
Automatic Design of Algorithms with iRace
for Multi-objective Optimization

and Anytime Optimization

Manuel López-Ibáñez

manuel.lopez-ibanez@ulb.ac.be

IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium

PPSN 2012, Taormina, September 1st, 2012

IRIDIA
Institut de Recherches

Interdisciplinaireset de Développements
en Intelligence Artificielle

mailto:manuel.lopez-ibanez@ulb.ac.be
http://www.ulb.ac.be
http://iridia.ulb.ac.be


Offline Automatic Design of Algorithms

A non-expert user wants to repeatedly solve a problem

Problem
Instances

?

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Offline Automatic Design of Algorithms

How to build a solver for this type of problem?

Solver

Problem
Instances

?

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Offline Automatic Design of Algorithms

The user could rely on an expert

Benchmark
Problems

Solver

?

Problem
Instances

?

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Offline Automatic Design of Algorithms

Can we replace the expert by an algorithm?

Benchmark
Problems

Solver

?

Problem
Instances

?

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Offline Automatic Design of Algorithms

4 Experts focus on creativity and understanding

4 The machine does the boring experiments and statistics

4 Formalize what is implicitly done in experimental research

4 Avoid human biases

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of Algorithms

Offline Tuning / Automatic Configuration

Find the best parameter configuration of a solver
from a set of training instances

Repeatedly use this configuration
to solve unseen instances of the same problem

Automatic Design of Algorithms

Goal: Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a spe-
cific problem.

Solver ⇒ Flexible algorithmic framework
Parameter space ⇒ Design space of the framework

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of Algorithms

Offline Tuning / Automatic Configuration

Find the best parameter configuration of a solver
from a set of training instances

Repeatedly use this configuration
to solve unseen instances of the same problem

Automatic Design of Algorithms

Goal: Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a spe-
cific problem.

Solver ⇒ Flexible algorithmic framework
Parameter space ⇒ Design space of the framework

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of Algorithms

Offline Tuning / Automatic Configuration

Find the best parameter configuration of a solver
from a set of training instances

Repeatedly use this configuration
to solve unseen instances of the same problem

Automatic Design of Algorithms

Goal: Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a spe-
cific problem.

Solver ⇒ Flexible algorithmic framework
Parameter space ⇒ Design space of the framework

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem: How to solve it?

Traditional approach

1 Expert chooses a number of algorithm designs Θ0 ⊂ Θ
2 Expert chooses a number of benchmark problems I0 ⊂ I
3 Estimate cθ for each θ ∈ Θ0,

by computing c(θ, i) for each i ∈ I0
4 The design θ∗ ∈ Θ0 with lowest estimate of cθ

is the “winner”

Disadvantages

8 Same computational effort spent on good and bad designs

8 Small number of algorithm designs chosen a priori

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem: How to solve it?

Traditional approach

1 Expert chooses a number of algorithm designs Θ0 ⊂ Θ
2 Expert chooses a number of benchmark problems I0 ⊂ I
3 Estimate cθ for each θ ∈ Θ0,

by computing c(θ, i) for each i ∈ I0
4 The design θ∗ ∈ Θ0 with lowest estimate of cθ

is the “winner”

Disadvantages

8 Same computational effort spent on good and bad designs

8 Small number of algorithm designs chosen a priori

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates

as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates

as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates

as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates

as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates

as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates

as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected
or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected
or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected
or until computation time expires

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

How to discard?

Statistical testing!

F-Race: Friedman two-way analysis of variance by ranks +
Friedman post-hoc test

Alternative: paired t-test with/without p-value correction
(against the best)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

How to discard?

Statistical testing!

F-Race: Friedman two-way analysis of variance by ranks +
Friedman post-hoc test

Alternative: paired t-test with/without p-value correction
(against the best)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Sampling Algorithm Designs

F-race is a method for the selection of the best
among a given set of algorithm designs

How to sample algorithm designs?

Full factorial

Random sampling

Iterative refinement of a sampling model
⇒ Iterated F-Race (I/F-Race) [Balaprakash et al., 2007]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Sampling Algorithm Designs

F-race is a method for the selection of the best
among a given set of algorithm designs

How to sample algorithm designs?

