
Diplomarbeit

Solving
Map Labeling Problems
by Means of
Evolution Strategies

Mike Preuß

yS S

Diplomarbeit
am Fachbereich Informatik
der Universität Dortmund

19. Februar 1998

Betreuer:

Prof. Dr.-Ing. Hans-Paul Schwefel
Dipl.-Inform. Frank Kursawe

Contents

1 The Problem: Map Labeling 1

1.1 A Step into Cartography . 1

1.1.1 Electronic Cartography: Maps on Demand 1

1.1.2 Foundations of Map Design . 3

1.1.3 Basics of Map Label Arrangement 6

1.2 Algorithms by Others . 8

1.2.1 The Energy Minimization Algorithm of Stephen Hirsch 9

1.2.2 The 2-SAT Algorithm by Frank Wagner and Alexander Wolff 9

1.2.3 The Simulated Annealing Algorithm of Jon Christensen, Joe
Marks and Stuart Shieber . 11

1.3 Marking a Destination Point . 11

2 Modeling the Problem 13

2.1 An algebraic Model for Quality Judgement 13

2.1.1 Basic Entities and Measurements 14

2.1.2 Testing Different Map Requirements 16

2.2 A Composed Fitness Function . 19

2.3 Estimation of Problem Complexity . 20

3 Getting the Problem Solved 22

3.1 Evolutionary Algorithm Primer . 22

3.2 Preparing a Suitable Evolution Strategy 24

3.2.1 The coordinate system used for label positioning 25

I

3.2.2 Choosing a subset of different ES techniques 27

3.3 The Map Labeling Tool . 28

3.3.1 Preliminaries . 29

3.3.2 Fine-grained Design . 30

3.3.3 Implementation . 37

4 Optimizing Maps 39

4.1 A Typical Outcome . 40

4.2 On Search for Good Parameters . 43

4.2.1 Recombination Type . 44

4.2.2 � . 45

4.2.3
�

and � . 47

4.2.4 � . 49

4.3 Adjusting Fitness Weights and Minimum Distances 50

4.3.1 Recovering Lost Labels . 51

4.3.2 Balance of Positioning and Overlap Avoidance 52

4.4 Investigating Map Complexity . 53

5 Evolving the Algorithm 58

5.1 Variation of the Mutation Rate . 58

5.2 Incremental Map Assembly . 59

6 Conclusion 65

6.1 Where to go from here . 66

II

Chapter 1

The Problem: Map Labeling

1.1 A Step into Cartography

During the last years the computer science has found its way into the business of
cartography. It may be surprising that it was common to do the whole design and
layout process by hand up to the 80ies. The reason for this may have been the
cartographers’ attitude towards their own profession, seeing themselves in a field
between crafts and art [14] on the one hand, and the complexity of some subtasks
of map creation on the other hand.

Meanwhile, computer hardware has been vastly improved, and the financial incen-
tive grew to perform some of the most time consuming tasks (an upper bound of
three days is estimated in [26]) of these highly qualified (and most certainly ade-
quately payed) specialists electronically. Some problems, however, turned out to
be very hard for automation. One of these is the Map Labeling Problem1, which is
the task to arrange some amount of textual information (each belonging to a certain
map feature) on the map. Another one is the problem of automatic generalization
that has to be done if the data of a map is used to create a map on a smaller scale.

While the cartographers try to integrate the new technology into their work, it takes
of course effect on cartography itself. That ought to be discussed a bit more in
detail.

1.1.1 Electronic Cartography: Maps on Demand

From the viewpoint of a computer scientist a map can be reduced to a background
picture with some points, lines and labels painted onto it. These foreground draw-
ings represent additional data taken from a cartographic database which includes

1The string ’Map Labeling Problem’ will be abbreviated as MLP later on.

2

the location and the attributes of every feature. The databases, completed by a
collection of spatial operators, are nowadays referred to as GIS2 and are the base
technology for computer aided mapping. Actually, maps generated with a GIS soft-
ware may consist exactly of these two components: a digitized picture (for example
a satellite image) and a subset of data of a cartographic database [6]. On the other
hand, it is also possible to store the needed graphical description of the surface in
the GIS, too. That enables the generation of freely scaled maps on demand.

In my opinion, the use of electronic map generation systems has at least two im-
portant effects on cartography:

� A new degree of globalization is reached: national authorities for standard-
ization – for example the US Geological Survey or the Arbeitsgemeinschaft der
Vermessungsverwaltungen3 in Germany – are collecting map feature data in
their databases. Exchange and check against the other databases is now pos-
sible, standardized portioning of maps is no more needed. Instant access –
via Internet, for example – can be granted to a vast and growing number of
people.

� The manufacturing process of a map – even if it is printed and sold in the
usual way – will be accelerated by far. Everything that can be done faster by
software than by hand will be done if great quality losses can be avoided. As
there is no reason why computers should not become faster in the future, this
process is limited only by the extent of tasks that can not be done automati-
cally (remember Amdahl’s Law4).

The speedup of map making renders great possibilities but may also have disad-
vantages. Eduard Imhof, a famous cartographer from Switzerland who had great
influence on the development of map design in the 60ies and 70ies, already stated
in 1962 [13]:

”Maschinen und Geräte sind höchst nützlich und wünschenswert, soweit sie
die Kartenerstellung beschleunigen und verbilligen, doch sind sie von sehr
zweifelhaftem Werte, wenn sie nicht auch die Qualität der Karten mindestens
zu bewahren suchen.” 5

2Geographic Information System
3The AdV establishes a national database named ATKIS: Amtliches Topographisch-Karto-

graphisches Informationssystem.
4The law was invented in [1] and lays down an upper bound for the maximal speedup that can be

reached by parallelization with respect to the parts of an algorithm that have to be computed serially.
Transferred to automatization of map-making within here, the computable tasks can be assumed to
be processed almost immediately, the others remain to be done by hand as before. So the amount of
time used is (in theory) only limited by the interactive parts.

5Machines and devices are very useful and desirable, as far as they speedup and cheapen map
manufacturing, but their value is very dubious if they do not strive for preservation of map quality.

1.1. A STEP INTO CARTOGRAPHY 3

Nowadays, cartography develops with the help of new algorithms fulfilling tasks
that had to be done manually before. Therefore, cartographers and computer sci-
entists have to co-operate and are both responsible for the preservation of map
quality.

1.1.2 Foundations of Map Design

What do we have to know about map creation before concentrating on the labeling
itself? It should be useful to have a look at the different types of maps presented to
us in everyday life to find distinctions and similarities between them.

� At first, there are topographical maps which usually provide the main part
of each atlas and are used as the background of more specialized maps, for
example weather-charts. They show the land coverage and man-made items
that have some areal dimension like towns and roads. Therefore, road maps
can be put in this class, too.

� Thematic maps have a more specific scope on any kind of spatial information
as the weather condition, density of population or just country borders. They
are often shown in newspapers or on television to elucidate military conflicts
or economical differences between countries.

� Technical maps are much more abstract than a topographic map. Although
they have an underlying spatial structure, they are used for position identi-
fication of the different measurements only. The main emphasis lies on the
presentation of the acquired data. There is of course no clear distinction be-
tween technical and thematic maps, even topographic maps can be arranged
into the group of thematic maps as a subset. The classification mostly refers
to the intended map use. However, technical maps often fulfill conditions
maps of other types do not:

– There is only one kind of textual information: data boxes with equal
width and height, they are usually placed with one edge on the point
where the data was acquired.

– The background image is being ignored while placing the labels; there
are no map features apart from other labels that have to be preserved.

� Astronomical maps may look quite similar to topographical maps, depending
on the area of the sky that is being mapped. However, there are two notable
differences:

1. The geometric object that is projected onto a plane is no sphere but an al-
most unbounded three-dimensional space that is looked at from within.
That means there can be two or more objects at the same position on the
map although they have a distance of many billion miles in reality.

4

2. There are almost no line features, only point or area objects.

The contents of a map does not only depend on the map type or the area that is
being mapped, but on the chosen scale as well. Especially people with a driving
license will know this effect from road maps. Therefore, I want to demonstrate the
relation of scale to generalization by a close look on topographic maps. To avoid a
detailed classification of scales (which can be found in any textbook on cartography,
for example [34]), I classify the maps according to their intended use:

� Scales of about 1 : 5,000 upto 1 : 75,000 are used for more or less exact maps
of a very small area. Objects measuring only a square meter can be shown
on the map, size and shape do not have to be adjusted. Maps of this type
are used to lay down the borders of landed property or to back up municipal
survey and construction projects.

� Scales of about 1 : 100,000 upto 1 : 800,000 are used to produce road maps (for
example). They include one or more towns and the rural area lying inbetween
them. Generalization is difficult at these scales because there is often a lack of
space to include all the contents of larger scale maps of the same area. Some
are simply so small that they could not be perceived if they would be put in at
their original size. A road would result in a very long, but very thin line, too
thin to print in many cases. The cartographer has to decide on the objects that
should be in the map and has to resolve conflicts if two important features
share the same place. The chosen objects have to be adjusted in size and
shape now: they must be visible on the map but should be distinguishable
from others (that limits their size) and besides they have to look similar to
their real counterparts.

� Scales equal to 1 : 1 million or smaller are mainly used for atlas maps. They
show wide areas of the earth, from countries upto whole continents. At this
small scale no details of the ground coverage can be perceived, the shape of
every item included is freely adjusted to correspond with the others and all
features that do not have major importance are totally left out.

As stated before, the problem of generalization is very difficult for automated map
design systems and is not generally solved as two my knowledge.

Another important attribute of a map, some rules for the shape and positioning
of textual information are derived from, is the projection that has been used to
generate it. In most cases the mapped area is a segment of a sphere in reality6.

At this point, we encounter an implicit difficulty of cartography in general: an
excact plane map of a sphere is not possible, there are always losses of accuracy.

6The earth is not excactly a sphere, but that may serve as a sufficient model for most applications.

1.1. A STEP INTO CARTOGRAPHY 5

Only one of three properties can be preserved without distortion: either angles,
length proportions or area sizes. Hence, the projection of a map is chosen with
respect to its purpose. If this turns out to be the navigation of a ship or airplane,
the angles must match the original ones. On road maps, length ratios should be
undistorted, and atlas maps showing countries or continents should permit area
comparisons and therefore preserve area proportions.

The history of projections reaches back to Ptolemaios and most probably Archimedes,
always striving for better compromises for the three contrary aims stated, and
nowadays, there are hundreds of different methods7. Here is an example showing
the effect of two different projections on maps of Arabia and Greenland (figure 1.1).

Figure 1.1: The effect of two projections (a, b) on maps of Green-
land and Arabia. Area sizes are preserved correctly in
(b), whereas (a) is a standard Mercator projection. Taken
from [34], by permission.

With respect to map labeling, a rule has to be observed that corresponds directly to
the type of projection chosen: Labels have to be arranged in parallel to the degrees
of latitude that may have the shape of a line for cylindric projections or the one of
an ellipse for conic or azimuthal projections. See [13] for details.

7A few of them that have some practical importance can be found in [11], with their mathematical
background elucidated.

6

It is of course easier to deal with rectangular labels only than with non-specified
geometric figures, but there is no restriction that hinders the application of the same
methods to them. So it may be enough to solve map labeling problems with axis-
parallel rectangles at first, leaving the more general task for further research.

1.1.3 Basics of Map Label Arrangement

As the section 1.1.1 showed, it is important to have some knowledge about carto-
graphic labeling preferences before starting to label any map. An article that is cited
in every publication that deals with automated map labeling is [13] again. Imhof
summarizes the rules that have to be observed during name placement and later
work suggests only minor changes. He states six general requirements for a good
label placement I reflect here in a summarized form:

� Readability: chosen typeface, letter size and color on the one hand and posi-
tioning of the text on the other should support perception.

� Definite attachment: it should be clear which object belongs to a text.

� Avoidance of overlaps: the other map elements should not be covered by a
label.

� Spatial integration: the label, looked on as a graphical shape without textual
information, should help to clarify the spatial context of the designated object.

� Site Identification: the chosen font should be a hint to the type of the labeled
object.

� Overall aesthetics: the labels should not be spread over the map symetrically,
but name clusters do also look disagreeable. This takes effect on generaliza-
tion as well as on the placement.

Cartographers arrange the named features in three groups (see [13]), ordered by
their topographical dimension:

point features: cities, summits, but also area features on small scales

linear features: rivers, streets, borders

area features: mountains, islands, countries, lakes

Whereas the notations for point and linear features are arranged aside the object,
they are written into the described object in case of area features (except for the case

1.1. A STEP INTO CARTOGRAPHY 7

the area feature is sized too small to place the label inside its boundaries; then, it is
treated like a point feature).

Depending on the length of a linear feature, it may be necessary to label it two or
more times what seems to evoke a higher degree of complexity on the labeling. On
the other hand, the label of a river or road can be easily moved outside an area
that is densely filled with other labels. The label of an area feature can be placed
nearly anywhere inside the feature. That can not be done with a point feature label,
it has to stay near its feature because otherwise the attachment of label and feature
can not be identified uniquely. Solving conflicts between many point feature labels
may therefore be much harder than dealing with conflicts of line or area features.
An algorithm that labels point features correctly can be expected to work on line
and area features, too. For that reason I concentrate on point features in this work.

Different authors evaluate the order of preferred point label positions and present
several possibilities. To begin with the most cited one, I refer to [13] once again:

Imhof expresses his opinion about good and bad placement solutions within a set
of merely fuzzy rules. The position that is to choose if the object is far-off other
map elements is on the right side of the site and raised a little bit (he does not state
how much this little bit is) against it. The label should not be aligned with the site
because that looks unfavourable. If other objects cover this best place, the label has
to be moved – eventually moved to another direction. At first it should be put to
the left side, then over the top and at last under the bottom. The latter distinction
is done because the bottom of a names skyline is much more regular than the top.
Few characters descend under the font baseline but many ascend above the height
of a ’n’ or ’o’ what is the standard height for lower case letters (see [20]).

