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Offline Automatic Design of Algorithms

A non-expert user wants to repeatedly solve a problem

Problem
Instances

?

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Offline Automatic Design of Algorithms

How to build a solver for this type of problem?

Solver

Problem
Instances

?
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Offline Automatic Design of Algorithms

The user could rely on an expert

Benchmark
Problems

Solver

?

Problem
Instances

?
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Offline Automatic Design of Algorithms

Can we replace the expert by an algorithm?

Benchmark
Problems

Solver

?

Problem
Instances

?
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Offline Automatic Design of Algorithms

4 Experts focus on creativity and understanding

4 The machine does the boring experiments and statistics

4 Formalize what is implicitly done in experimental research

4 Avoid human biases
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Automatic Design of Algorithms

Offline Tuning / Automatic Configuration

Find the best parameter configuration of a solver
from a set of training instances

Repeatedly use this configuration
to solve unseen instances of the same problem

Automatic Design of Algorithms

Goal: Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a spe-
cific problem.

Solver ⇒ Flexible algorithmic framework
Parameter space ⇒ Design space of the framework
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The algorithm design problem [Birattari, 2009]

Θ : set of potential algorithm designs (possibly infinite)

I : set of instances (possibly infinite), from which in-
stances are sampled with certain probability

C : Θ× I → R : cost measure, where:

C(θ, i) : cost of design θ ∈ Θ on instance i ∈ I

c(θ, i) : cost after running once design θ on instance i

cθ : function of the cost C of a design θ with respect to
the distribution of the random variable I

Find the best algorithm design θ∗ such that:

θ∗ = arg min
θ∈Θ

cθ
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The algorithm design problem: How to solve it?

Traditional approach

1 Expert chooses a number of algorithm designs Θ0 ⊂ Θ
2 Expert chooses a number of benchmark problems I0 ⊂ I
3 Estimate cθ for each θ ∈ Θ0,

by computing c(θ, i) for each i ∈ I0
4 The design θ∗ ∈ Θ0 with lowest estimate of cθ

is the “winner”

Disadvantages

8 Same computational effort spent on good and bad designs

8 Small number of algorithm designs chosen a priori

Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The algorithm design problem: How to solve it?

Traditional approach

1 Expert chooses a number of algorithm designs Θ0 ⊂ Θ
2 Expert chooses a number of benchmark problems I0 ⊂ I
3 Estimate cθ for each θ ∈ Θ0,

by computing c(θ, i) for each i ∈ I0
4 The design θ∗ ∈ Θ0 with lowest estimate of cθ

is the “winner”

Disadvantages

8 Same computational effort spent on good and bad designs

8 Small number of algorithm designs chosen a priori
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The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates

as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires
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Manuel López-Ibáñez Automatic Design of Algorithms with iRace



The racing approach [Birattari et al., 2002]

In
st

an
ce

s
Θ0

start with a set of initial candidates

consider a stream of instances

sequentially evaluate candidates

discard inferior candidates
as sufficient evidence is gathered against

them

. . . repeat until a winner is selected

or until computation time expires
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The racing approach [Birattari et al., 2002]

How to discard?

Statistical testing!

F-Race: Friedman two-way analysis of variance by ranks +
Friedman post-hoc test

Alternative: paired t-test with/without p-value correction
(against the best)
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Sampling Algorithm Designs

F-race is a method for the selection of the best
among a given set of algorithm designs

How to sample algorithm designs?

