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Summary

• Understanding the behavior of TSP solvers is still difficult.

• Here:

– Three algorithms– Three algorithms

• 2-Approximation

• 3/2-Approximation (Christofides)

• Local search 2-opt*

– Feature-based comparison

• what makes instances hard/easy

– Cross-comparison
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Motivation

• Understanding algorithm performance for hard optimization 
tasks is still difficult

• More precisely: given an instance I, it is often hard to 
predict the performance of an algorithm A, without running 
A on I. A on I. 

• Classical approach (worst/average case) hardly captures 
real-world performance

• Hyper heuristics (optimization domain, machine learning) 
focus on finding the conditions that determine the 
algorithm performance in advance.

• Understanding important for (automated) algorithm 
selection.
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Motivation

• Smith-Miles, Lopez [8] classify directions

– Automatic algorithm selection is based on (learned 
knowledge from) previous algorithm performance

– Analyze algorithms and problems 
theoretically/experimentally, to understand the reasons, theoretically/experimentally, to understand the reasons, 
to influence future algorithm design for more complex 
problems

• Here: we do both

– We generate hard/easy instances, and characterize them

– Insights can be used for performance prediction to 
support algorithm selection.
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Travelling Salesperson Problem (TSP)

• Famous combinatorial NP-hard problem

• Given a set of n cities {1,…,n}, and a distance matrix 
d=(dij), 1≤i,j≤n, the task is to compute a tour of minimal 
length, which visits each cities once, and returns to the 
origin.origin.

• Euclidian TSP (cities in the plane, Euclidian distances) is 
still NP-hard, and a special case of the Metric TSP 
(distances fulfill triangle inequalities, different 
approximation algorithms are known)
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Instance Generation

Approach by Mersmann et al. [6]

• Evolve hard/easy instances with an evolutionary algorithms

• Difficulty assessment (other measures possible) 

– aA(I) approximation ratio of algorithm A on instance I– aA(I) approximation ratio of algorithm A on instance I

– aA(I)=A(I)/OPT(I)

Note:

• an algorithm is a r-approximation algorithm, 
if aA(I)≤r holds for all instances.

• OPT(I) computed by CONCORDE [1]
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Instance Generation

Use non-determinism: repeat runs for collections

Hard: maximize aA(I)
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Easy: minimize aA(I)
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Investigated Features

Mersmann et al. [6] (total: 46 features)

• Distance features: the cost distribution …

• Cluster features: number of cluster, mean distance to 
centroid, …

• Nearest Neighbour distance features: minimum, maximum, 
mean, standard deviation, …

• Centroid features: coordinates, distance to other nodes, …

• MST features: min/max/stdev/… of depth/distance values,…

• Angle features (between node and its two NN): min/max/…

• Convex Hull features: area, number of nodes defining CH, …
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2-Approximation
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3/2-Approximation

Step 1: Eye-Balling

2-Approximation

13



Step 2: Analysis

2-Approximation • Distances of cities (optimal 
tour) are more uniform in 
the hard instances

• Standard deviations of the 
distances (optimal tour) of 
the easy instances are 
roughly twice as high than 
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roughly twice as high than 
for the hard instances 
when considering small 
instance sizes. (decreases 
with n)

• Easy instances: small 
clusters (more uniform 
distribution in the hard 
instances)



Step 2: Analysis

2-Approximation • Easy instances: smaller 
angles (optimal tours)

• Mean angle values for 
easy/hard instances 
slightly decrease with the 
instance size. 
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• Instance shapes for small 
instances structurally differ 
from the respective shapes 
of larger instances. 
Consequently, the area 
covered by the convex hull 
is higher for larger 
instances.



3/2-Approximation

Step 2: Analysis

• Visually, easy and hard 
instances do not differ 
significantly.

• Easy instances: 
considerably higher 
standard deviations of the 
distances (optimal tour).
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distances (optimal tour).

• Mean angles: higher for 
(smaller) easy instances, 
lower for (larger) easy 
instances.



Exemplarily: Differentiating the generated 
Christofides Instances
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2-Approximation: distance features
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2-Approximation: distance features
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2-Approximation: MST features
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2-Approximation vs. 3/2-Approximation
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3/2-Approximation, 2-Opt



2-Approximation instances (n=25) on…

2-Approximation 3/2-Approximation 2-Opt
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3/2-Approximation instances (n=25) on…

2-Approximation 3/2-Approximation 2-Opt
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Note: 2-Opt “beats” 3/2-Approximation here (hard instances)



2-Opt instances (n=25) on…

2-Approximation 3/2-Approximation 2-Opt
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Note: 3/2-Approximation “beats” 2-Opt here (hard instances)



Thank you!
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