In contrast to Imhofs viewpoint as a cartographer, Pinhas Yoeli searched for label-
ing rules that could be transferred directly into an algorithm (see [37]). Bounded by
technical restrictions8 he operated on a grid with each point feature exactly cover-
ing one square grid unit. The label has to be set to one of ten specified positions, the
first the most preferable. Two of these positions have been invented due to the fact
that centering of a label with an even number of letters is not possible relative to
the grid space of the feature (positions 7 and 8) which is always one and therefore
odd.

The last two positions are not strict but meet the condition that the label must be ad-
jacent to the feature. It can be moved along the top or the bottom of the designated
site, but its surrounding rectangle has to touch the one of the point feature.

Yoeli also designed positioning rules for large point features and areas, but as these
map items are not used in this work, I do not describe them in detail. Instead of
this, I would like to express my opinion about the relationship of his article to the
one of Imhof: The two priorization models are not equal but very similar. The

8He did not have access to another but a grid-oriented output device.

8

5

6

7

8

12

4 3

9

10

Figure 1.2: The priority order proposed by Pinhas Yoeli. The filled
boxes around the lowest circle mark the range of allowed
positions.

difference is that Yoeli has put the cartographic rules in concrete terms to be used
in a placement algorithm.9

The importance of Yoeli’s work is pointed out by Chyan Victor Wu and Barbara P.
Buttenfield in [36]. They put his priorization model in position of being the ances-
tor of many algorithms for automated label placement (for example [9]) and try to
answer the questions of suitability and practical importance of the model for auto-
mated map name placement. The road maps evaluated during this study do not
comply with Yoeli’s model but follow rules that seem to depend on the particular
publisher and the purpose the map had been designed for. Another reason for this
may be the absence of any distinction of different feature types in the model and
therefore the non-observance of the many rules for special cases that have been
proposed by Eduard Imhof. As a consequence, Wu and Buttenfield request an al-
gorithm that is able to realize special placement situations and reacts to them while
also taking the aesthetic balance into account.

1.2 Algorithms by Others

The idea of solving map labeling problems with an Evolutionary Algorithm has
been originated by Hans-Paul Schwefel as he encountered an article about the map
labeling algorithm by Alexander Wolff and Frank Wagner in a popular German
newspaper [26]. Therefore, I started my search for other methods in this field with
the diploma thesis of Alexander Wolff [35]. Following his references, I found a

9In my opinion there are no essential differences between Imhof’s fuzzy rules and Yoeli’s practical
priorization model, although some are stated in [36]. The original version of Imhofs paper ([13]) that
was printed in German does not allow the conclusion that

“Imhof prefers the position directly under the symbol rather than over the symbol.”

(cited from [36], page 11).

1.2. ALGORITHMS BY OTHERS 9

very good introductory paper [4], dealing with a comparison of many opimization
algorithms applicable to map labeling that has been published by a research group
from Harvard. Thereby they estimated the value of an own labeling method based
on Simulated Annealing – a technique that has much in common with Evolutionary
Algorithms – by a comparison with others.

From the many different approaches mentioned in the accessible publications I
chose three that seemed to be of particular importance for the development of the
desired labeling algorithm. They are presented in chronological order now.

1.2.1 The Energy Minimization Algorithm of Stephen Hirsch

The most striking thing about this method (it has been published in [9]) is the use
of a continuous placement model opposed to most other suggestions that prefer a
set of four or more possible positions for a label. Hirsch moves the names around a
point feature on a circle with a defined radius. New positions are computed using
a repulsion model that reminds of a simulation of equally charged particles. If a
label closes in the bounding rectangle or circle of any other object, a repulsive force
is induced, driving them into opposite directions. A label that is overlapped by
more than one other object moves into the direction that is given by the vectorial
addition of all conflicting objects (sites cannot be moved). After the label motion
has been computed, all label positions are changed at the same time. The system
is now hopefully moving into a state of minimal forces and thus minimal kinetic
energy, as it can be recognized to happen in nature.

This first overlap avoidance method is not always capable of leading a label out of
a conflict area. Especially areas of high feature density often bring up deadlocks;
each label has to cross the other one to get to an uncovered area. Therefore, a
second kind of movement is used from time to time: at once, the labels are put into
the position the computed directional vector is pointing to.

In consequence, the algorithm is a specialized version of a gradient search with
additional heuristics. Like other gradient search methods it is heavily in danger of
getting stuck in a local optimum.

1.2.2 The 2-SAT Algorithm by Frank Wagner and Alexander Wolff

Frank Wagner came across a labeling problem that had been formulated purely
mathematically. With Michael Formann he showed its

���
-hardness and devel-

oped a very fast approximation algorithm that has a time consumption of about�����
log

�	�
[32].

The prerequisites of this algorithm called A are:

10

accumulated forces

single forces

directions of

allowed movement

Figure 1.3: The forces resulting from conflicts (left) and the la-
bel moves allowed in the algorithm of Stephen Hirsch
(right).

� Each label is an axis parallel rectangle and has the same size as the others.

� The label is placed in one of four possible positions: one edge has to meet the
labeled feature.

� Cartographic preferences can not be taken into consideration, all four possible
positions must have equal scores.

Since the optimization is started without a default box size, it is the task of the
algorithm to find a valid labeling – there should be no overlap – with label mea-
surements increased as far as possible. A was found to guarantee a label size of at
least 50 percent of the optimum what proved to be useless for real world applica-
tions – the original labeling problem had been invented by the municipal authori-
ties of Munich who wanted to manufacture technical maps of their ground water
drillholes.

Therefore, Wagner developed algorithm B with the help of Alexander Wolff which
dealt with the problem of chosing two of three or four possible label positions by
use of a heuristic. The remaining task is equivalent to a 2-SAT logical decision prob-
lem that can be solved efficiently. It has been documented ([35] and [33]) that B is
able to find a labeling close to the optimum if all of the constraints stated above
are met. But, in my opinion, it will be difficult to apply this method to more com-
plicated real world problems with labels of different sizes and more cartographic
requirements.

The algorithm is reachable via Internet at the URL

http://www.inf.tu-berlin.de/map-labeling/

1.3. MARKING A DESTINATION POINT 11

and may be used for comparison with other labeling tools because it provides pos-
sibilities of data exchange.

1.2.3 The Simulated Annealing Algorithm of Jon Christensen, Joe Marks
and Stuart Shieber

Another very different approach has been proposed by an American team of re-
searchers who tested the suitability of the simulated annealing algorithm for the
MLP (first publication [3], presented to the public with [4]). They did so after prov-
ing that the simple variants and also many of the much more complicated problem
instances of map labeling that can be generated by increasing the positionings’ de-
gree of freedom are not solvable efficiently if

���� � �
(see [18]). The proof even

holds if the discrete set of positions that can be used for one label is extended to an
unbounded number (as it has been used by Hirsch in [9]).10

A great advantage of the simulated annealing method is the ability to jump out
of a local minimum. This is a property it shares with all the other stochastic opti-
mization techniques11. The quality of a generated solution is only determined by
evaluating a fitness function that returns a numerical value. So, if the aims or the
priorities of these aims change, it suffices to adapt the fitness function. This has
already been done by the group. In the meantime, line and area features have been
added to the maps and are handled by combining the values of eleven different
measures. These are added after multiplication with a particular weight factor that
is very high for overlap measures and lower for positioning ratings [5].

The placement of the point feature labels is done by chosing one of a set of nineteen
valid positions, each one tagged with a penalty value from the interval � �����
	 . A new
labeling is conceived by changing only one label position and evaluating the fitness
function. If its value was improved, the labeling is accepted, otherwise it is rejected
with a probability that is growing during the optimization run.

In my opinion, this algorithm is the only one of the three presented here that can
be integrated into a computer system that is used to design and manufacture real
world maps.

1.3 Marking a Destination Point

Since the basic cartographic knowledge that has to be taken into consideration and
the algorithmic approaches that have already been tried to solve Map Labeling
Problems have been presented, it is about time to summarize the aims of this thesis
now.

10This is of importance for the modeling used in this thesis, too.
11Evolutionary Algorithms also belong to this category.

12

The most important task is to decide on the practicability of a method based on an
Evolutionary Algorithm for solving a MLP and its benefit for use in map manufac-
turing later on. This method has to be:

general: Although the problem has to be restricted so it can be coped with in a
limited amount of time, the designed algorithm itself must not be bound to
these restrictions.

extensible: It must be possible to integrate further rules derived from cartographic
experience into the algorithm without changing its internal structure.

However, some prerequisites have to be made to limit the amount of work that
arises from the manifold possibilities of different map types and map elements.

� No other than point features are used. Line and area features have to be
added if the map labeling algorithm has turned out to be practicable. The
evolution of the simulated annealing algorithm described above (see 1.2.3)
from [4] to [5] proves this to be possible.

� No site can have more than one label. There are of course features that are
usually shown with more than one text field. For example, the altitude and
the name of a mountain are both put into a map, the former with higher pri-
ority. This must be considered during algorithm design but does not have to
be implemented.

� Used text sizes are not subject to optimization but are regarded as input that
has to be provided from outside the algorithm.

Furthermore, efficiency is no primary task while implementing any code and is
only dealt with to estimate the overall time consumption for different problem
sizes. Though it is good to have a rough impression about the time consumed
by the optimization, raw cpu-second measurements are of questionable value be-
cause hardware becomes faster and faster these days. Even the implementation of
a method using another language or tool can speedup or slow down any algorithm
enormously.

Chapter 2

Modeling the Problem

2.1 An algebraic Model for Quality Judgement

Based on the requirements for a good label placement that have been identified in
section 1.1.3, I try to generate a mathematical system now that enables a quality
verification of computed solutions. Some of these aims cannot be subject to an
optimization, however. In which way could the remaining goals be expressed to
have them handled by an algorithm?

� Readability can only be improved as far as the positioning is concerned. Sev-
eral penalty models or priority recommendations have been applied to inte-
grate this aim into labeling algorithms. Typeface, letter size and font color
have to be provided by the person operating the optimization who should
have cartographic knowledge about the suitable settings.

� Definite attachment means that the label should be closer to its site than any
other label. Perceptability is supported if all labels without placement con-
flicts are put at the same position relative to the site. Besides that, sophis-
ticated use of different colors may support fulfilling this task as it does for
readability, referring to investigations of Henry Beller [2] and others. How-
ever, this is not subject to optimization but to application of cartographic ex-
perience.

� Overlaps have to be tested for any generated solution. The labels must not
cover other labels, sites or borders. For usability in practice, it is also impor-
tant to check for overlaps of other map components like relief shadings.

� Spatial integration is left out for reasons of simplification.

� Choice of the different label fonts for site identification can only be provided

14 CHAPTER 2. MODELING THE PROBLEM

from outside the algorithm, it just has to use the settings during the evalua-
tion of the quality of a labeling.

� It is very difficult to judge about the overall placement impression automati-
cally. Some statistical measures can be gained from the name distribution on
a map, but the derivation of an aesthetic criterion from this data is at least
questionable. Therefore, it may be omitted.

With this distinction of optimization tasks and cartographic settings supplied from
outside the algorithm, it should be possible to build a mathematical model of the
MLP.

2.1.1 Basic Entities and Measurements

Entities that have to be taken into account from the abstract viewpoint of an algo-
rithm designer are: sites, labels and bounds. Another useful entity that may serve
as a basic unit while constructing more complicated objects is a point. It is defined
as a position on a two dimensional plain area with a cartesian coordinate system
that can have values from ��� . Points are mostly indicated by the standard letter ��� ,
the subscript holding an identification number, their two constituents are named� � and ��� , corresponding to the appropriate cartesian axis. A point can be member
of none, one or more objects (the latter case means that the objects overlap). The
distance of a point �	� � � � �
��� � to another �� � � � �
��� � is as usual

��� � ��� ����� ��� ��� � � �	� � � � ��� � ���	����� � � � (2.1)

with
���

indexed by � as a distinctive mark to other distance functions.

As a base for the construction of objects later on, I use restricted point sets ��� upon
which a function � � ��� ����� � is defined that decides whether a point ��� is contained in
the set.

� � � � ���!� ��� �#" � � � ���%$&� �
� � � � �$&� � � � � is restricted set of points �'�(� is point)

(2.2)

A restricted set of points �*� should have a measurable distance to a single point,
too. It is set to:

��+ � � � ����� ��� �-,/. �*0 ��� � ��1 ����� � 2 � � �3� ���!� �54 ��16$&� �87 � (2.3)

wherein ,/. � denotes the infimum of a set it is included in itself.

2.1. AN ALGEBRAIC MODEL FOR QUALITY JUDGEMENT 15

A point set that is a simply connected and restricted region is called an object � � .
Its limitations ensure the existence of a border which is formed by the set of all
points meeting the condition that every � environment around them must contain
points inside and outside � � . The set of border points of an object �6� is referred to
as � � � � � . As the object is restricted, so is the border. Every object has a definite
area it covers on the plane. This measurement is generated by the function � � � � � .
The objects are intended to turn out to be map features later, so it is necessary to
define a specialized distance function on them that is able to measure overlaps, too.

Overlap and distance of two objects can be expressed with a single function that
generates positive values if the objects do not touch but negative values in case
of overlap. To simplify the formula, we require � � �6� ��� � � ��� � . This condition
removes the possibility of � � being fully contained in � � but not vice versa. As a
consequence, there has to be at least one point in � � � � � (border set of � �) that is also
in ��� if the two objects overlap. If � � � � ��� � � ��� � is true on the contrary,

�	� � � � �
��� �
is conceived by swapping the objects. The distance function can now be defined as:

��� � � � �
��� ��� � " ,/. �*0 � + � ��� ����1 � �'� 16$�� � �5� � 7 � � � � � �� � � ��� �� � � � � �
� � � � � � � � �� � � � � � (2.4)

This definition can be applied to obtain the distance an object has to itself what is
equal to the distance it has to another object that contains excactly the same set of
points. The result measures the greatest distance of two points lying on the border
and is smaller than zero to indicate an overlap.