Full factorial

Random sampling

Iterative refinement of a sampling model
⇒ Iterated F-Race (I/F-Race) [Balaprakash et al., 2007]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Sampling Algorithm Designs

F-race is a method for the selection of the best
among a given set of algorithm designs

How to sample algorithm designs?

Full factorial

Random sampling

Iterative refinement of a sampling model
⇒ Iterated F-Race (I/F-Race) [Balaprakash et al., 2007]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Sampling Algorithm Designs

F-race is a method for the selection of the best
among a given set of algorithm designs

How to sample algorithm designs?

Full factorial

Random sampling

Iterative refinement of a sampling model
⇒ Iterated F-Race (I/F-Race) [Balaprakash et al., 2007]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Sampling Algorithm Designs

F-race is a method for the selection of the best
among a given set of algorithm designs

How to sample algorithm designs?

Full factorial

Random sampling

Iterative refinement of a sampling model
⇒ Iterated F-Race (I/F-Race) [Balaprakash et al., 2007]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Iterated F-Race [Balaprakash et al., 2007]

Require:
Training instances: {I1, I2, . . . } ∼ I ,
Parameter space: X ,
Cost measure: C : Θ× I → R,
Tuning budget: B

1: Θ1 ∼ SampleUniform(X )
2: Θelite := Race(Θ1, B1)
3: i := 2
4: while Bused ≤ B do
5: Θnew ∼ Sample(X , Θelite)
6: Θi := Θnew ∪Θelite

7: Θelite := Race(Θi , Bi )
8: i := i + 1
9: Output: Θelite

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The irace Package

http://iridia.ulb.ac.be/irace

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and
Mauro Birattari. The irace package, Iterated Race for Automatic
Algorithm Configuration. Technical Report TR/IRIDIA/2011-004,
IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

Implementation of I/F-Race with a few extensions

R package available at CRAN

Flexible

Easy to use

No knowledge of R needed

Command-line wrapper: irace --help

Manuel López-Ibáñez Automatic Design of Algorithms with iRace

http://iridia.ulb.ac.be/irace


The irace Package

iraceirace

Instances
Parameter

space
Configuration

of irace

hookRun

calls with i,θ returns c(i,θ)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The irace Package

http://iridia.ulb.ac.be/irace

Parameter space:

LS c {SA, best, first}
rate o {low, med, high }
population i (1, 100)

temp r (0.5, 1) if LS == "SA"

Initial configurations may be explicitly provided

Parallel execution:

on a single machine (multicore package)
using MPI (Rmpi package)
using a Grid Engine cluster (with qsub and qstat)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace

http://iridia.ulb.ac.be/irace


The irace Package

http://iridia.ulb.ac.be/irace

Parameter space:

LS c {SA, best, first}
rate o {low, med, high }
population i (1, 100)

temp r (0.5, 1) if LS == "SA"

Initial configurations may be explicitly provided

Parallel execution:

on a single machine (multicore package)
using MPI (Rmpi package)
using a Grid Engine cluster (with qsub and qstat)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace

http://iridia.ulb.ac.be/irace


The irace Package

http://iridia.ulb.ac.be/irace

Parameter space:

LS c {SA, best, first}
rate o {low, med, high }
population i (1, 100)

temp r (0.5, 1) if LS == "SA"

Initial configurations may be explicitly provided

Parallel execution:

on a single machine (multicore package)
using MPI (Rmpi package)
using a Grid Engine cluster (with qsub and qstat)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace

http://iridia.ulb.ac.be/irace


Advance Applications of irace

1 Automatic design of multi-objective optimization algorithms

2 Automatically improving the anytime behavior of algorithms

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Multi-objective Optimization

Multiple objective functions: ~f = (f1(x), f2(x), . . . )

No a priori knowledge ⇒ Pareto-optimality

a dominates b a and b nondominated

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Multi-objective Optimization

Multiple objective functions: ~f = (f1(x), f2(x), . . . )