Full factorial

Random sampling

Iterative refinement of a sampling model
⇒ Iterated F-Race (I/F-Race) [Balaprakash et al., 2007]
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Iterated F-Race [Balaprakash et al., 2007]

Require:
Training instances: {I1, I2, . . . } ∼ I ,
Parameter space: X ,
Cost measure: C : Θ× I → R,
Tuning budget: B

1: Θ1 ∼ SampleUniform(X )
2: Θelite := Race(Θ1, B1)
3: i := 2
4: while Bused ≤ B do
5: Θnew ∼ Sample(X , Θelite)
6: Θi := Θnew ∪Θelite

7: Θelite := Race(Θi , Bi )
8: i := i + 1
9: Output: Θelite
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The irace Package

http://iridia.ulb.ac.be/irace

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and
Mauro Birattari. The irace package, Iterated Race for Automatic
Algorithm Configuration. Technical Report TR/IRIDIA/2011-004,
IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

Implementation of I/F-Race with a few extensions

R package available at CRAN

Flexible

Easy to use

No knowledge of R needed

Command-line wrapper: irace --help
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The irace Package

iraceirace

Instances
Parameter

space
Configuration

of irace

hookRun

calls with i,θ returns c(i,θ)
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The irace Package

http://iridia.ulb.ac.be/irace

Parameter space:

LS c {SA, best, first}
rate o {low, med, high }
population i (1, 100)

temp r (0.5, 1) if LS == "SA"

Initial configurations may be explicitly provided

Parallel execution:

on a single machine (multicore package)
using MPI (Rmpi package)
using a Grid Engine cluster (with qsub and qstat)
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Advance Applications of irace

1 Automatic design of multi-objective optimization algorithms

2 Automatically improving the anytime behavior of algorithms
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Multi-objective Optimization

Multiple objective functions: ~f = (f1(x), f2(x), . . . )

No a priori knowledge ⇒ Pareto-optimality

a dominates b a and b nondominated
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Multi-objective Optimization

f (x)
1

f (x)
2

A

f (x)
1

f (x)
2

A

B

f (x)
1

f (x)
2

A

B

C
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Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Hypervolume measure
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irace + hypervolume = automatic configuration
of multi-objective solvers
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Automatic Design of MOACO Algorithms

c© Dirk van der Made, used under CC-BY-SA 3.0 license
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Automatic Design of MOACO Algorithms

Multiple objective Ant-Q (MOAQ)
[Mariano & Morales, 1999]

[Garćıa-Mart́ınez et al., 2007]

MACS-VRPTW

[Gambardella et al., 1999]

BicriterionAnt [Iredi et al., 2001]

SACO [T’Kindt et al., 2002]

Multiobjective Network ACO

[Cardoso et al., 2003]

Multicriteria Population-based ACO
[Guntsch & Middendorf, 2003]

MACS [Barán & Schaerer, 2003]

COMPETants [Doerner et al., 2003]

Pareto ACO [Doerner et al., 2004]

Multiple Objective ACO Metaheuristic
[Gravel et al., 2002]

MOACO-bQAP

[López-Ibáñez et al., 2004]

MOACO-ALBP

[Baykasoglu et al., 2005]

mACO-{1, 2, 3, 4} [Alaya et al., 2007]

Population-based ACO [Angus, 2007]
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Automatic Design of MOACO Algorithms

M. López-Ibáñez and T. Stützle. The automatic design of multi-objective

ant colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 2012.

1 Isolate design choices ⇒ Algorithmic components:

Algorithmic components used in existing MOACO algorithms
Algorithmic components never proposed before

2 Synthesize knowledge into a configurable MOACO framework
able to instantiate existing and new MOACO algorithms

3 Use irace + hypervolume to find the best MOACO designs
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A flexible MOACO framework

Multi-objective algorithmic design: 10 parameters

Instantiates 9 MOACO algorithms from the literature

> 25 000 potential designs

Underlying ACO settings are also configurable

Implemented for bi-objective TSP and bi-objective Knapsack
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Experiments

Worst
wwwwwwwwwwwwww�

Best MOACO of literature + fixed ACO settings

Tuned MOACO design + fixed ACO settings
Best MOACO of literature + tuned ACO settings

Tuned MOACO design + tuned ACO settings

Best Tuned (MOACO design + ACO settings)
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Conclusions

4 irace + hypervolume = automatic design of MO algorithms

4 irace typically better than humans . . .
. . . if given a good design space

4 Another example:

J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Automatic con-

figuration of state-of-the-art multi-objective optimizers using the

TP+PLS framework. GECCO, 2011.
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Automatically Improving the Anytime Behavior of
Optimization Algorithms