If all map elements are circles or rectangles with bounds parallel to the cartesian
coordinate axes, the distance measurement can be simplified without loss of qual-
ity. This can be done by reducing the points of the bigger object checked against
the border points of the smaller object from the full border set to the ones having
the same � or � coordinate value (they are touched by the same horizontal or ver-
tical line), if any exist. Under condition � � �6� ��� � � ��� � (in case of � � � � ��� � � ��� �. and � have to be swapped), the distance measurement can be computed using
equation 2.5 instead of 2.4.

����� � � � �
��� ��� �
���� ,/. �*0 ��� � ����� � ��� � ����1 � 2 � � ��� ��� 1 � 7 ��� � 16$�� ����� $�� � ��� � 4� � � � � 1 ��� � ��� � ��1 �,/. �*0 � + � � � ��� � ����1 � ����1 $�� � � � � 7 �����! ��

(2.5)

The map itselft consists of an object that represents its spacial expansion " and
contains two additional sets of objects, a set of , sites # � 0$ � 4 � � . � , 7 which
are not moveable and a set set of % labels & � 0'� � 4 � � � � %�7 which are. To enable
identification of one or more labels that belong to a feature, a function (is defined

16 CHAPTER 2. MODELING THE PROBLEM

that yields the numerical value one if one of the operands is a label of the other,
zero otherwise.

(� � � �
� � � � � " � � � � � . �� � (��� ��� ��� ��� � ��� . � � (��� ��� �5� �
� ��� � � � . � � (��� ��� ��� ���	� � ��� . �� � (��� ��� � � � (2.6)

Apart from monitoring conflicts between labels, the map object should always con-
tain all site and label objects. Therefore, the distance function must be modified
slightly to recognize conflicts with the map border:

��
 � � � � " � � �-, � � 0 ��+ � � � " � � ����1 �32 � � " � ����1 � ����16$�� � � � � 7) (2.7)

The function
��

generates negative values if the object �%� is fully included in the
map object " � , positive ones if it is not.

2.1.2 Testing Different Map Requirements

As stated above, there are some conditions a good labeling has to meet which can
be tested directly by automatic evaluation of mathematical equations. These will
be formulated now.

Overlaps

Labels are the only objects of a map that are moveable during the labeling process.
So every conflict test that makes sense must include at least one label. The objects
that can cover the desired area are: sites, other labels and map borders. By the use
of
���

(or
�����

in case of the restricted problem) for all possible combinations of labels
with other labels or sites and

��

for the map borders, all overlaps can be detected

since they are indicated by negative function results.

The distance requirements can even be made more demanding if the objects con-
tained in a map are expected to have a minimal spacing greater than zero (that
would ensure the avoidance of overlaps) but equal to any value that seems to be
appropriate from the point of view of a cartographer. I assume that it is not nec-
essary to guarantee a minimal distance to the map borders as far as they are not
crossed. A difficulty that may arise if some space next to the border has to kept free
of labels is that the features being located in the forbidden area can not be labeled
properly.

Different features may have different minimal distances because the symbol sizes
used to indicate their positions are usually chosen according to the importance of
each feature. Font measures and typefaces are adequately set (see [20]) and make

2.1. AN ALGEBRAIC MODEL FOR QUALITY JUDGEMENT 17

up a great variety of label sizes on most maps. Therefore, it is recommendable
to express the distance requirements by functions rather than by constant values.
These are named � + � �5� � for other sites and ��� � � � � for other labels tested. If � �
is itself a site, the value of � + � � � � is meaningless because the features can not be
moved on the map, any conflict between them has to be accepted.

The rules that have to be obeyed for any movement of the label
���

of a map � with
a set of labels & and a set of sites # to pass the test for overlap are thus:

� The label must keep a distance � + � ��� �
to any site

it is not label of.

� The label must keep a distance ��� � ��� � to any other label
�
.

� For every site
 	� $ # the label is not attached to, its minimal distance �
� �! �� �

must be kept.

� For every other label
�� $�& ��� ���� , its minimal distance ��� � ��� � must be kept.

Definite Attachment

The requirements that guarantee a certain perception which label is attached to
which feature are twofold. First, the connected label must be put into an dis-
tance interval that is bounded by a minimum and a maximum distance �
 ��� �! � �
and �
���� �! � � , depending on the site

 � . This condition also guards against an over-
lap of the site and its own label. Note that these values can vary for different sites,
therefore they are also given as functions.

Second, the other labels have to be kept away from this site farther than the attached
one. This can be achieved by setting ��� �! � � to a value greater than �
���� �! � � .
Positioning relative to the site

The cartographic preferences for relative positioning of the label around its site
can be expressed with a quality function � �! � � � ��� � that returns a penalty from the
interval � �����
	 , small for good positions

� � ��� � and near to one for bad ones. It takes
a site

 � , a distance
�

and an angle � as argument. The angle of a pair of objects
relative to the � axis is computed by the function � � � � �
��� � . This can be done, for
example, by searching two points ��� $ � � and � � $ ��� with minimal distance of
all possible combinations and to determine the angle of a straight line connecting
these points to the � axis.

While constructing � �! � � � ��� � , it should be considered that the minimum and maxi-
mum distances of the attached label are depending on

 � . If a unique minimum of
the quality function exists, � does also imply an optimum distance � ��� � �! � � that has
to be within � �
 ��� �! � � ���
���� �! � � 	 .

18 CHAPTER 2. MODELING THE PROBLEM

Overall Placement

The aesthetic demand for avoidance of label clusters and of equally distributed la-
bels can not easily be transferred into a rule for quality decisions. These two aims
are opposite to each other and can not be fulfilled at the same time. Name clus-
ters whose contents are moved outside to improve their perceptibility are of course
more equally distributed than before. However, this conflict may be weaker than
it seems to be. I think that Imhofs intention while inventing this rule has been to
warn cartographers of two extreme possibilities. So it may suffice to realize very
strong clustering or very symmetrical maps. Everything between these two label-
ing solutions is to be accepted.

The name clusters of a map can be detected if the local density of objects is mea-
sured wherever a site resides. This can be done by taking the size and the distance
of the neighbour objects (which can be sites or labels) into account. Previously de-
fined distance functions 2.4 or 2.5 can be used to obtain meaningful numerical val-
ues even in case of conflicting objects. The local feature density function proposed
now measures the object density at the location of a site

 � :
� � � �! � ��� � �

��� � ��� � � � � �� � � �! � � � � � � �5� � � �! � � � � � � � �
��� ���
 � �! � �� � � �! � � � � � � � � � �! � � � � � �)

(2.8)� �
can be replaced with

� ���
if the requirements for the equation 2.5 are fulfilled.

As the monitoring of movements is the primary aim while using this function, the
denominators of the sum terms which refer to the object distances are squared.
The additional term �5� �	� �! � � � � is used to push the distance values upwards into
the interval � � ��� � because

� � �! � � � � is exactly the minimal outcome of
� � �! � � � � � .

If the numbers used to indicate map positions are scaled down to values much
smaller than one, they should be rescaled before they are inserted into the equation.
Otherwise the received value will almost not change although the labels are moved.

The mean value of the local densities of all sites may be appropriate to look for
clusters in the map. It is now referred to as local feature density of a map � � .
Since the distances are squared in equation 2.8, the obtained value will increase
dramatically if clusters arise. These labelings should be avoided.

� � � � � � � � �	�

 ��
 � � � � �! � �, � � $ # of � �) (2.9)

The standard deviation of all local densities measures the symmetry of a labeling.
Its value is small if the symmetry is strong, large if the map density varies much.

2.2. A COMPOSED FITNESS FUNCTION 19

 � , � � � ��� � ���� �,

��
 �

� � � � �! � � � � � � � � � � � � � � $ # of � �) (2.10)

At this point I must admit that the composition of the chosen local density function
is somewhat arbitrary. On the other hand, the results are intended to be compared
with the ones of other maps and do not need to have a meaning by themselves.

2.2 A Composed Fitness Function

The fitness function that is needed for optimization runs later on can be constructed
of the named constituents, except for the overall placement criterion which is to
fuzzy to include without getting some experience first. The remaining conditions
have to be ordered by priority which can be done by multiplying their returned
values with different weight factors.

� � + determines the importance of an overlap a label has with a site.

� � � is the adequate value for label to label conflicts.

� ��� expresses the relevance of label to map border conflicts.

� �
is the attachment weight that binds the labels to their own sites.

� � corresponds to the importance of the positioning preferences.

The weights have already been sorted by priority, highest first. It is obvious that the
overlap weights must be higher than the positioning weight: a map without any
overlap but with some labels that do not comply with an aesthetic criterion may be
accepted though being ugly. If the labels are placed nicely on the other hand, but
this forces an overlap to arise, the map will be rejected by every cartographer.

By combining the equations that have been built for overlap, attachment and place-
ment control, a fitness function can be constructed that offers a great variety of
possible changes. Besided the use of different weight or distance values, even car-
tographic rules that have been not taken into account may be integrated, due to its
modularity. To simplify handling and comparison of results, the fitness function
is bound to the requirement that the best result is zero in any case. Furthermore,
a lower value indicates a better solution than a higher one (minimization). Thus,
negative values of the constituent terms have to be cut off. Therefore, the function

� � � � � � � � " � � ��� �
� � ��� � � � $ � (2.11)

20 CHAPTER 2. MODELING THE PROBLEM

is used. The fitness of a whole map � � � � " �
� & � can be determined by evaluat-
ing � .�� � � � � , which is built up in the following way.

� .�� � � � � � � � + � ��
 � �

 ��
 � � � � � � � + � � � � � � � � � � � � � � � � � (�! � � � � � �

� � � + � ��
 � �

 ��
 � � � � � � � � �! � � � ��� � � � � � � � � � � (�! � � � � � �

� � � � � ��
 � � ��� � � ��� � �
 � � � � � � � � � � � � ��� � � � � � � � �
� � ��� � ��
 � � � � � �
 � � � � " � � �
� � � � ��
 � �

 ��
 � � � � � � �
 ��� �! � � � � � �! � � � � � � (�! � � � � � �
� � � � ��
 � �

 ��
 � � � � � � � � �! � � � � � � �
 ��� �! � � � (�! � � � � � �
� � � � ��
 � �

 ��
 � � �! � � � � �! � � � � � ��� �! � � � � � � (�! � � � � �

(2.12)

During the computation of � . � � � � � , several parts of it can be simplified if the at-
tached labels of a site can be retrieved efficiently by an algorithm without enumer-
ating all possibilities. Furthermore, the calculation of the two double sums using� � + and the two multiplied by � �

, respectively, each can be done at the same time.
Apart from

� �
,
� ���

can be used for measuring label or site distances if the MLP has
been restricted to axis parallel (isothetic) objects.

2.3 Estimation of Problem Complexity

It is unquestionable that the integration of more features into a map will make the
MLP become more difficult – otherwhise it could not have been proven to be

� �
-

complete.

Another important property of the map is its feature density. As font sizes and
therefore label boxes grow, a labeling without overlap can become impossible (that
follows from experience with the algorithm presented in 1.2.2). So the density is
measured by comparing the sum of the areas all sites and labels cover with the area
they have to be placed on. It is called global in contrast to the local feature density
that has been defined in 2.1.2.

� � 1 � � � ��� � �

�
 � � �! � � � � � ��
 � � � � � �� � " � (2.13)

Hence, a measurement composed of these two map attributes may help to estimate
the level of difficulty to determine a valid labeling. The key to this would be to
evaluate the distribution of potential conflicts. Any area that can be labeled with-
out regard to the rest of the map can be separated and optimized on its own. But

2.3. ESTIMATION OF PROBLEM COMPLEXITY 21

if the global feature density grows due to a change of the used font sizes, the ar-
eas without potential covering become smaller until it is not possible any more to
separate them.

Some maps, however, contain great areas without any site and hence any label.
These reduce the value of the computed global density and should be removed
from the map before computing it to get a proper value. But this induces the prob-
lem of recognizing spacial map structures to the algorithm that may be of similar
complexity than the MLP itself. Especially island maps destroy the value of this
measure because they are filled with nothing but sea to a high extent.

Due to all the difficulties that arise while striving for a measure that can be used
to make a forecast on the complexity of a concrete MLP, a hypothesis is left out
for now. However, it may be possible to find a rule examining the data of several
optimization runs.

To compare the different optimization runs and to obtain a rule for difficulty esti-
mation of a problem, a quality criterion for the results of an optimization is needed.
It should measure the relative convergence rate without respect to a concrete prob-
lem instance. I assume that the fitness function is constructed in a way that better
solutions result in smaller function values and zero is the optimum.

� � ��� � � .�� + � � .���� � � � � � � � ��� � � .�� + � � � ��� � � .�� � �� � (2.14)

The values that have to be known are a starting point

, given by the number of a

fitness function call that yields � .�� + , and an endpoint of measurement, indicated by�
what is the number of the fitness function call that returned � .���� .

The use of a logarithmic scale is intended to match the typical progress appearance
of an Evolutionary Algorithm (LIT). From this point of view the result of 2.14 re-
veals more information than a linear definition would have done because it counts
the decades traversed from

to
�

divided by the number of fitness function calls
needed in doing so.

Chapter 3

Getting the Problem Solved

This chapter makes the heart of the project come into life: a computer program
that runs an Evolution Strategy1 on a MLP. It begins with a basic introduction on
Evolutionary Algorithms what has been established by now as a generalizing term
including several optimization methods which are imitating the natural evolution.

3.1 Evolutionary Algorithm Primer

L’ imagination se lassera plutôt concevoir
que la nature de fournir.