No a priori knowledge ⇒ Pareto-optimality

a dominates b

a and b nondominated

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Multi-objective Optimization

Multiple objective functions: ~f = (f1(x), f2(x), . . . )

No a priori knowledge ⇒ Pareto-optimality

a dominates b a and b nondominated

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Multi-objective Optimization

f (x)
1

f (x)
2

A

f (x)
1

f (x)
2

A

B

f (x)
1

f (x)
2

A

B

C

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Multi-objective Optimization

f (x)
1

f (x)
2

A

f (x)
1

f (x)
2

A

B

f (x)
1

f (x)
2

A

B

C

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Multi-objective Optimization

f (x)
1

f (x)
2

A

f (x)
1

f (x)
2

A

B

f (x)
1

f (x)
2

A

B

C

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

irace + hypervolume = automatic configuration
of multi-objective solvers

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

irace + hypervolume = automatic configuration
of multi-objective solvers

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

irace + hypervolume = automatic configuration
of multi-objective solvers

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

irace + hypervolume = automatic configuration
of multi-objective solvers

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

1

2

3

4

5

6

7

8

1 2 3 6 8754

irace + hypervolume = automatic configuration
of multi-objective solvers

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of MOACO Algorithms

c© Dirk van der Made, used under CC-BY-SA 3.0 license

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of MOACO Algorithms

Multiple objective Ant-Q (MOAQ)
[Mariano & Morales, 1999]

[Garćıa-Mart́ınez et al., 2007]

MACS-VRPTW

[Gambardella et al., 1999]

BicriterionAnt [Iredi et al., 2001]

SACO [T’Kindt et al., 2002]

Multiobjective Network ACO

[Cardoso et al., 2003]

Multicriteria Population-based ACO
[Guntsch & Middendorf, 2003]

MACS [Barán & Schaerer, 2003]

COMPETants [Doerner et al., 2003]

Pareto ACO [Doerner et al., 2004]

Multiple Objective ACO Metaheuristic
[Gravel et al., 2002]

MOACO-bQAP

[López-Ibáñez et al., 2004]

MOACO-ALBP

[Baykasoglu et al., 2005]

mACO-{1, 2, 3, 4} [Alaya et al., 2007]

Population-based ACO [Angus, 2007]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of MOACO Algorithms

M. López-Ibáñez and T. Stützle. The automatic design of multi-objective

ant colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 2012.

1 Isolate design choices ⇒ Algorithmic components:

Algorithmic components used in existing MOACO algorithms
Algorithmic components never proposed before

2 Synthesize knowledge into a configurable MOACO framework
able to instantiate existing and new MOACO algorithms

3 Use irace + hypervolume to find the best MOACO designs

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of MOACO Algorithms

M. López-Ibáñez and T. Stützle. The automatic design of multi-objective

ant colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 2012.

1 Isolate design choices ⇒ Algorithmic components:

Algorithmic components used in existing MOACO algorithms
Algorithmic components never proposed before

2 Synthesize knowledge into a configurable MOACO framework
able to instantiate existing and new MOACO algorithms

3 Use irace + hypervolume to find the best MOACO designs

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of MOACO Algorithms

M. López-Ibáñez and T. Stützle. The automatic design of multi-objective

ant colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 2012.

1 Isolate design choices ⇒ Algorithmic components:

Algorithmic components used in existing MOACO algorithms
Algorithmic components never proposed before

2 Synthesize knowledge into a configurable MOACO framework
able to instantiate existing and new MOACO algorithms

3 Use irace + hypervolume to find the best MOACO designs

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of MOACO Algorithms

M. López-Ibáñez and T. Stützle. The automatic design of multi-objective

ant colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 2012.