Anytime Algorithm [Dean & Boddy, 1988]

May be interrupted at any moment and returns a solution

Keeps improving its solution until interrupted

Eventually finds the optimal solution

Good Anytime Behavior [Zilberstein, 1996]

Algorithms with good “anytime” behavior produce as high
quality result as possible at any moment of their execution.
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Quality vs. Time Trade-off

Max-Min Ant System w/o LS

Solution-quality vs. time (SQT) curve / Performance profile
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Improving “Anytime” Behaviour

How to improve the anytime behaviour of MMAS?

+ Parameter variation:

Start with 1 ant, add 1 ant every iteration until 400 ants

Start with β = 10, switch to β = 2 after 100 iterations

. . .

8 More parameters!

8 How to compare SQT curves?
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Brute-Force Approach

1 Choose many different parameter variation strategies

2 Run lots of experiments

3 Visually compare SQT plots

After one year and a master thesis: [Maur et al., 2010]

4 Strategies for varying ants, β, or q0 that significantly improve
the anytime behaviour of MMAS on the TSP.

8 Extremely time consuming

8 Subjective / Bias
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Bi-Objective Optimisation
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Hypervolume measure
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Hypervolume measure
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Manuel López-Ibáñez Automatic Design of Algorithms with iRace



Our Proposed Approach

irace + hypervolume = automatically improving the anytime
behavior of optimization algorithms

1 Run configuration until large stopping time

2 Compute hypervolume of SQT curve

3 Evaluate anytime behavior according to hypervolume
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Experiments

Time-varying ants (m): 6 parameters

Param. Domain Condition

mvar { delta, switch, none }
m [1, 100] if var = none

∆m {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 5} if var = delta

mswitch [1, 500] if var = switch

mstart 1
if var ∈ {delta, switch}

mend [1, 500]

Other parameters are set to default

Tuning budget: 1000 runs
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Experiments
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manual var ants (0.9181)
auto var ants (0.9349)
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Automatically Improving the Anytime Behaviour of SCIP

SCIP: an open-source mixed integer programming (MIP) solver
[Achterberg, 2009]

200 parameters controlling search, heuristics, thresholds, . . .

Benchmark set: Winner determination problem for combina-
torial auctions [Leyton-Brown et al., 2000]

1 000 training + 1 000 testing instances

Single run timeout: 300 seconds

Tuning budget: 5 000 runs
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Automatically Improving the Anytime Behaviour of SCIP
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Automatically Improving Anytime Behavior

M. López-Ibáñez and T. Stützle. Automatically improving the

anytime behaviour of optimisation algorithms. Technical Report

TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium,

2012.

How to introduce a bias towards final quality?

+ Compute hypervolume on transformed y-axis
+ Weighted hypervolume [Zitzler et al., 2007]

How to define a cut-off time as short as possible?

+ Estimate point of diminishing returns [Woodruff et al., 2011]

+ Survival analysis techniques [Gagliolo & Legrand, 2010]
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The End

irace

Easy, flexible, state-of-the-art automatic configuration tool

Automatic Design of Algorithms

Automatically find a good instantiation of an optimization
algorithm from a large space of potential designs for a specific
problem.

irace + hypervolume = automatic design of

multi-objective optimization algorithms

anytime optimization algorithms
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C. Garćıa-Mart́ınez, O. Cordón, and F. Herrera. A taxonomy and an empirical analysis
of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
European Journal of Operational Research, 180(1):116–148, 2007.
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Manuel López-Ibáñez Automatic Design of Algorithms with iRace



References VI

E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration. In S. Obayashi
et al., editors, Evolutionary Multi-criterion Optimization (EMO 2007), volume 4403
of Lecture Notes in Computer Science, pages 862–876. Springer, Heidelberg,
Germany, 2007. doi: 10.1007/978-3-540-70928-2 64.
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