Blaise Pascal

Trying to translate Pascal’s words I would like to put it like this: Imagination is
exhausted more easily than nature. What has this statement got to do with Evolu-
tionary Algorithms? You will probably anticipate that evolution is related to nature
somehow. In fact, evolution is seen as an essential attribute of life on earth nowa-
days. It is the possibility to adapt to a very complicated, moreover even dynamic
environment and to build up more and more sophisticated systems we call crea-
tures. If we look on survival in this planetary environment as a problem, nature
makes the best use of the existing resources and ”discovers” solutions we are often
surprised of. 2

Why are we? Because we would not have thought of them as being possible or
because they are so far away from normality that we could not even have imagined

1Further on, Evolution Strategy is abbreviated to ES.
2For example, there exist some species of bacteria living near so called ”black smokers”, volcanic

spots in the deep sea. The environment they are adapted to appears quite infernal: temperatures vary
around 100 degrees of Celsius, the water contains a horrible portion of acid, and the pressure would
crush any mammal instantly.

3.1. EVOLUTIONARY ALGORITHM PRIMER 23

them. This is an important point and one reason for the success of Evolutionary
Algorithms.

Although we know no will or person who controls the natural evolution, it can be
understood as an optimization that is still in progress today. So if it was possible to
transfer this process into a computational environment and to let it solve technical
or mathematical problems also, we could possibly get solutions our imagination
withholds from us.

During sixties and seventies, a number of researchers (Fogel [17], Ingo Rechen-
berg [15] and Hans-Paul Schwefel [7], and John H. Holland [10]) had the idea to
transform the mechanisms of evolution into optimization algorithms that could
cope with numerical problems.

To understand the functionality of these algorithms we have to identify the basic
principles of evolution which are recombination, mutation and selection, according
to the theory of Charles Darwin.

The recombination has got two important aspects: first it is a way to preserve life
from total disintegration that happens to all kinds of living beings we know after
they have been touched by death. Second, the children are no clones of their par-
ents, they are both similar and different. Apart from other mechanisms that take
place during the formation of a new individual, recombination mixes up the genetic
code of the parents to create a new combination of the existing constituents. Even
if there was no possibility to change the basic parts, numerous different mixtures
could arise this way. So recombination builds up new individuals and composes
them as a – probably unique – genetic mixture of the parents.

Mutations could be described as tolerated accidents while working on genetic in-
formation. The molecules building our genetic foundation are very large and com-
plicated as shown by popular pictures of the DNA. So they are of course subject to
errors that can occur during the copying and assembling processes which are nec-
essary to build new cells. Most of these errors are caught by repair mechanisms, but
some are not. In this case an alteration of the genetic code has happened that could
most probably not have been achieved by recombination. Mutation is therefore the
possibility to create new genetic code that has not existed before.

Selection cannot be detected in nature as easily as recombination and mutation, but
has at least the same level of importance. It is the mechanism that makes evolution
a dynamic process because it ensures that some genetic code is disappearing what
is a very important condition for development. When being invented as a theo-
retical concept in the last century, the term ”survival of the fittest” became widely
known. That does not mean that only the individuals with the highest physical
strength or best health survive, but the ones that can cope well with the difficulties
of their local environment.

24 CHAPTER 3. GETTING THE PROBLEM SOLVED

Long enduring isolation is an exceptional state in nature but gives us a chance
to investigate this adaption of life to a very limited region as Darwin did at the
islands of Galapagos. Competition is the usual case and ”selects” the successful
individuals what means the successful species in the long run.

The Evolutionary Algorithms should solve problems that can be expressed by math-
ematical formulas, but they use the same three principles. Their ”world” is the
search space of a given problem and the individuals are instances of problem solu-
tions, defined by genetic code consisting of the parameter values that indicate the
individuals’ position in the search space. The only condition that must be fulfilled
by the problem is that the quality of a generated solution can be measured and
expressed by a number that is called ”fitness”.

In a few words, the algorithms do the following:

1. A start population of problem instances is generated.

2. The generated individuals are evaluated, i. e. their fitness value is calculated.

3. The chosen termination criterion is checked (does the best generated fitness
value meet the expectations?).

4. Recombination is done: the offspring of the actual individuals is generated
by mixing their genetic code.

5. The genetic code of the offspring is mutated.

6. The offspring is evaluated: the fitness values are computed.

7. A predefined number of individuals is selected with regard to their fitness.

8. The selected individuals are the new population. The loop is started again at
step 2.

The best individual should be stored during the optimization as its result. The
mutation and the recombination normally use pseudo-random numbers so the op-
timization is stochastic and non-deterministic.

Due to the fact that the title of this thesis only mentions Evolution Strategies which
are only one of the many existing variants of Evolutionary Algorithms, further writ-
ing is dealing with them only. For information about the other existing variants you
may have a look into the following references, ordered by increasing minuteness of
detail: [30], [28], [29].

3.2 Preparing a Suitable Evolution Strategy

Two questions have to be answered before a detailed design for an optimization
tool can be done:

3.2. PREPARING A SUITABLE EVOLUTION STRATEGY 25

1. What do the parameters look like that can be varied by the optimization?

2. What kind of Evolution Strategy should be used? And furthermore, which
of the several proposed possibilities to alter the basic Evolution Strategy are
appropriate?

An ES works on individuals with a genetic structure that consists of usually con-
tinuous parameters needed to evaluate the fitness function. For the MLP, this func-
tion has already been formulated in section 2.2. It induces the use of a map as an
individual, and the positions of the labels relative to their sites as the parameters,
representing one labeling instantiation. Some information about the locations of
the sites, the label texts and the properties of the maps border must be stored, too,
but is not subject to the optimization because it cannot be changed.

3.2.1 The coordinate system used for label positioning

By now, a general decision has to be taken on the representation of the label po-
sitions. Solutions that have already been tested by others are a discrete, ordered
set, as it has been used in [5], or a continuous variable, indicating the angle of the
connecting straight line as proposed by Hirsch [9]. Although the complexity of the
optimization task is increased by this, I chose a continuous representation similar
to a polar coordinate system around every site for the following reasons:

� As the label can be moved in two directions instead of just one, some conflicts
may be solvable that would have produced a deadlock otherwise.

� The placement offers the possibility to generate a labeling without overlap
by violating the attachment rules to a small extend. This may be decided
to be admissible by persons with cartographic experience, depending on the
afflicted features context.

� The basic idea of moving a label around the feature can be extended to line
features, as well. These are equivalent to point features with an extremely
stretched symbol, in this respect. Quality judgement on generated positions
would have to be adapted because cartographic preferences are different for
line features.

� The ES, described by Schwefel and Rudolph in [27], uses continuous param-
eters. Nowadays, various approaches are made to handle integer [23] or
mixed parameters (Schütz in [19]), too. The use of a discrete position set
should therefore be no problem. Nevertheless, these variants mostly evoke
additional work and/or difficulty because some kind of mapping, guarding
against boundaries, or invention of specialized random number generators
has to be done. An ES for integer programming should be used for solving

26 CHAPTER 3. GETTING THE PROBLEM SOLVED

MLPs if the ”pure”, continuous positioning model presented here proves to
be worthless.

Chosing a polar coordinate system leads to a description of each labels position
with an angle and a distance value. Hence, the number of parameters for an indi-
vidual is equal to the number of labels multiplied by two. But how can the location
of the label on the cartesian coordinate system of the map be derived?

In the following, I assume that every site has a circular shape and every label can
be handled by a rectangle surrounding its character boxes. This is no general re-
striction but simplifies the development of an adequate measure. For other than
circular sites, it has to be modified to preserve the meaning of angle and distance
parameters. However, the decomposition of the labels rectangle into its character
boxes does not seem to be appropriate while dealing with the positioning, apart
from overlap testing. If done, it may provoke the violation of cartographic rules.
For example, label and site should not look as if they were arranged on the same
line. This condition cannot be tested properly if the positioning is done with regard
to the size of the last characters surrounding box only3.

Since a label has got some areal expansion, its position can not be detected by sim-
ply locating a substitute point with distance and angle given. The label could be
moved over the site in this case although the distance has not been changed. If
the actual nearest corner of the label is used as attachment point, it can be rotated
properly around the site, except for the case it crosses a horizontal or vertical line
that traverses the site. This special situation has already been dealt with in [9]. In
opposite to the solution presented there, I propose to integrate the four position
ranges with a tangential contact of the label with the top, bottom, left or right egde
of the site into a modified angle definition.

Therefore, a standard distance has to be used to determine the portion of the angle
describing each of the two movement types. I have used the minimal attachment
distance �
 ��� for this, but different settings would be possible, too. The circle is cut
into four pieces then and the four lines representing the labels height and width
are inserted, keeping the length relations. The total length of the obtained rounded
rectangle is four times the quarter circle (that is � 2�� 2 �
 ���) plus two times the label
width and height, respectively. Every position of circular and tangential movement
can be reached now within one full rotation which may have a different length for
every label.

The distance is measured taking the appropriate corner in case of a circular and
the nearest point of the adjacent label edge in case of a tangential position. This
complies with the definition of equation 2.5.

3On the other hand, the cartographic rules may be observed with a seperate test for each. Nev-
ertheless, these are not included in the fitness function designed in section 2.2. The quality function�����	��
��
��� is intended to handle all positioning evaluation.

3.2. PREPARING A SUITABLE EVOLUTION STRATEGY 27

d

θ
d

θ

Figure 3.1: Internal representation of the label position using the
modified polar coordinate system (left) and the corre-
sponding position on the map (right). Every permitted
position can be characterized with a distance � and an
angle � .

3.2.2 Choosing a subset of different ES techniques

The wide-spread variants of different Evolution Strategies based on continuous ob-
ject variables have been arranged into a system in [27]. Thereof, I chose some oper-
ators that seemed to be appropriate for solving a MLP while others have been left
out. However, the basic structure of the described ES has not been changed.

At first, the constituents of an individual have to be determined. The object vari-
ables are the coordinates of the label positions, two for each label,

� � � 2 % with r
being the number of labels, for the entire map. The number of mean step sizes

���
is always set equal to

�
. A reason for this is the higher degree of freedom allowed

during the movement of each label. Some of them can be permitted to be nearly
frozen at their position while others jump around their sites to find an uncovered
location.

Inclination angles which are used to express correlations of the mean step sizes
have been totally left out. The main reason for this is the enormous number of
angles that needs to be used for bigger maps. As

���
always equals

�
, the resulting

��� � ���� � � � increases much faster than
�

and crosses the number of � � ��� � � � for
just � �
	 labels. An alternative approach may be tried with an incomplete set of
correlation angles by only considering the local neighbours of each label.

The mutation is done using its simple form described in [30], �� and � are constantly
set to �!) � and �!) � , respectively. The recombination operator of [27] is applied with
the following restrictions:

� � � is 1, constantly (recombination is always done).
��� can only be 1 or 3, that is global intermediary recombination and uniform

crossover, respectively.
��� is not used.

For selection, only the �� (better than) operator is used. The standard selection op-

28 CHAPTER 3. GETTING THE PROBLEM SOLVED

erators � and
�

are contained within �� for � � � and ��� � , respectively.

The termination of an optimization run is checked by three conditions that are
much less sophisticated than the ones proposed in [27]:

� A predefined number of fitness function calls � � � �
����
has been reached.

� The best fitness function value found is smaller than a target value � .�� � � �81 � � .
� The number of generations processed is equal to a limiting value � � �
����

.

The start conditions � ���	�
, and therewith the start population individuals, are al-

ways set up using the method described as Case a what is a random placement
within given bounds.

This collection of techniques is a rather small subset of the ones that have already
been used in practice. If it is found to be incomplete, further methods can be added
later on. However, the main expense of the implementation does not arise from the
ES but the representation of maps. That is to be dealt with now.

3.3 The Map Labeling Tool

Besides the optimization, there is a number of different subtasks a labeling tool
has to fulfill: the map’s data is to be read from a database and the map has to be
stored internally. Furthermore, a visualization is needed to watch the optimization
progress and to compare the provided position rating with the visual impression
of the computed outcome. The requirements of each component are summarized
now:

Internal map representation: A map, consisting of several features and their la-
bels, has to be stored. Its fitness value is evaluated with methods of conflict
recognition and by use of an external positioning quality function. Therefore,
conversions from and into the polar coordinate system defined in section 3.2.1
have to be made. Since the locations of the sites and labels are highly depen-
dent on the projection, it has also to be part of this subtask.

Data import: The main emphasis lies on the processing of external data files the
used maps can be built of. Furthermore, parameter files have to be inter-
preted.

Visualization: Maps and the external positioning quality function � �! � � � ��� � should
be shown with as much internal data as possible (conflicts, geographic bounds,
local positioning quality).

Optimization: The different variants stated in section 3.2.2 have to be implemented
on top of a basic ES. Computed results should be written into log files.

3.3. THE MAP LABELING TOOL 29

Analysis: Mean values and convergence rates of a statistically significant number
of optimization runs have to be accumulated and transformed into input data
for visualization software.

3.3.1 Preliminaries

Two questions are worthwhile to be considered before one starts designing the tool:

1. Which data sources can be utilized to produce maps that can be optimized?

2. What kind of computer language is to be used for the implementation?4

Searching for data that is freely accessible and easy to convert into a map, I en-
countered only one suitable source: the GNIS5 database. It contains a file for each
state of the U.S.A. and an additional one for every pacific or carribean territory
that is administered by its government at the moment. The GNIS is a program of
the U.S. Geological Survey to standardize the names of all features found on maps
within the entire country. File processing of this archives is easy since they use
the ASCII code and provide information about the names, geographical positions,
feature class, altitude, county and cartographic source for every entry in a tabular
form.

Decision on the implementation language has been far more influenced by personal
preferences. I chose the new ”Internet-language” JAVATM which has been invented
by SUN6 for the following reasons:

� It is object-oriented. This can be of advantage during the design phase and
may help to re-use code that has already been written.