1 Isolate design choices ⇒ Algorithmic components:

Algorithmic components used in existing MOACO algorithms
Algorithmic components never proposed before

2 Synthesize knowledge into a configurable MOACO framework
able to instantiate existing and new MOACO algorithms

3 Use irace + hypervolume to find the best MOACO designs

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



A flexible MOACO framework

Multi-objective algorithmic design: 10 parameters

Instantiates 9 MOACO algorithms from the literature

> 25 000 potential designs

Underlying ACO settings are also configurable

Implemented for bi-objective TSP and bi-objective Knapsack

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Experiments

Worst
wwwwwwwwwwwwww�

Best MOACO of literature + fixed ACO settings

Tuned MOACO design + fixed ACO settings
Best MOACO of literature + tuned ACO settings

Tuned MOACO design + tuned ACO settings

Best Tuned (MOACO design + ACO settings)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Conclusions

4 irace + hypervolume = automatic design of MO algorithms

4 irace typically better than humans . . .
. . . if given a good design space

4 Another example:

J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Automatic con-

figuration of state-of-the-art multi-objective optimizers using the

TP+PLS framework. GECCO, 2011.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Conclusions

4 irace + hypervolume = automatic design of MO algorithms

4 irace typically better than humans . . .
. . . if given a good design space

4 Another example:

J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Automatic con-

figuration of state-of-the-art multi-objective optimizers using the

TP+PLS framework. GECCO, 2011.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Conclusions

4 irace + hypervolume = automatic design of MO algorithms

4 irace typically better than humans . . .
. . . if given a good design space

4 Another example:

J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Automatic con-

figuration of state-of-the-art multi-objective optimizers using the

TP+PLS framework. GECCO, 2011.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatically Improving the Anytime Behavior of
Optimization Algorithms

Anytime Algorithm [Dean & Boddy, 1988]

May be interrupted at any moment and returns a solution

Keeps improving its solution until interrupted

Eventually finds the optimal solution

Good Anytime Behavior [Zilberstein, 1996]

Algorithms with good “anytime” behavior produce as high
quality result as possible at any moment of their execution.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatically Improving the Anytime Behavior of
Optimization Algorithms

Anytime Algorithm [Dean & Boddy, 1988]

May be interrupted at any moment and returns a solution

Keeps improving its solution until interrupted

Eventually finds the optimal solution

Good Anytime Behavior [Zilberstein, 1996]

Algorithms with good “anytime” behavior produce as high
quality result as possible at any moment of their execution.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Quality vs. Time Trade-off

Max-Min Ant System w/o LS

Solution-quality vs. time (SQT) curve / Performance profile

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

time in seconds

re
la

tiv
e 

de
vi

at
io

n 
fr

om
 b

es
t−

kn
ow

n

ants 1
ants 400

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Quality vs. Time Trade-off

Algorithms with good “anytime” behaviour produce as high
quality result as possible at any moment of their execution.

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

time in seconds

re
la

tiv
e 

de
vi

at
io

n 
fr

om
 b

es
t−

kn
ow

n

ants 1
ants 400

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Quality vs. Time Trade-off

Algorithms with good “anytime” behaviour produce as high
quality result as possible at any moment of their execution.

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

time in seconds

re
la

tiv
e 

de
vi

at
io

n 
fr

om
 b

es
t−

kn
ow

n

ants 1
ants 400
var ants

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Improving “Anytime” Behaviour

How to improve the anytime behaviour of MMAS?

+ Parameter variation:

Start with 1 ant, add 1 ant every iteration until 400 ants

Start with β = 10, switch to β = 2 after 100 iterations

. . .

8 More parameters!

8 How to compare SQT curves?

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Improving “Anytime” Behaviour

How to improve the anytime behaviour of MMAS?

+ Parameter variation:

Start with 1 ant, add 1 ant every iteration until 400 ants

Start with β = 10, switch to β = 2 after 100 iterations

. . .

