multiplication: *

– Division: /

– Modulo (remainder after division): %

 As usual: Multiplication, division, modulus precede over
addition and subtraction

 Use parentheses to explicitly specify precedence.

 Integer division is always rounding down:
19 / 10 is 1

Carsten Gutwenger: Object-oriented Programming 14

Conditional Statements

 The if statement allows the program to make decisions.

 That means that some part of the program is executed
conditionally, depending on some boolean expression.

 The general form of an if statement is:

 statement is executed if condition is true; otherwise,
statement is not executed.

 Example:

 if (condition)
 statement;

 if (x > 0)

 cout << x << " is positive." << endl;

Carsten Gutwenger: Object-oriented Programming 15

A typical source of errors…

 if refers only to the immediately following statement!

 What happens here?

 int money;

 bool inDebt;

 /* money is assigned some value here */

 if (money < 0)

 inDebt = true;

 cout << " Your account is in debt!" << endl;

 The message “Your account is in debt!” is printed in any case!

Carsten Gutwenger: Object-oriented Programming 16

Compound Statements

 How to solve this problem? Use a compound statement!

 int money;

 bool inDebt;

 /* money is assigned some value here */

 if (money < 0) {

 inDebt = true;

 cout << " Your account is in debt!" << endl;

 }

 Multiple statements can be grouped with curly braces: { }

 We say that we have to make a new block.

Carsten Gutwenger: Object-oriented Programming 17

Relational Operators

 The following operators can be used to form conditions:
– Less than or equal: <=

– Less than: <

– Greater than or equal to: >=

– Greater than: >

– Equal: ==

– Not equal: !=

 You can compare variables with variables, or even expressions
with expressions.

 Beware of the difference between equality (==) and
assignment (=) !

 if (2*a+b > c*c-4)

 ...

Carsten Gutwenger: Object-oriented Programming 18

if-else Statements

 The extended form of the if statement is:

 statement1 is executed if condition is true, statement2 is
executed if condition is false.

 Example:

 if (condition)
 statement1;
 else
 statement2;

 if ((a % 2) == 0)

 cout << a << " is even." << endl;

 else

 cout << a << " is odd." << endl;

Carsten Gutwenger: Object-oriented Programming 19

Dangling else

 Typical problem: To which if does an else belong?

 Rule: else always belongs to the closest preceding if.

 Make clear what you mean using a compound statement:

if (a == 1)

 if (b == 1)

 a = 20;

else

 b = 20;

if (a == 1)

 if (b == 1)

 a = 20;

 else

 b = 20;

if (a == 1) {

 if (b == 1)

 a = 20;

} else

 b = 20;

Carsten Gutwenger: Object-oriented Programming 20

while-Loops

 Loops are used for repeating a statement (or a block) several
times. We first consider while-loops.

 The general form of a while statement is:

 statement is executed again and again as long as condition is
true.

 condition is formed in the same way as for if statements.

 If condition is already false from the start, statement is never
executed.

 while (condition)
 statement;

Carsten Gutwenger: Object-oriented Programming 21

Example: Printing the numbers from 1 to 100

#include <iostream>

using namespace std;

int main() {

 int counter = 1;

 while (counter <= 100) {

 cout << counter << endl;

 counter = counter + 1;

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 22

Preparations for next week

 Read about loops

– do-while-loops

– for-loops

– break and continue

 C++-Strings (class std::string)