� The JAVA syntax is very similar to the one of C what simplifies the change of
languages if a newcomer has got some experience with object-oriented con-
cepts.

� Portability is nearly 100% for all the platforms a JAVA-interpreter exists on.
Programs can therefore be downloaded and started automatically by an Internet-
Browser if they use an interface that grants only restricted access to system
components due to security requirements.

� Many good ideas of other languages have been used while constructing JAVA,
some of them are: automated disallocation (garbage collection) of objects,

4It is important to know about the language before design starts, or one could design something
that can not be implemented otherwise.

5Geographic Names Information System, see [31]. Located at the URL:
http://mapping.usgs.gov/www/gnis/.

6Released on January 25th, 1996, in its first operational revision (1.0), following a series of pre-
release beta test versions.

30 CHAPTER 3. GETTING THE PROBLEM SOLVED

sophisticated error handling, multi-layer modularity, strong typing, runtime
metadata and persistence. For a detailed comparison of object-oriented lan-
guages other than JAVA, see [25].

� If the program comments have been written with regard to JAVA’s comment
syntax, a documentation written in HTML can be generated automatically
which reflects all invented classes and methods and connects them to each
other.

On the other hand, there are some disadvantages, too:

� The performance while doing numerical computations is estimated to be only
5 - 10 % of the one of an implementation in C. After all, JAVA is an interpreted
language. To build a fast optimization, the numerical parts of a program
should be translated into another language.

� Only a few useful development tools exist until now, and most of them are
quite expensive (in contrast to many C-tools which are in the public domain).

3.3.2 Fine-grained Design

The most important classes of the map labeling tool are presented in figure 3.2
which only shows constituents of the map representation and the optimization do-
main. These two parts are connected by the interface Evolvable7. Therefore, they
have no internal knowledge of each other and could be replaced by another prob-
lem or optimization algorithm, respectively.

Map Representation

Two basic entities make up an internal representation: Mob and Map. The first is
the ancestor of all features and labels and defines their usual behaviour, the latter
stores a set of Mobs and some additional properties which determines a whole map.

Mob and its subclasses
Every Mob corresponds with an entry of an ImportanceTable, according to its
importance level. There, the standard values of a sites symbol radius (in case it is
circular) and color, text color, typeface and size and the distance requirements � +

,
� � , �
 ��� , �
 ���

and � ��� �
are stored. The latter is not used during conflict measuring

7In JAVA, interfaces are abstract classes that define the behavior of other, concrete classes which
can declare themselves to be the implementation. Nevertheless, a class can implement many inter-
faces, what is the only way to model multiple inheritance.

3.3. THE MAP LABELING TOOL 31

uses

uses by Interface

is heir of

MapIndividual

Individual Population Strategy

Evolvable

SummitCity

Fitness Landscape

Map

Importance Table Mob

Point Feature MLabel

Figure 3.2: The most important classes of the Map Labeling Tool.
The lower three classes Individual, Population and Strat-
egy actually implement the ES.

but to make this hidden attribute explicit. It should comply with the optimal dis-
tance used in the relative positioning quality function � �! � � � ��� � . Font attributes, as
they have been recommended in [20], can be layed down here, ordered by impor-
tance levels. An example is given in table 3.1.

Since the values are copied (not referenced) from the table entry at construction
time of a Mob, they can be overridden due to cartographic preferences later on.
Furthermore, all distance measurings are done with methods of Mob and all conflict
weights � � + , � � � , � � � , � �

, � � are stored within its variables.

The MLabel (= Mob Label) class of which all labels are instances stores the overlaps
that arise while inserting or moving any Mob. These are put into conflict lists, one
for each label. Therefore, the part of the fitness function that is derived from the

32 CHAPTER 3. GETTING THE PROBLEM SOLVED

Font name and size text color symbol color radius ��� ��� �����
	 �
���� ��� ���
Times Roman 7 black dark red 2 1 2 5 5 2
Times Roman 8 black dark red 2.1 1.05 2.1 5.25 5.25 2.1
Times Roman 9 black dark red 2.21 1.1 2.21 5.51 5.51 2.21
Times Roman 11 black dark red 2.32 1.16 2.32 5.79 5.79 2.32
Times Roman 13 black dark red 2.43 1.22 2.43 6.08 6.08 2.43

Table 3.1: An ImportanceTable defines standard values for ev-
ery Mobs properties, ordered by level of importance
(abridged version). All sizes are in pt.

conflict evaluation of a single label can be retrieved without further computation.
However, this method turned out to be an efficiency problem later on.

One of the best kept secrets of the design has to be revealed now: how is the relative
positioning quality function � �! � � � ��� � being modeled? Due to its complex nature
if many of the rules described by Imhof are applied on the one hand and the need
for a function that can cope with the defined polar coordinate system on the other
hand, the use of an additional fitness landscape with the examined site in its center
seems appropriate.

Since the landscape should be the same for all label-site pairs, some kind of match-
ing is needed, mapping the angle component of the labels relative coordinates to a
normalized angle the landscape description uses. This can be done by setting each
of the eight parts of a rounded rectangle to the constant length � . The normalized
angle is simply the number of the octant the label actually occupies (0 - 7) plus the
fraction of way it has covered in direction of the next octant, moving clockwise.

The distance component is scaled by �� � ��� before looking up the actual height of the
landscape at the label’s position.

The landscape is an object of the class FitnessLandscape and consists of one
or more radial symmetric functions. These are defined by the properties ”normal-
ized angle”, ”normalized distance”, ”maximum height”, ”maximum radius”, and
”degree of the underlying parabola”.8 Angle and distance determine the centers
location which corresponds to the point

� � ��� � of the parabola, whereas the two
boundaries stretch the section � $ � �����
	 of the parabola to the deserved height and
width.

If the height of the entire landscape at the actual anchor point of a label (which
usually equals the location on its border with the smallest distance to the site) is
requested, the largest function value of any parabola in reach is returned.

The class PointFeature implements the coordinate transformations stated above
what makes them accessible to all of its subclasses. With respect to the contents of

8Only functions of the form � ��� �������
����� "! without additional terms are permitted. Therefore,
the conditions � �$#��%��# and � ��&	�%�'& always hold.

3.3. THE MAP LABELING TOOL 33

Figure 3.3: The used fitness landscape modeling the rules of Eduard
Imhof. Width and height are equal in this example as for
a square label. Usually, width is much larger than height
what stretches the landscape in � -direction.

the used GNIS files, which also include line and area features, the implementation
of two different types of objects was considered worthwhile: summits and pop-
ulated places. Since all distance computing and coordinate work is derived from
the super classes, only the assignment of an appropriate ImportanceTable entry
to a newly instantiated object remains for implementation. Hence, further classes
reflecting other kinds of point features can be added easily.

In opposite to cartographic practice, every summit owns at most one label. Text
fields revealing the altitude of a mountain which are often added next to the name
box can not be handled due to the restrictions mentioned in section 1.3. Further-
more, they induce a higher complexity into distance and position evaluation:

� Relative positioning may be more difficult. Apart from the fact that only one
label can occupy the ideal location, the combination of two text fields may
look bad although each of them is positioned the right way. Further carto-
graphic experience should be used to solve this problem.

� Definite assignment has been guaranteed with a simple rule that requires the
attached label to have a smaller distance to the site than any other one. How-

34 CHAPTER 3. GETTING THE PROBLEM SOLVED

ever, the two or more text fields used will mostly have different optimum
distances. This requires the rule to be widened.

� It may be of advantage to allow ”friendly” labels a smaller distance to them-
selves than to the ones of other sites. If this holds true, �
� cannot be one value
of a table but has to be split.

Map and its helper classes
An empty Map is constructed by fixing a scale factor and a projection. The latter
is handled through an interface also called Projection which is implemented
by the classes NoProjection9 and Mercator1Projection, the standard pro-
jection of Mercator with one isometric degree of latitude, taken from [11]. Design
allows for adding the deserved Projection class at runtime, after reading a pa-
rameter file.

The scale factor is applied to the distance requirements and size measurements of
all added Mobs but has no effect on their position. Changing it expands or reduces
all fonts, making the labeling more difficult or easier. The Map’s dimensions are not
affected since they are only dependent on the projection used and the latitude and
longitude bounds provided.

Conflict handling and hence the computation of some numerical value indicating
the quality of label arrangement uses an incremental plane sweep algorithm based
on the descriptions given in [22] and [16]. Therefore, the constituents of a Map
are kept ordered by increasing � coordinate value. With the maximum height and
required distance known, the range of objects a new Mob can affect is found. These
are tested for observance of � + � � � � and � � � � � � , or �
 ��� and �
 ���

, respectively10.
An additional check reveals a possible overlap with the Map border. Every time a
Mob is added to, deleted from or moved within the Map, the plane sweep is run to
update the conflict lists of the labels which results in a new conflict value for the
entire Map.

The reason for this incremental approach had been the desired ability to evaluate a
slightly changed map. Movement of a single label may remove all existing conflicts
and therefore change the fitness dramatically. Nevertheless, this possibiliy was
found useless afterwards due to contradiction with the recombination operators,
thus the efficiency problem remained.

If the distance check would be computed after insertion of all Mobs, it is in
� ��� � ��� �

� � (proved in [21] for isothetic rectangles in which the circular symbols can be en-
closed for this purpose), whereas the used method has an estimated time consump-
tion of order � ��� � � ��� � �

. This holds even if the growth of N during the incremental

9No coordinate transformation is done, longitude and latitude are interpreted as a point in the
Cartesian system.

10This distinction refers to different rules for the attached labels of each site.

3.3. THE MAP LABELING TOOL 35

buildup is considered: search for the appropriate range of objects needs � � � ��� � �
,

testing is in � ��� � . For all
�

plane sweep runs, this is roughly � � � ��� � � � �
�� � � � � � ��� � � � � �� � � � � � � � ���� � �� � � � � � � � 1��� � �� � � � � � , derived using [12].

The class MapIndividual implements the interface of the Map to the optimization.
Besides methods for construction of a master map all other maps are derived from,
its main content deals with the evaluation of a map’s fitness. Therefore, the conflict
value and the relative positioning of each label are taken into account. The latter is
computed by using an assigned FitnessLandscape.

Data Input

GNIS files contain all named features of a state or administered territory, collected
from the processed maps. Since every entry is an ASCII string of 240 characters,
this is an enormous amount of data for areas densely populated.11 The larger files
include more than 40,000 features of which about one third are the desired sum-
mits and populated places. Therefore, some kind of automated selection must take
place. The easiest way to obtain a suitable test set of up to 500 point features is to
use a latitude / longitude window. Features within this limits are collected and
written into an array of Mobs which is taken over by the MapIndividual class.

Observed data fields are: feature name, feature type, position on earth, and altitude
if available.

Visualization

Two different tools emerged from the need to gain knowledge about what does
really happen during the optimization:

LandscapeViewer: This utility helps in adjusting the FitnessLandscapeused
to model the external relative positioning quality function � �! � � � ��� � . Basically,
it plots any number of three-dimensional points.

MapViewer: This application can be used as subtask of the optimization doing
on-line visualization, and standalone to replay saved maps. Besides the sites
and labels, it also shows conflicts and their evaluated values derived from the
conflict lists of each label. Its appearance is shown in figure 3.4.

11Some examples: New York ���	� � MB, Florida ��
�� � MB, Massachusetts �� MB, Hawaii �& �
 MB.

36 CHAPTER 3. GETTING THE PROBLEM SOLVED

Figure 3.4: The on-line visualization tool MapViewer and some of
its menue blocks.

Optimization

An instance of the class Strategy initializes and supervises the entire optimiza-
tion and its output. When started, it reads the parameters, creates the first individ-
uals and runs the main loop.

The operators utilized by the ES are deferred to the lowest possible level, that is the
Population in case of recombination and selection, Individual for the muta-
tion.

The optimized problem is provided by a class implementing the interfaces Evolv-
able and Displayable. The latter controls the on-line visualization of the pro-
posed problem solutions and is optional. Since the class is linked at runtime, it
may be exchanged for another by changing the parameter file. This guarantees
reusability of the optimization package.

3.3. THE MAP LABELING TOOL 37

Analysis

The class Analyzer is an application on its own which is used to accumulate the
output of many optimization runs and to generate convergence rates as defined in
equation 2.14. The written data may be put directly into visualization tools like
gnuplot.

3.3.3 Implementation

The platform independence stated above has been used for distributed program
coding on base of SolarisTM, Windows 95TM and OS/2TM, due to the availability of dif-
ferent operating systems at different places. Development with the OS/2TM JDK12

had to be cancelled in the midst of implementation since it did not comply with the
others. At this time I came across the KAWATM tool which is free for students and
educational staff and served well during the second half of the implementation.

In general, cross-platform development worked well. Some insignificant differ-
ences have been recognized affecting event handling and display update behavior.
However, a number of problems arised from the implementation language itself:

� Up to now, there is no way to retrieve exact heights of characters. Further-
more, the font metrics received for a string seem to be distorted, they lack
accuracy particularly in case of slanted fonts.

� Several new JAVA version have been shipped during the going of this work.
Some of the important features13 came up first with the release 1.1 and con-
vinced me to make use of it.

� While using the batch system of the Chair of Systems Analysis, the JAVA
application behaved somewhat strange. Although no screen output was gen-
erated, it always claimed access to the display. If this got lost, it stopped
execution immediately.

Some other improvements of the design were made:

� At first, the Map instance was designed to adapt its size to the position of the
inserted Mobs. Hence, conflicts with the borders had been impossible. Nev-
ertheless, strictly bounded maps may be important to cartographic practice.
Therefore, the borders were made immovable later on.

12Java Development Kit, including compiler, interpreter, command line debugger, standard library
and some tools

13as there are persistence and the metadata concept

38 CHAPTER 3. GETTING THE PROBLEM SOLVED

� Underestimating the storage needs of the internal map representation, I tried
to buildup an entire population (which can be up to � 100 maps) at once. In
consequence, the ES allocated dozens of megabytes of memory. The concept
has been changed then as to instantiate and evaluate Maps in sequence.