8 More parameters!

8 How to compare SQT curves?

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Brute-Force Approach

1 Choose many different parameter variation strategies

2 Run lots of experiments

3 Visually compare SQT plots

After one year and a master thesis: [Maur et al., 2010]

4 Strategies for varying ants, β, or q0 that significantly improve
the anytime behaviour of MMAS on the TSP.

8 Extremely time consuming

8 Subjective / Bias

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Brute-Force Approach

1 Choose many different parameter variation strategies

2 Run lots of experiments

3 Visually compare SQT plots

After one year and a master thesis: [Maur et al., 2010]

4 Strategies for varying ants, β, or q0 that significantly improve
the anytime behaviour of MMAS on the TSP.

8 Extremely time consuming

8 Subjective / Bias

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Brute-Force Approach

1 Choose many different parameter variation strategies

2 Run lots of experiments

3 Visually compare SQT plots

After one year and a master thesis: [Maur et al., 2010]

4 Strategies for varying ants, β, or q0 that significantly improve
the anytime behaviour of MMAS on the TSP.

8 Extremely time consuming

8 Subjective / Bias

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Bi-Objective Optimisation

time

s
o

lu
ti

o
n

 c
o

s
t

A

B

C

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure

1

2

3

4

5

6

7

8

1 2 3 6 8754

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

time in seconds

re
la

tiv
e 

de
vi

at
io

n 
fr

om
 b

es
t−

kn
ow

n

ants 1 ( 1.0245 )
ants 400 ( 1.1604 )
var ants ( 1.1859 )

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Our Proposed Approach

irace + hypervolume = automatically improving the anytime
behavior of optimization algorithms

1 Run configuration until large stopping time

2 Compute hypervolume of SQT curve

3 Evaluate anytime behavior according to hypervolume

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Experiments

Time-varying ants (m): 6 parameters

Param. Domain Condition

mvar { delta, switch, none }
m [1, 100] if var = none

∆m {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 5} if var = delta

mswitch [1, 500] if var = switch

mstart 1
if var ∈ {delta, switch}

mend [1, 500]

Other parameters are set to default

Tuning budget: 1000 runs

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Experiments

1 2 5 10 20 50 100 200 500

0
2

4
6

8
10

time in seconds

R
P

D
 fr

om
 o

pt
im

al

default (0.9079)
manual var ants (0.9181)
auto var ants (0.9349)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatically Improving the Anytime Behaviour of SCIP

SCIP: an open-source mixed integer programming (MIP) solver
[Achterberg, 2009]

200 parameters controlling search, heuristics, thresholds, . . .

Benchmark set: Winner determination problem for combina-
torial auctions [Leyton-Brown et al., 2000]

1 000 training + 1 000 testing instances

Single run timeout: 300 seconds

Tuning budget: 5 000 runs

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatically Improving the Anytime Behaviour of SCIP

1 2 5 10 20 50 100 200

0
2

4
6

8
10

time in seconds

R
P

D
 fr

om
 b

es
t−

kn
ow

n

default (0.9834)
auto quality (0.9826)
auto time (0.9767)
auto anytime (0.9932)

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatically Improving Anytime Behavior

M. López-Ibáñez and T. Stützle. Automatically improving the

anytime behaviour of optimisation algorithms. Technical Report

TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium,

2012.

How to introduce a bias towards final quality?

+ Compute hypervolume on transformed y-axis
+ Weighted hypervolume [Zitzler et al., 2007]

How to define a cut-off time as short as possible?

+ Estimate point of diminishing returns [Woodruff et al., 2011]

+ Survival analysis techniques [Gagliolo & Legrand, 2010]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatically Improving Anytime Behavior

M. López-Ibáñez and T. Stützle. Automatically improving the

anytime behaviour of optimisation algorithms. Technical Report

TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium,

2012.

How to introduce a bias towards final quality?

+ Compute hypervolume on transformed y-axis
+ Weighted hypervolume [Zitzler et al., 2007]

How to define a cut-off time as short as possible?

+ Estimate point of diminishing returns [Woodruff et al., 2011]

+ Survival analysis techniques [Gagliolo & Legrand, 2010]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatically Improving Anytime Behavior

M. López-Ibáñez and T. Stützle. Automatically improving the

anytime behaviour of optimisation algorithms. Technical Report

TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium,

2012.

How to introduce a bias towards final quality?

+ Compute hypervolume on transformed y-axis
+ Weighted hypervolume [Zitzler et al., 2007]

How to define a cut-off time as short as possible?

