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Summary

e Understanding the behavior of TSP solvers is still difficult.

e Here:
— Three algorithms
e 2-Approximation
o 3/2-Approximation (Christofides)
e Local search 2-opt*
- Feature-based comparison
e what makes instances hard/easy

— Cross-comparison




9 School of Computer Science

Motivation, and the Travelling

Salesperson Problem

Life Impact . b=
|7 Ny
http://blogs.oc.edu/e’e/images/uploadéfe’lc

L -

1.talyT0ur2_thumb .png

=y =




Motivation

Understanding algorithm performance for hard optimization
tasks is still difficult

More precisely: given an instance I, it is often hard to
predict the performance of an algorithm A, without running
A on [.

Classical approach (worst/average case) hardly captures
real-world performance

Hyper heuristics (optimization domain, machine learning)
focus on finding the conditions that determine the
algorithm performance in advance.

Understanding important for (automated) algorithm
selection.




Motivation

e Smith-Miles, Lopez [8] classify directions

— Automatic algorithm selection is based on (learned
knowledge from) previous algorithm performance

— Analyze algorithms and problems

theoretically/experimentally, to understand the reasons,
to influence future algorithm design for more complex
problems

e Here: we do both

— We generate hard/easy instances, and characterize them

— Insights can be used for performance prediction to
support algorithm selection.




Travelling Salesperson Problem (TSP)

Famous combinatorial NP-hard problem

Given a set of n cities {1,...,n}, and a distance matrix
d=(d;), 1=i,j=<n, the task is to compute a tour of minimal
length, which visits each cities once, and returns to the
origin.

Euclidian TSP (cities in the plane, Euclidian distances) is
still NP-hard, and a special case of the Metric TSP
(distances fulfill triangle inequalities, different
approximation algorithms are known)
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Instance Generation

Approach by Mersmann et al. [6]
e Evolve hard/easy instances with an evolutionary algorithms
e Difficulty assessment (other measures possible)

— a,(I) approximation ratio of algorithm A on instance I
- a,(I)=A(I)/OPT(I)

Note:

e an algorithm is a r-approximation algorithm,
if a,(I)<r holds for all instances.

e OPT(I) computed by CONCORDE [1]




Instance Generation

Use non-determinism: repeat runs for collections

2-Approximation
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Hard: maximize a,(I)

Easy: minimize a,(I)

3/2-Approximation




Investigated Features

Mersmann et al. [6] (total: 46 features)

Distance features: the cost distribution ...

Cluster features: number of cluster, mean distance to
centroid, ...

Nearest Neighbour distance features: minimum, maximum,
mean, standard deviation, ...

Centroid features: coordinates, distance to other nodes, ...
MST features: min/max/stdev/... of depth/distance values,...
Angle features (between node and its two NN): min/max/...

Convex Hull features: area, number of nodes defining CH, ...
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Algorithm 1: 2-Approximation algorithm

mput : Graph G Subgraph connecting all
output: Hamiltonian cycle S vertices, with minimum weight

Build a minimum spanning tree MST T’ of G;
Duplicate all edges, forming the graph U;
Create an Euler cycle S in U;

Make S Hamiltonian by skipping already seen
return S;

Wl = W R

Algnrlthm 2: Christofides 3/2-approximation al
Set of pair-wise non-adjacent edges
2 Fmd a minimum-weight perfect matching M on the set of
nodes having an odd degree;
3 Combine the edges of M and T to form the graph U;




Step 1: Eye-Balling
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Step 2: Analysis

2-Approximation

100

Asea

1.82

Distances of cities (optimal
tour) are more uniform in
the hard instances

Standard deviations of the
distances (optimal tour) of
the easy instances are
roughly twice as high than
for the hard instances
when considering small
instance sizes. (decreases
with n)

Easy instances: small
clusters (more uniform
distribution in the hard
instances)
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Step 2: Analysis

2-Approximation
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Easy instances: smaller
angles (optimal tours)

Mean angle values for
easy/hard instances
slightly decrease with the
instance size.

Instance shapes for small
instances structurally differ
from the respective shapes
of larger instances.
Consequently, the area
covered by the convex hull
is higher for larger
instances.
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3/2-Approximation

25

30

Step 2: Analysis

e Visually, easy and hard
instances do not differ

o0 significantly.

e Easy instances:
considerably higher
standard deviations of the
distances (optimal tour).
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Exemplarilz: Differentiating the generated
hristofides Instances
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2-Approximation: distance features
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Value of feature

2-Approximation: c

istance features
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angle, stdev

min dist. to centroid
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Cross-Comparison: 2-Approximation,
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2-Approximation instances (n=25) on...
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3/2-Approximation instances (n=25) on...
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2-Opt instances (n=25) on...
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Thank you!
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