Chapter 4

Optimizing Maps

Since the optimization tool and its functionality has been described, some opti-
mization results may be presented. To ensure comparable output from experiments
with different parameters, a set of test maps (see table 4.1) is defined. From the vast
amount of data available from the GNIS archives, I chose fourteen rather small
geographical windows. Although states and territories with fewer feature entries
have been preferred in order to simplify file handling, a mixture of inland, coastal
and island regions emerged. Coastal regions and inland areas mainly differ con-
cerning the extent of water they include. Geographical windows with a portion of
more than � �

% covered by sea are classified coastal, inland else.

To all labelings, a relative positioning quality function � �! � � � ��� � modeling Imhof’s
rules (referring to [13]) has been applied. Therefore, implicit priority order of label
positions is as follows:

1. On the right of the site, slightly raised against its center

2. Equal to 1, but lowered against the site’s center

3. On the left of the site and raised or lowered against the center by a fixed, small
distance (each of the two possibilities gets the same reward)

4. On top of the site, anchored at the left third of the label’s bottom edge

5. As 4, but anchored at the right third

6. Below the site, two thirds of the label laying to the right of it

7. As 6, but two thirds of the label laying to the left of the site.

40 CHAPTER 4. OPTIMIZING MAPS

state or territory map type longitude range latitude range
Delaware inland
 	� & �����
 �� �� ��� ��� �

 # ���	�
��� � ��� # ���
Guam island & ��� � �� # ��� � & ��� �
�� # ��� & � � � � # � �	� & � � � # � �
New Jersey coastal region
�� � & � # � ���
�� � # # # � � ��� � � � # � �	� � # � & # � �
Northern Mariana Islands island & ��	� � # � � � & � 	� � � # � � & � � � # # � �	� & �� � � # � �
Kansas inland �
	� # # �������
�� # # # ��� �
	� # # ���	�
� �	� # # # ���
Kaua‘i (Hawai‘i) island & � � � � # � ��� & � � � # � � ���	� # # � �	� ����� � # � �
Louisiana inland � # � # # # � ��� � � � � � � � �

 # � �	�
� # � �
 # � �
Massachusetts coastal region
 # � � # �����
 # � # # # ��� � & �
 # # ���	� � & � �
 ���
Moloka‘i (Hawai‘i) island &
�� � # ����� & �
	� # # ��� � & � # # ���	� � & � � # ���
Oklahoma inland � � # # � ����� 	� # # # � � � � � # # # � �	�
� � � # # � �
Republic of Palau island & � � � � # # ��� � & � � � ��� ���
	� � # # � �	�
	� � # � �
Puerto Rico island 	� � # ����� �� # # ��� & � � & # ���	� & �	� � # # ���
Rhode Island coastal region
 & �
 # � ���
 & � �� # � � � & � & &�# � �	� � & � � &
� �
Virgin Islands island �� # # � ��� �� � � # # � � & � � � # # � �	� & �	� � # # � �

Table 4.1: The set of test maps used for nearly all experiments.

4.1 A Typical Outcome

The earliest tests with the ES have been done with even smaller parts of the maps of
Kaua‘i and the Virgin Islands. As it proved its general ability to solve MLPs, larger
maps have been considered as well. The most populated one covered the Eastern
part of Massachusetts and included more than 750 sites. Due to computation time
constraints, these huge maps have not been investigated at length1.

Further on, presentation of experiments will generally consist of two parts, a num-
ber of figures and a textual record. The range of used figures includes:

maps: Optimization results can be compared directly to an initial labeling. The
boxes contain label texts, the sites are indicated by small circles, surrounded
by bigger ones, marking the outmost distance allowed: �
 ���

. In most cases,
the depicted area is not the only one used within an experiment. Example:
figure 4.1.

fitness plots: Progress of the minimization is reported every time a better fitness
is reached. Multiple runs are accumulated by computing the mean of the
lowest values found by each of them after every function call. The plots use a
logarithmic scale according to the predicted convergence behaviour of the ES
(see section 2.3). Example: figure 4.3.

convergence plots: The actual convergence rate is calculated every time the best
fitness of any run changes, using equation 2.14. It relates the logarithmic
fitness advancement with the time needed to perform it. Example: figure 4.4.

1Since the optimization is a JAVA application, calculating one generation (80 individuals) of the
ES takes about 5 minutes on a fast workstation for maps of this size.

4.1. A TYPICAL OUTCOME 41

Figure 4.1: Initial state of an optimization run on map Kaua‘i.

parameter comparison plots: These figures are needed to summarize multiple runs
with different parameters. In these plots, mean values of the resulting conver-
gence rates (measured from the start to the last reported point), grouped by
equal parameters, express the overall success of a special setting. The error
bars may reveal some information about convergence diversion within the
runs. Example: figure 4.8.

The text records consist of three parts: a rough description of the used maps and
parameters, a visual analysis of the figures, and a discussion in search for explana-
tions of the obtained results. A text record example follows:

Experiment: Map Kaua‘i, no parameter modifications, 3 runs

Analysis: As shown in figure 4.1, the ES starts with a random labeling containing
many conflicts. After optimization has finished (figure 4.2), two labels on the
left side are left in a state of conflict with some sites. Both fail to comply with
the requirements for definite attachment, so they are placed inside the area a
site occupies to facilitate identification of its own label. Since placing them by
hand appears impossible, a valid labeling may not exist.

The fitness plot is not as smooth as it has been expected but reveals at least
two different phases of optimization.

Discussion: If the optimization fails to find a valid labeling, the problem may be
unsolvable. If so, application of three techniques can help to make it simpler,

42 CHAPTER 4. OPTIMIZING MAPS

Figure 4.2: The last recorded map instance of the run that begun
with figure 4.1.

according to the appearance of the remaining conflicts. These methods are
not handled by the algorithm upto now.

� The map is overcrowded with features. Many conflicts remain unsolved
and almost no uncovered areas exist. To keep all features on the map,
the text size and/or minimum required distances should be reduced.

� The feature names are too long. Therefore, labels get stuck where they
would have to cross others to get to an uncovered area. It would be
common practice in cartography to separate the name into two lines of
text.

� In dense feature clusters, there may exist inner points that are surrounded
by others to all directions. As it is impossible to label them without over-
lap, they should be marked with a symbol that is explained somewhere
else on the map. This method is known as point selection.

The observed steps during optimization progress indicate the part of the fit-
ness function that is actually treated. Due to its higher weight, this is conflict
removing at first. Every solved conflict appears as particular level while ob-
serving the fitness development. After overlaps have been removed or found
unresolvable, improvement of the relative positioning remains the only pos-
sibility of achieving a better fitness. The line of best fitness becomes much
smoother now.

4.2. ON SEARCH FOR GOOD PARAMETERS 43

1

10

100

0 5000 10000 15000 20000 25000 30000

fi
tn

es
s

fitness function calls

Kauai

run 1
run 2
run 3

Figure 4.3: Three runs on map Kaua‘i, fitness plot.

Note that some labels have not been put to the right of their site although this
is the recommended place according to the used relative positioning function
(figure 3.3). Since the placement performs much better if all conflicts have
been removed during an optimization run, this behavior may arise from the
low weight of the quality function � �! � � � ��� � .2 Even small label moves from
or into covered areas produce a strong impact on the fitness value which may
supress all positioning activity. The selection operator of the ES has to fail on
this situation because positioning rewards become ”visible” only if conflict
resolving comes to an end. However, lowering the conflict weight may be no
good deal, either. Overlaps could remain as they are balanced with a better
positioning reward then. A possible way out of this dilemma is the subject of
section 4.3.2.

4.2 On Search for Good Parameters

Since a standard parameter set was used for optimization at first, nothing was
known about its suitability to the MLP. Therefore, several experiments have been
performed to find good and robust values by variation of one parameter at a time.
Unless stated otherwise, the described test set of fourteen maps has been used.

The time needed by an optimization run is mostly determined by the number of
calls to the fitness function and hence the construction of maps. Therefore, parame-

2The weight of the positioning part is only �
�
����� of the conflict weight for most runs.

44 CHAPTER 4. OPTIMIZING MAPS

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0 5000 10000 15000 20000 25000 30000

co
nv

er
ge

nc
e

ra
te

s

fitness function calls

Kauai

run 1
run 2
run 3

Figure 4.4: Convergence rates of the optimization runs depicted on
figure 4.3.

ter sets looked for result in increased convergence rates (defined in equation 2.14) at
a constant number of search steps. In this section, a limit of 30,000 fitness function
calls has been used for all experiments.

4.2.1 Recombination Type

Two different types of recombination are available from the operator set enumer-
ated in section 3.2.2: global intermediary recombination and uniform crossover.
The first creates an individual by computing the mean value of all parents, whereas
the latter builds up new combinations of the parents’ components. As an individual
consists of two different types of variables (object and sigma values), the recombi-
nation can be done in four ways. However, those using intermediary recombina-
tion on the object variables have been totally left out because their optimization
ability during first tests appeared to be very low.

Why does this happen? Intermediary recombination always tends to draw the used
components towards a mean value. Hence, the object values are focussed on a
small range if generated this way. While doing labeling of maps, preservation of
diversity seems more important than a concentrated search. As the object variables
of the individuals consist of the label coordinates, the good positions may hopefully
be combined if the crossover recombination is used. Nevertheless, both operators
have been applied to the sigma values.

Experiment: All 14 maps, intermediary recombination and uniform crossover on

4.2. ON SEARCH FOR GOOD PARAMETERS 45

Figure 4.5: Initial state of labeled map of Guam.

the sigma values, total runs: 56

Analysis: The comparison plot reveals a higher mean convergence if uniform crossover
is used.

Discussion: That is what has been expected. I assume the slightly better perfor-
mance of the ES with uniform crossover originates from a greater diversity of
the sigma values. The use of uniform crossover is recommended for recom-
bination of object variables and sigma values.

4.2.2 �

� is one of two external parameters provided to the ES to control self-adaptation of
the sigma values towards the problem’s fitness landscape.3

Mutation of an object variable � � basically works by adding a normally distributed
random number the variance of which is determined by the appropriate mean step
size ��� (equation 4.1, cited from [30]). As described by the upper line of the equa-
tion, � � itself undergoes a change before it is applied to � � . The mutation of � � is
strongly influenced by � � and � . The former is a global factor weighting a random

3This is not the FitnessLandscape used for positioning evaluation but the multi-dimensional
search space the individuals are moving in.

46 CHAPTER 4. OPTIMIZING MAPS

Figure 4.6: Last recorded map of Guam, ending the optimization run
started with the map in figure 4.5.

number
� � ����� � that is the same for all object variables of the individual whereas the

latter indicates the weight of each component’s private random number
� � � ����� � .

Hence, a higher value of � or � � means faster motion of the �	� .
The self-adaptation stated above works by selection of the ”better” individuals.
Although the mean step sizes do not affect the fitness directly, they control the
dynamic behaviour of the object variables. In the long run, individuals whose � � are
appropriate for the landscape are able to move more efficiently towards its minima
and are thus selected whereas the others jump around or hold position in the search
space.

Since fast adaptation can lead into local minima, chosing � and � � always means a
trade-off between convergence speed and probability. Small � and �� values may
waste time and great ones may get the ES stuck in a good but not optimal position.
Despite the recommendations of � � �

�� � � and � �
�� � � � , proposed in [8], I used

constant values inbetween �!) � and �!) �
for almost all experiments.

��� � �(� � � � � � � � � ����� � � � � � � ����� � � �� �� � � � � � �� � � � ����� � (4.1)

Experiment: All 14 maps, � ranges from �!) � to �!) �
by steps of �!) � , number of total

runs: 70

4.2. ON SEARCH FOR GOOD PARAMETERS 47

1

10

100

0 5000 10000 15000 20000 25000 30000

fi
tn

es
s

fitness function calls

Puerto Rico

global intermediary recombination
uniform crossover

Figure 4.7: Comparison of recombination types while labeling the
Puerto Rico map (accumulated fitness of 2 runs each).

Analysis: The mean value of the convergence rates raises from � � �!) � to � � �!) 	
and then falls again. The best convergence ever is reached at � � �!)�� which
is also the parameter setting with the smallest deviations which means good
convergence behavior is most probably reached.

Discussion: The recommended value of � is approximately �!)�� .

4.2.3
�

and �

Usually, one would expect variations of � and � being discussed separately. How-
ever, parameter experiments revealed some similarity of the results received from
varying each of them. This may be due to the different degree of selection pressure
they exert on the offspring individuals.

� denotes the number of offspring individuals that is created while computing one
generation. Therefore, a higher ratio of � to � (which is the number of surviving
individuals) entails a higher selective pressure. For all runs with varying values of
� , � has been set to � .

For an ES that uses aging as a compromise between ”hard” ,-selection and ”soft”
+-selection, � denotes the maximum number of generations an individual can sur-
vive. All tests with different values of � were run with a

� � � ��� � � -ES.

Experiment: 1. All 14 maps, � ranges from � � to � � � by steps of � � , number of
total runs: � � � .

48 CHAPTER 4. OPTIMIZING MAPS

1e-05

0.0001

0.001

0 1

m
ea

n
co

nv
er

ge
nc

e
ra

te

0=global intermediary recombination, 1=uniform crossover

all maps

[min,max]

Figure 4.8: Comparison of recombination types for whole test set of
maps (accumulated convergence rates of 28 runs each).
Although global intermediate recombination performs
better on the Puerto Rico map (figure 4.7, the uniform
crossover barely wins the race for all 14 maps.

2. The full test set, �&$ 0 � � � ��� � 	 � � ��� 7 , total runs: �
	 .

Analysis: The effect of different selection pressures on the convergence rates re-
sults in a waveform Since the shape of this waveform is quite similar in case
of the � and the � test, they are both shown in figure 4.15.