+ Estimate point of diminishing returns [Woodruff et al., 2011]

+ Survival analysis techniques [Gagliolo & Legrand, 2010]

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The End

irace

Easy, flexible, state-of-the-art automatic configuration tool

Automatic Design of Algorithms

Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a specific
problem.

irace + hypervolume = automatic design of

multi-objective optimization algorithms

anytime optimization algorithms

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The End

irace

Easy, flexible, state-of-the-art automatic configuration tool

Automatic Design of Algorithms

Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a specific
problem.

irace + hypervolume = automatic design of

multi-objective optimization algorithms

anytime optimization algorithms

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The End

irace

Easy, flexible, state-of-the-art automatic configuration tool

Automatic Design of Algorithms

Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a specific
problem.

irace + hypervolume = automatic design of

multi-objective optimization algorithms

anytime optimization algorithms

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Automatic Design of Algorithms with iRace
for Multi-objective Optimization

and Anytime Optimization

Manuel López-Ibáñez

manuel.lopez-ibanez@ulb.ac.be

http://iridia.ulb.ac.be/∼manuel

IRIDIA
Institut de Recherches

Interdisciplinaireset de Développements
en Intelligence Artificielle

mailto:manuel.lopez-ibanez@ulb.ac.be
http://iridia.ulb.ac.be/~manuel
http://www.ulb.ac.be
http://iridia.ulb.ac.be


References I

T. Achterberg. SCIP: Solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, July 2009.

I. Alaya, C. Solnon, and K. Ghédira. Ant colony optimization for multi-objective
optimization problems. In 19th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2007), volume 1, pages 450–457. IEEE Computer
Society Press, Los Alamitos, CA, 2007.

D. Angus. Population-based ant colony optimisation for multi-objective function
optimisation. In M. Randall, H. A. Abbass, and J. Wiles, editors, Progress in
Artificial Life (ACAL), volume 4828 of Lecture Notes in Computer Science, pages
232–244. Springer, Heidelberg, Germany, 2007. doi: 10.1007/978-3-540-76931-6 21.

P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In T. Bartz-Beielstein, M. J.
Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M. Sampels, editors, Hybrid
Metaheuristics, volume 4771 of Lecture Notes in Computer Science, pages
108–122. Springer, Heidelberg, Germany, 2007.

B. Barán and M. Schaerer. A multiobjective ant colony system for vehicle routing
problem with time windows. In Proceedings of the Twenty-first IASTED
International Conference on Applied Informatics, pages 97–102, Insbruck, Austria,
2003.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



References II

A. Baykasoglu, T. Dereli, and I. Sabuncu. A multiple objective ant colony
optimization approach to assembly line balancing problems. In 35th International
Conference on Computers and Industrial Engineering (CIE35), pages 263–268,
Istanbul, Turkey, 2005.

M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective, volume 197 of
Studies in Computational Intelligence. Springer, Berlin/Heidelberg, Germany, 2009.
doi: 10.1007/978-3-642-00483-4.

M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for
configuring metaheuristics. In W. B. Langdon et al., editors, Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2002, pages 11–18.
Morgan Kaufmann Publishers, San Francisco, CA, 2002.

P. Cardoso, M. Jesus, and A. Marquez. Monaco multi-objective network optimisation
based on an aco. In Proc. X Encuentros de Geometŕıa Computacional, Seville,
Spain, 2003.

T. Dean and M. S. Boddy. An analysis of time-dependent planning. In Proceedings of
the 7th National Conference on Artificial Intelligence, AAAI-88, pages 49–54. AAAI
Press, 1988.

K. F. Doerner, R. F. Hartl, and M. Reimann. Are COMPETants more competent for
problem solving? The case of a multiple objective transportation problem. Central
European Journal for Operations Research and Economics, 11(2):115–141, 2003.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



References III

K. F. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Pareto ant
colony optimization: A metaheuristic approach to multiobjective portfolio selection.
Annals of Operations Research, 131:79–99, 2004.

M. Gagliolo and C. Legrand. Algorithm survival analysis. In T. Bartz-Beielstein,
M. Chiarandini, L. Paquete, and M. Preuss, editors, Experimental Methods for the
Analysis of Optimization Algorithms, pages 161–184. Springer, Berlin, Germany,
2010. doi: 10.1007/978-3-642-02538-9 7.