Discussion: It is undeer why the two peaks of either plot are both located at a very
low (�����) and a standard value (� ��� �

), but as the second one seems more
robust, it should be recommended for further use.

Notice that only one of the two parameters was changed at a time while the
other was set to � � � and � � � � , respectively. The behavior of the ES may
change for different combinations.

If the set of parents is very stable for the time the individuals are allowed
to stay therein, the � -selection ES is comparable to a ,-strategy with a higher
� . The number of individuals getting the chance to supplant a parent grows
with increasing � and � . The main difference is the temporal stretching of the
selection process in case of the � -selection.

However, some correlation of the selection pressure arising from equivalent
values of � and � can be assumed from figure 4.15. Taking this into consid-
eration, I propose the following hypothesis: the selection pressure exerted
on the population by a � selection is proportional to the one produced by an

4.2. ON SEARCH FOR GOOD PARAMETERS 49

1

10

100

0 5000 10000 15000 20000 25000 30000

fi
tn

es
s

fitness function calls

Guam

tau = 0.1
tau = 0.2
tau = 0.3
tau = 0.4
tau = 0.5

Figure 4.9: Optimization of map Guam, using 5 different � settings
inbetween

�����
and

�����
.

equivalent ratio of dying to surviving individuals under some circumstances
(equation 4.2).

� �
� � � �

�
�

(4.2)

By pure chance, the values that were remaining constant while the others
were varied are equal in terms of 4.2: � �
	 ��� ���� . Nevertheless, this hypothesis
has to be investigated further, using a larger amount of optimization runs.

4.2.4 �

� is the number of parents used to build up a new individual during recombination.
Therefore, it measures the speed of ”communication” by which good components
are spread out into the entire population.

Experiment: All 14 maps, � $ 0 � � � ��� � 	 � � ��� 7 , number of total runs: 84.

Analysis: The rise of the mean convergence rates seems to reach its climax at � �
	 . Unfortunately, no labelings have been done with � � � . Nevertheless,
decreasing convergence rates for greater parent numbers seem to be more
likely than increasing ones, according to figure 4.17.

50 CHAPTER 4. OPTIMIZING MAPS

1e-05

0.0001

0.001

0 0.1 0.2 0.3 0.4 0.5 0.6

m
ea

n
co

nv
er

ge
nc

e
ra

te

tau

all maps

[min,max]

Figure 4.10: Accumulated convergence rates for the entire set of test
maps (14 runs per value of �).

Discussion: If � is set to � , recombination is eliminated. Hence, mutation has to do
all optimization. Probably, the best individual has to adapt the ��� on its own
and removes conflict after conflict, producing a fitness development looking
like a stairway (figure 4.16).

Since � � � means total isolation and � � � is immediate and unlimited
communication, a compromise between these two extremes may serve well.
By this trade-off the disadvantages of either side should be avoided, resulting
in weak locality (though no topology is imposed on the individuals) and slow
communication. This finding complies with a similar one documented in [24].

If ��� � � holds, information (good label positions) of all parent individuals
may be gathered within two generations. As this appears to be advantageous,
a recommended setting of � � � � is concluded.

4.3 Adjusting Fitness Weights and Minimum Distances

The weights used to measure different components of the fitness function may have
enormous influence on the ES’s ability to find good labelings. Since they indicate
the most ”profitable” changes of the object variables, optimization is driven to con-
sider the referring subtasks first. For a MLP, removing any overlap has been con-
sidered the primary target. Therefore, utilized conflict weights are approximately
� � � � � times higher than the one of relative positioning which forces the ES to forget
about aesthetics as long as conflicts can be resolved. However, weight balance of

4.3. ADJUSTING FITNESS WEIGHTS AND MINIMUM DISTANCES 51

10

100

0 5000 10000 15000 20000 25000 30000

fi
tn

es
s

fitness function calls

Rhode Island

lambda = 30
lambda = 40
lambda = 50
lambda = 60
lambda = 70
lambda = 80
lambda = 90

lambda = 100

Figure 4.11: Fitness while labeling the Rhode Island map with dif-
ferent settings of � . Center values with ����� � ����� �	��
 ��
do not climb down to the range of ”good” results.

these two components has been subject to further investigations reported in sec-
tion 4.3.2.

Fixing minimum distances is a difficult task because it requires a trade-off between
readability and problem complexity. If many sites are packed densely and thus
occupy the area of maximal attach distance of each other, the optimization may fail
in finding a valid labeling because none exists. This is understood easily if two sites
with identical geographic positions should be labeled by hand, given �
���� � � � 4.
Each site draws near its own label but pushes away the foreign one, resulting in an
unsolvable deadlock. Therefore, ��� has been adjusted to be equal to �
����

.

4.3.1 Recovering Lost Labels

At first, the weight used for conflicts of labels with borders has been set equal to
the one for label-label overlap. Hence, some sites laying aside a border lost their
labels. If these have been located near to many other sites, those labels pressed
them off the map sheet. Since crossing a label is quite ”expensive” in terms of the
fitness function, they had to stay outside as long as the border remained ”guarded”
by another label.

Therefore, the border-conflict weight has been dramatically increased to a value
much higher than the other weight factors. This forces the labels to be kept inside

4This requirement has been laid down in section 2.1.2

52 CHAPTER 4. OPTIMIZING MAPS

0.0001

20 30 40 50 60 70 80 90 100 110

m
ea

n
co

nv
er

ge
nc

e
ra

te

number of offspring individuals

all maps

[min,max]

Figure 4.12: Mean convergence rates of the entire set of test maps
labeled, varying � . The two settings ��� � �

and ����� �
appear to be most advantageous.

the map’s borders and removes this type of conflict after a few generations.

4.3.2 Balance of Positioning and Overlap Avoidance

The aim of this section has been to find another weight � � of the external relative
positioning quality function � �! � � � ��� � which had been integrated into the fitness
function to represent aesthetic criteria. Therefore, optimization runs with � � rang-
ing from �!) � � � � (that is �� � � � � � of the label-site conflict weight � � +) to � � have been
carried out.5 The results cannot be presented using an ordinary comparison plot.
As, for great � � , the fitness of the start individuals changes dramatically, the con-
vergence rate defined in equation 2.14 is distorted.

However, manual interpretation reveals no advantage of different � � . For a wide
range of �!) � � � � � � � � �!) � , almost no change in the ES’s attitude towards the
two targets ”conflict removement” and ”aesthetic placement” can be recognized. If� � comes close to � � + (which is �), more and more conflicts remain because the ES
concentrates on gaining profit from finding optimal relative placements.

Solving both problems at once appears to be impossible with the used fitness func-
tion.

5Actually, test settings have been � � ��� �
	 &
#���
 ��	 &
#�����
 �
	 &
#�� �
 ��	 &
#�� �
 �
 � #�� .

4.4. INVESTIGATING MAP COMPLEXITY 53

1

10

100

0 5000 10000 15000 20000 25000 30000

fi
tn

es
s

fitness function calls

Massachusetts

kappa = 1
kappa = 2
kappa = 3
kappa = 4
kappa = 5
kappa = 6

Figure 4.13: Optimization of map Massachusetts with various val-
ues of maximum lifetime. Best performance results for
� � �

and � �
�
.

4.4 Investigating Map Complexity

While testing the ES on labelings of different complexity, two directions appear
worthwile investigating:

1. How does increasing map size affect the ongoing of optimization?

2. May a rule for complexity estimation be derived from experiments with grow-
ing feature sizes (and therefore increasing global feature density)?

Experiments with maps of increasing size revealed no significant change of perfor-
mance if the added areas are not overcrowded with features.

Since it is difficult to summarize results on feature sizes as the appropriate values
depend on the map’s attributes, two maps are investigated separately.

Experiment: map of Oklahoma (on which features are arranged very regularly), 12
different feature sizes from � � � � �!) � � � � � to � � � � �!) � � � � ��� � � � , number of
total runs: 24

Analysis: The last valid labeling lies on the edge of a peak in figure 4.18, conver-
gence rates decline from there on.

Discussion: To predict a feature size that enables a valid labeling, it would be nec-
essary to find the peak on the left of figure 4.18 and then detect its edge. For

54 CHAPTER 4. OPTIMIZING MAPS

0.0001

0 1 2 3 4 5 6 7

m
ea

n
co

nv
er

ge
nc

e
ra

te

maximal lifetime of an individual

all maps

[min,max]

Figure 4.14: Accumulated convergence rates for the entire test set,
varying � . Labeling performs best with � � �

or � � �
.

higher feature sizes, the convergence rates are falling fast at first and then
reach a level of saturation.

Experiment: map of Kansas, 12 different feature sizes from � � � � �!) � � � � � to � � � �
�!) � � � � � � � � � � , total runs: 24

Analysis: The behavior of the ES appears similar to the one exhibited while opti-
mizing maps of Oklahoma, except for the peak on the left side of figure 4.19
which seems to be much broader.

Discussion: The steps found in the interpolation of the mean convergence rates
may be originated by the map areas which are densely crowded, as is Kansas
City. These feature centers seem to ”collapse” if the feature size is increased
beyond a certain threshhold, resulting in high penalties for many new con-
flicts. But in order to reach statistical significance, more optimization runs on
different maps have to be carried out.

Additionaly, the development of the global feature density (see equation 2.13 on
page 20) has been observed while changes to the feature sizes have been tested. As
a rule of thumb, it can be concluded that labeling becomes ”very difficult” if the
global feature density increases to more than � � %.

4.4. INVESTIGATING MAP COMPLEXITY 55

0.00012

0.00013

0.00014

0.00015

0 1 2 3 4 5 6 7

m
ea

n
co

nv
er

ge
nc

e
ra

te

maximal lifetime & ratio of dying to surviving individuals

all maps

(lambda - mu) / mu
kappa

Figure 4.15: The mean convergence rates (figures 4.14 and 4.12) of
experiments with different values of � and � , plotted
into one coordinate system. Results of tests varying �
are transferred to ��������

�
.

0.01

0.1

1

10

100

0 5000 10000 15000 20000 25000 30000

fi
tn

es
s

fitness function calls

Moloka‘i

rho = 1
rho = 2
rho = 3
rho = 4
rho = 5

Figure 4.16: Fitness development while varying � , the number of
parents of each individual. Best performance with � � �
and � � �

.

56 CHAPTER 4. OPTIMIZING MAPS

1e-05

0.0001

0.001

0 1 2 3 4 5 6 7

m
ea

n
co

nv
er

ge
nc

e
ra

te

number of parents used for recombination

all maps

[min,max]

Figure 4.17: Convergence rates of (14 runs each) labelings with
changing number of parents used to create an individ-
ual (�). Good performance results for ��� � .

1e-05

0.0001

0.001

2e-05 2.5e-05 3e-05 3.5e-05 4e-05 4.5e-05 5e-05 5.5e-05 6e-05

m
ea

n
co

nv
er

ge
nc

e
ra

te

size of 1 pt

Oklahoma

interpolated convergence rate
last valid labeling

Figure 4.18: Accumulated convergence rates for the map of Okla-
homa, varying the feature sizes.

4.4. INVESTIGATING MAP COMPLEXITY 57

1e-05

0.0001

0.001

1e-05 1.25e-05 1.5e-05 1.75e-05 2e-05 2.25e-05 2.5e-05 2.75e-05

m
ea

n
co

nv
er

ge
nc

e
ra

te

size of 1 pt

Kansas

interpolated convergence rate
last valid labeling

Figure 4.19: Accumulated convergence rates for the map of Kansas,
varying the feature sizes.

Chapter 5

Evolving the Algorithm

Since the observed performance of the ES while labeling maps is good but not over-
whelming, some changes in the algorithm have been tested, striving for better con-
vergence rates. Without a fair on-line visualization of the optimization, none of
these proposed changes would have been possible.

5.1 Variation of the Mutation Rate

This invention has been made to increase the ability of the ES to jump out of dead-
locks which may arise if a label gets stuck on the ”wrong” side of its point feature
and is surrounded by sites to all directions it can travel to. Fitness costs of crossing
(this means penalization due to overlap) any site are very high, holding the label at
its suboptimal position. If the ES is allowed to do some steps without evaluation, it
may be able to ”cheat” the fitness function.

Therefore, the commonly used concept of mutation probability �
 has been ex-
tended to an assured mutation (if �
 � �) and an additional one carried out with a
probability of �
 � � .

Experiment: 8 of 14 maps, � � mutation rates inbetween �!) � and ��) � , number of total
runs: 480

Analysis: The ES performs best if the mutation rate is set to �!) � , �) � � �)�� or �)�� .
Leaving out � �

% of all mutation events or adding on another approximate
� �

% the standard ES mutation rate seems the be of advantage.

Discussion: The success of mutation rates �
 $ � �) � ���)�� 	 may be due to the per-
mitted ”unwatched steps” which may enable crossing of densely crowded
areas.

5.2. INCREMENTAL MAP ASSEMBLY 59

1e-05

0.0001

0.001

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

m
ea

n
co

nv
er

ge
nc

e
ra

te

mutation rate

8 maps

[min,max]

Figure 5.1: Mean convergence rates for different mutation rates, ev-
ery entry is generated from 24 runs.

5.2 Incremental Map Assembly

An incremental approach to map labeling may be rewarded by two advantages:

1. The amount of calculation used for conflict evaluation decreases if there are
fewer features most of the time of the optimization run.