L. M. Gambardella, É. D. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76.
McGraw Hill, London, UK, 1999.

C. Garćıa-Mart́ınez, O. Cordón, and F. Herrera. A taxonomy and an empirical analysis
of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
European Journal of Operational Research, 180(1):116–148, 2007.

M. Gravel, W. L. Price, and C. Gagné. Scheduling continuous casting of aluminum
using a multiple objective ant colony optimization metaheuristic. European Journal
of Operational Research, 143(1):218–229, 2002. doi:
10.1016/S0377-2217(01)00329-0.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



References IV

M. Guntsch and M. Middendorf. Solving multi-objective permutation problems with
population based ACO. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-criterion Optimization (EMO 2003), volume
2632 of Lecture Notes in Computer Science, pages 464–478. Springer, Heidelberg,
Germany, 2003.

S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with multi colony
ant algorithms. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
editors, Evolutionary Multi-criterion Optimization (EMO 2001), volume 1993 of
Lecture Notes in Computer Science, pages 359–372. Springer, Heidelberg,
Germany, 2001.

K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for
combinatorial auction algorithms. In A. Jhingran et al., editors, ACM Conference
on Electronic Commerce (EC-00), pages 66–76. ACM Press, New York, NY, 2000.
doi: 10.1145/352871.352879.

M. López-Ibáñez, L. Paquete, and T. Stützle. On the design of ACO for the
biobjective quadratic assignment problem. In M. Dorigo et al., editors, Ant Colony
Optimization and Swarm Intelligence, 4th International Workshop, ANTS 2004,
volume 3172 of Lecture Notes in Computer Science, pages 214–225. Springer,
Heidelberg, Germany, 2004. doi: 10.1007/978-3-540-28646-2 19.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



References V

C. E. Mariano and E. Morales. MOAQ: An Ant-Q algorithm for multiple objective
optimization problems. In W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. J. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 1999, pages 894–901. Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

M. Maur, M. López-Ibáñez, and T. Stützle. Pre-scheduled and adaptive parameter
variation in MAX –MIN Ant System. In H. Ishibuchi et al., editors, Proceedings
of the 2010 Congress on Evolutionary Computation (CEC 2010), pages 3823–3830.
IEEE Press, Piscataway, NJ, 2010. doi: 10.1109/CEC.2010.5586332.

V. T’Kindt, N. Monmarché, F. Tercinet, and D. Laügt. An ant colony optimization
algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European
Journal of Operational Research, 142(2):250–257, 2002.

D. L. Woodruff, U. Ritzinger, and J. Oppen. Research note: the point of diminishing
returns in heuristic search. International Journal of Metaheuristics, 1(3):222–231,
2011. doi: 10.1504/IJMHeur.2011.041195.

S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):
73–83, 1996.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



References VI

E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration. In S. Obayashi
et al., editors, Evolutionary Multi-criterion Optimization (EMO 2007), volume 4403
of Lecture Notes in Computer Science, pages 862–876. Springer, Heidelberg,
Germany, 2007. doi: 10.1007/978-3-540-70928-2 64.

Manuel López-Ibáñez Automatic Design of Algorithms with iRace


	Offline Automatic Design of Algorithms
	Automatic Design of Algorithms
	The algorithm design problem
	The algorithm design problem: How to solve it?
	The racing approach
	Iterated F-Race
	The irace Package
	Advance Applications of irace
	Multi-objective Optimization
	Hypervolume measure
	Automatic Design of MOACO Algorithms
	A flexible MOACO framework
	Experiments
	Conclusions
	Automatically Improving the Anytime Behavior of Optimization Algorithms
	Quality vs. Time Trade-off
	Improving ``Anytime'' Behaviour
	Brute-Force Approach
	Bi-Objective Optimisation
	Hypervolume measure
	Our Proposed Approach
	Experiments
	Automatically Improving the Anytime Behaviour of SCIP
	Automatically Improving Anytime Behavior
	The End
	Automatic Configuration: ACO algorithm settings