2. Placement by insertion may be easier than by movement.

Therefore, the ES has been modified to allow incomplete individuals. To keep re-
combination working, the full component block (2 object variables and sigma val-
ues for every label) is used as before with some components declared as void. Some
semantic structure had to be added, too, because a label position containing a valid
distance and an undefined angle (or vice versa) can not be interpreted properly.
Hence, a parameter called buildingBlock has been invented to tell the ES the num-
ber of components that should be treated as one in terms of recombination. To
ensure incomplete start individuals, the initialization has been changed to use a
probability � � � � � � for any component instead of � � � � for the standard ver-
sions of the ES. As the buildingBlock is � in this application, the likelihood of both
components being initialized is � �� .
Individiduals (Maps) with less valid components will probably have a reduced
number of conflicts. Therefore, the fitness function has been changed to a relative
value

� � �� , with the number of valid labels % . As a reward for more complete maps,

60 CHAPTER 5. EVOLVING THE ALGORITHM

the denominator has been increased1, reducing the fitness of highly filled maps by
far below the one of sparsely populated maps with similar relative fitness. Never-
theless, this approach failed. No complete maps emerged, even if they had been
produced with the standard method. As soon as conflicts arised, further insertion
of labels stopped.

Within a second approach, I tried to elude this weakness using a repair operator.
After recombination has been finished, the operator is run on every new individ-
ual, searching for invalid components and repairing them with a probability of � � .
Hence, a valid component of one of the parents is chosen randomly and inserted
instead of the void one. As the individuals are repaired permanently, this creates a
counterpressure to the fitness losses arising from the insertion of new labels.

However, � � and � � need to be balanced carefully. If � � or � � are too low, the algo-
rithm may diverge. On the other hand, high values of ��� and � � reduce the compu-
tation time savings earned from the incompleteness of the individuals. Therefore,
two experiments have been accomplished to conceive proper values for each pa-
rameter.

Experiment: all maps, � � $ 0 �!) � � �!)�� � �!) 	 � �!) � 7 , total number of runs: 56

Analysis: The comparison plot of mean convergence rates reveals no information
in this case because the number of labels actually used must come close the
number of sites in the end. Therefore, optimization runs on two maps, de-
picted on figures 5.4 and 5.5, are examined further on.

Discussion: Whereas in figure 5.4, nearly all settings of � � lead to a full map, some
sites remain unlabeled in case of the Northern Mariana Islands map 5.5. The
ideal value of � � seems to depend on the labeled map, but � � � �!) � suffices to
succeed in most cases.

Experiment: all maps, �	�*$ �!) 	 � �!) � � �!)�� � �!) � � �!) ��� �) � , number of total runs: 168

Analysis: Runs on the maps of the Northern Mariana Islands (figure 5.6) and of
Louisiana (figure 5.7) are examined. Differences of the results for various
values of � � appear to be smaller than those received from changing � � .

Discussion: As the fitness plots look similar for all tested values of � � , a low ini-
tialization probability may be chosen to save time in the conflict evaluation.

Anyway, the value of � � may be of higher relevance to the ongoing of the
optimization.

1Several possibilities have been tested, for example: �
� 	���
�
� and �

� 	��� .

5.2. INCREMENTAL MAP ASSEMBLY 61

Figure 5.2: Initial state of the map of the Northern Mariana Islands,
with ��� set to

�����
.

If the ES fails to find a complete map because none without conflicts exists, the
incremental map assembly may be used for labeling tasks with point selection al-
lowed. Due to selection of better maps, the omitted labels will mostly be the ones
with the worst conflict values.

62 CHAPTER 5. EVOLVING THE ALGORITHM

Figure 5.3: Last recorded map of the optimization that begun with
the map in figure 5.2.

5.2. INCREMENTAL MAP ASSEMBLY 63

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

nu
m

be
r

of
 la

be
ls

fitness function calls

Delaware

p(repair) = 0.2
p(repair) = 0.3
p(repair) = 0.4
p(repair) = 0.5

Figure 5.4: Integration of labels into the map of Delaware, testing
different repair probabilities. The horizontal line at the
upper marks the number of sites. Initialization probabil-
ity ��� was set to

��� �
constantly.

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000

nu
m

be
r

of
 la

be
ls

fitness function calls

Northern Mariana Islands

p(repair) = 0.2
p(repair) = 0.3
p(repair) = 0.4
p(repair) = 0.5

Figure 5.5: Integration of labels into the map of Marianas, testing
different repair probabilities � � . The horizontal line at
the upper marks the number of sites. Initialization prob-
ability ��� was set to

��� �
, constantly. Notice that lines end

if a value remains stable until the optimization finishes.

64 CHAPTER 5. EVOLVING THE ALGORITHM

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000 14000 16000

nu
m

be
r

of
 la

be
ls

fitness function calls

Northern Mariana Islands

p(init) = 0.4
p(init) = 0.5
p(init) = 0.6
p(init) = 0.7
p(init) = 0.8

Figure 5.6: Integration of labels into the map of Marianas, varying
the probability of initialization of a component while
constantly setting � � to

��� �
. The horizontal line at the

upper marks the number of sites.

80

85

90

95

100

105

110

115

120

125

130

0 5000 10000 15000 20000 25000 30000

nu
m

be
r

of
 la

be
ls

fitness function calls

Louisiana

p(init) = 0.4
p(init) = 0.5
p(init) = 0.6
p(init) = 0.7
p(init) = 0.8

Figure 5.7: Integration of labels into the map of Louisiana, varying
the initialization probability of each component. The hor-
izontal line at � � � ���

r marks the number of sites. The
repair probability has been constantly set to

��� �
.

Chapter 6

Conclusion

The cardinal point this thesis dealt with is the question whether an algorithm based
on a ES is capable of solving MLPs. This can be answered positively.

Within chapters 4 and 5, a great portion of the optimization runs succeeded in la-
beling their map (if a valid solution existed at all). Furthermore, some recommen-
dations for robust ES parameters emerged from diverse experiments (table6.1).1

However, these conclusions depend on the used set of test maps. Another set may
yield different results despite the fact that the used mixture of inland, coastal and
island regions embodies a great diversity which adds some reliability to the out-
come.

Due to restrictions mentioned in section 1.3, the algorithm can not be used for map-
making in practice yet, but since the fitness function is modular, extensions only
require inventing some additional terms. Integration of new point feature types is
very easy, only affecting the map representation, not the algorithm. The algorithm
is general as has been demanded — the modeling presented in chapter 2 may serve
as foundation for alterations if emphasis on conflict avoidance of point features
changes to other fields.

1Initialization and termination may be set meeting special needs or referring to [27].

parameter meaning recommended value� recombination type descrete for object variables and sigma values� number of parents of one individual �
 � �
, (4 if

�
 ��)� learning rate, used for mutations of
� � � ��� �

sel selection operator � - selection� maximal lifetime of an individual 2 or 5, depending on � .�
, � parent and offspring numbers (�� �
	 �), influenced by selection operator.

Table 6.1: Recommendations for ES parameters while solving
MLPs.

66 CHAPTER 6. CONCLUSION

Weight adjustment and settings of the minimal distances are optimized for testing
and should be reconsidered by some person experienced with map-making. If the
algorithm continues to find good labelings whenever being provided with test data
of different sources, it is probably capable of solving real world problems as well.

Comparison with other methods described in the first chapter had to be omitted
but should be carried out in future.

A statement concerning the use of JAVA : many problems arose from the ”misuse”
of this interpreted language for numerical optimization. Hence, the cardinal dis-
advantage with respect to this aim is its slowness while performing floating point
calculation. Despite of these deficiencies, the language is well suited for object-
oriented design and all kinds of applications requiring intense graphical interaction
(as map-making does).

6.1 Where to go from here

The vast amount of time needed to perform a good labeling is the only reason
that renders the application of the described algorithm more difficult. Therefore,
it should be compiled with a not yet existing JAVA-bytecode compiler once all re-
quired functionality has been added. If this does not suffice for the needs of on-line
map-making, the incremental approach of section 5.2 may be considered for further
investigation. It is also applicable if automated point selection is permitted.

Another way to gain speed is parallelization. Without any changes to the algo-
rithm, performance would be multiplied by parallel computation of the individ-
uals. Other methods become available if changes to its structure are considered.
Since the optimization of many small maps is of great advantage for the speed of
their conflict evaluation, big ones may be split up if clusters are found easily.

This is a new problem which remains unsolved.. . .

Bibliography

[1] Gene M. Amdahl. Validity of the Single-Processor Approach to Achieving
Large Scale Computing Capabilities. In AFIPS Conference Proceedings, vol-
ume 30, pages 483–485, AFIPS Press, Reston, Virginia, 1967.

[2] Henry K. Beller. Problems in Visual Search. In International Yearbook of Carto-
graphy, pages 137–144. Kirschbaum, Bonn Bad Godesberg, 1972.

[3] Jon Christensen, Joe Marks, and Stuart Shieber. Labeling Point Features on
Maps and Diagrams. Technical Report TR-25-92, Harvard University, Cam-
bridge, Massachusetts, December 1992.

[4] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of al-
gorithms for point-feature label placement. ACM Transactions on Graphics,
14(3):203–232, 1995.

[5] Shawn Edmondson, Jon Christensen, Joe Marks, and Stuart Shieber. A General
Cartographic Labeling Algorithm. Cartographica, (to appear), 1996.

[6] ARC/INFO - The World’s GIS. Technical report, Environmental Systems Re-
search Institute, Inc., Redlands, California, March 1995.

[7] Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD the-
sis (Dr.-Ing. Dissertation), Technical University of Berlin, Department of Pro-
cess Engineering, 1974/75.

[8] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, volume 26 of Interdisciplinary Systems Research. Birkhäuser,
Basel, 1977.

[9] Stephen A. Hirsch. An Algorithm for Automatic Name Placement Around
Point Data. The American Cartographer, 9(1):5–17, 1982.

[10] John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Michigan, 1975.

[11] Josef Hoschek. Mathematische Grundlagen der Kartographie. Bibliographisches
Institut, Mannheim, 1984.

67

68 BIBLIOGRAPHY

[12] Il’ja N. Bronštejn and K. A. Semendjajew. Taschenbuch der Mathematik. Deutsch,
Thun, 1989.

[13] Eduard Imhof. Die Anordnung der Namen in der Karte. In International Year-
book of Cartography, pages 93–129. Kirschbaum, Bonn Bad Godesberg, 1962.

[14] Eduard Imhof. Kartographische Geländedarstellung. de Gruyter, Berlin, 1965.

[15] Ingo Rechenberg. Evolutionsstrategie—Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.
(Dr.-Ing. Dissertation, Technical University of Berlin, Department of Process
Engineering, 1971).

[16] Kurt Mehlhorn. Multi-dimensional Searching and Computational Geometry. Data
Structures and Algorithms 3. Springer, Berlin, 1984.

[17] Lawrence J. Fogel and A. J. Owens and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, New York, 1966.

[18] Joe Marks and Stuart Shieber. The Computational Complexity of Cartographic
Label Placement. Technical Report TR-25-92, Harvard University, Cambridge,
Massachusetts, December 1992.

[19] Martin Schütz. Eine Evolutionsstrategie für gemischt-ganzzahlige Opti-
mierungsprobleme mit variabler Dimension. Master’s thesis, Universität
Dortmund, September 1994.

[20] Paul Bühler. Schriftformen und Schrifterstellung. In International Yearbook of
Cartography, pages 153–180. Kirschbaum, Bonn Bad Godesberg, 1961.

[21] Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An In-
troduction. Springer, New York, corr. and expanded 2nd print., 1988.

[22] Ralf Hartmut Güting. Datenstrukturen und Algorithmen. Teubner, Stuttgart,
1992.

[23] Günter Rudolph. An Evolutionary Algorithm for Integer Programming. In
Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Parallel Problem Solving
From Nature, 3, pages 139–148, Springer, Berlin and Heidelberg, 1994.

[24] Günter Rudolph and Joachim Sprave. Significance of Locality and Selec-
tion Pressure in the Grand Deluge Evolutionary Algorithm. In Hans-Michael
Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors,
Parallel Problem Solving From Nature, 4, pages 686–695, Springer, Berlin and
Heidelberg, 1996.

[25] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object Oriented Modeling and Design. Prentice-Hall, Eagle-
wood Cliffs, 1991.

BIBLIOGRAPHY 69

[26] Vasco Alexander Schmidt. Reine Forschung, praktische Resultate. DIE ZEIT,
(18):45, April 1995.

[27] Hans-Paul Schwefel and Günter Rudolph. Contemporary Evolution Strate-
gies. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors, Advances in
Artificial Life, Third European Conf. on Artificial Life, Granada, Spain, June 1995,
pages 893–907, Springer, Berlin, 1995.

[28] Joachim Sprave. Evolutionäre Algorithmen zur Parameteroptimierung. Infor-
mation Processing Letters, 43(3):110–117, 1995.

[29] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. PhD thesis
(Dr. rer. nat.-Dissertation), Universität Dortmund, Department of Computer
Science, September 1994.

[30] Thomas Bäck and Frank Kursawe. Evolutionary Algorithms for Fuzzy Logic:
A brief Overview. In Fifth Int’l Conf. IPMU: Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, volume II, pages 659–664,
Paris, July 1994.

[31] U.S. Department of the Interior, U.S. Geological Survey. Geographic Names
Information System–Data Users Guide 6. Reston, Virginia, 1987.

[32] Frank Wagner. Approximate Map Labeling is in
����� � ��� �	� . Information Pro-

cessing Letters, 52:161–165, 1994.

[33] Frank Wagner and Alexander Wolff. An Efficient and Effective Approximation
Algorithm for the Map Labeling Problem. In Proceedings of the 3rd Annual
European Symposium on Algorithms (ESA 1995), pages 420–433, 1995.

[34] Herbert Wilhelmy. Kartographie in Stichworten. Hirt, 1990.

[35] Alexander Wolff. Map Labeling. Master’s thesis, Freie Universität Berlin, 1995.

[36] Chyan Victor Wu and Barbara P. Buttenfield. Reconsidering Rules for Point-
Feature Name Placement. Cartographica, 28(1):10–27, spring 1991.

[37] Pinhas Yoeli. The Logic of Automated Map Lettering. The Cartographic Journal,
9(2):99–108, December 1972.

